경피적 동맥관 폐쇄술에 Duct-Occlud Coil의 다양한 폐쇄 모양의 변형을 이용한 술식의 중-장기 결과

연세대학교 대학원
의 학 과
권 해 식
경피적 동맥관 폐쇄술에 Duct-Occlud Coil의 다양한 폐쇄 모양의 변형을 이용한 술식의 중-장기 결과

지도교수 설 준 희

이 논문을 석사 학위논문으로 제출함

2007년 12월

연세대학교 대학원

의 학과

권 해 식
권해식의 석사 학위논문을 인준함

심사위원 설준희
심사위원 정조원
심사위원 최승훈

연세대학교 대학원

2007 년 12월
감사의 글
바쁜 일정 속에서도 석사 과정 전반에 걸쳐 부족한 저에게 많은 가르침과 도움을 주신 설준희 선생님께 우선 깊은 감사를 드립니다. 그리고, 논문이 완성되기까지 처 음부터 끝까지 일일이 세심한 관심과 가르침을 주신 최재영 선생님, 본원과 멀리 떨어져 있어서 자주 찾아 봤지 못했음에도 따뜻한 관심과 지적을 해 주신 아주 대학병원의 소아 심장과 정조원 선생님, 영동 세브란스 병원의 소아 외과 최승훈 선생님께도 깊은 감사 드립니다. 바쁜 병원에서의 생활 속에서 늦은 귀가와 피로에 지친 저를 항상 따뜻하게 맞이하고 묵묵히 지켜봐 준 부모님과 아내, 장인 장모님께도 고마운 마음을 전하고 싶습니다.

저자 측
목차

국문요약 ... 1

I. 서론 ... 3

II. 대상 및 방법 .. 5
 1. 대상 .. 5
 2. 방법 .. 5
 3. 통계학적 방법 ... 9

III. 결과 ... 10
 1. 대상 환자군의 특성 .. 10
 2. 중-장기 추적 관찰 기간에 따른 변형된 코일모양의
 잔류단락률 비교 ... 10
 3. 변형된 코일 모양에 따른 임상적, 혈역학적 특성 비교
 .. 12
 4. 시술 5년 후 장기 추적검사 상 잔류단락을 보인 동맥관의
 크기와 삽입된 코일의 형태 13
 5. 시술 12개월 후 잔류단락을 보인 동맥관의 임상적
 혈역학적 특성 비교 ... 14
 6. 시술의 합병증 .. 15

IV. 고찰 ... 17

V. 결론 ... 20

참고문헌 .. 21

영문요약 ... 25
그림 차례
Figure 1. The Duct-Occlud configuration of Standard method.7
Figure 2. Modification of the Duct-Occlud Configuration.8
Figure 3. Measurement of Patent Ductus Arteriosus ..9
Figure 4. Echocardiographic Residual Rates of Configurations of Implanted Coil According to Follow-Up Period. ..12
Figure 5. Echo residual rate by the PDA minimum diameter and the configuration of the implanted coil at 5-year-follow up.14
Table 1. Characteristics of the Patients10
Table 2. Clinical and Hemodynamic Data by the Configuration of Implanted Coil 13
Table 3. Clinical and Hemodynamic Data by the Echo residual shunt at 12 months F/U15
Table 4. Clinical Problems of Coil Implant16
국문요약

경피적 동맥관 폐쇄술에 Duct-Occlud Coil의 다양한 폐쇄 모양의
변형을 이용한 술식의 중-장기 결과

비교적 작은 크기의 동맥관 폐쇄에 있어서 코일을 이용한 경피적
폐쇄술은 여러 기관에서 이미 표준적 치료로 받아 들여지고 있
으나 아직 비교적 큰 크기의 동맥관에 있어서는 제한점을 지니고
있다. 이에 본 기관에서는 Duct-Occlud를 이용하여 장착되는 코일
의 모양을 다양하게 변형하여 위치시키는 새로운 술기를 이용하여
4mm이상의 큰 동맥관의 폐쇄에까지 확장시켜 시도하였으며 이에
대한 중-장기 결과를 비교 분석함으로써 이 술기에 대한 안정성과
효용성을 알아보고자 하였다.

1996년 3월부터 2002년 2월까지 총 135명의 환자들을 대상으로
하였으며 5년간의 중-장기 추적 결과 상 중등도 이하 크기(동맥관
의 최소직경 <4mm)의 완전 폐쇄율은 99%(112명 중 111명), 큰 크기
(동맥관의 최소직경 ≥4mm)의 완전 폐쇄율은 86%(22명 중 19명)
이었다. 총 135명의 환자 중 67명의 환자에서 기구의 표준적 모양
을 그대로 이용하였고 나머지는 삽입되는 코일의 모양을 케기
(wedge) 모양(35례), 빗장(cross bar) 모양(23례), 두 개의
(double) 코일(6례), 역위된(reverse) 모양(4례)으로 각각 변형
하여 시술하였으며 이들의 시술 5년 후 완전 폐쇄율은 각각 98%,
97%, 94%, 100%, 100%였다. 시술 12개월 후까지 잔류단락이 있었
던 군은 완전 폐쇄군과 비교했을 때 동맥관의 폐쇄 직경이 의미
있게 더 컸다(3.7±1.0mm 대 2.7±1.1mm, P<0.05). 시술의 합병증 으로는 4례에서 삽입된 코일의 색전이 발생하였으며 이중 2례는 폐동맥으로, 나머지 2례는 하행 대동맥으로 색전되었고 이들은 모두 경피적 방법으로 제거한 후 새로운 코일을 이용하여 폐쇄하였다.

Duct-Occlud를 이용한 경피적 동맥관 폐쇄술의 중-장기 결과는 높은 완전 폐쇄율과 안전성을 보여 주었으며 삽입되는 코일의 모양을 다양하게 변형시켜 비교적 큰 크기의 동맥관의 폐쇄에까지 그 적응을 확장할 수 있었다.
경피적 동맥관 폐쇄술에 Duct-Occlud Coil의 다양한 폐쇄 모양의 변형을 이용한 술식의 중-장기 결과

<지도교수 설 준 화>
연세대학교 대학원 의학과
권 해 식

I. 서론
카테터를 이용한 동맥관 개존증의 경피적 폐쇄술은 중등도 이하 크기의 동맥관에서 표준적 치료로 받아들여지고 있으며 그 효과 및 중-장기 추적 관찰상의 안정성이 입증되어 있다.2 큰 동맥관 개존증이 치료되지 않을 시에는 폐동맥 고혈압을 동반한 심부전을 일으킬 수 있을 뿐만 아니라 작은 크기의 동맥관 조차도 0.45%/year의 위험률로 감염성 심내막염을 일으킬 수 있기 때문에 크기에 상관없이 진단된 동맥관은 가능한 한 빠른 시일 내에 치료되어야 한다. 카테터를 이용한 동맥관 폐쇄술은 1967년 Porstmann 등3이 처음 시도한 이후 Rashkind double umbrella6-8, Sideris buttoned device9, Gianturco coils10, 11와 같은 여러 기구들이 최근 수십 년간 수많은 환자들에게 만족스러운 임상적 결과를 끼어내며 이용되어 왔다.
한 때 널리 이용되었던 Rashkind double umbrella는 비교적 굵은 카테터를 이용하여야 했고 시술 후 폐동맥의 협착을 일으킬 수 있었으며 수
술적 결찰술에 비하여 높은 잔류 단락률(17-30%)를 보여 그 사용이 제한 적이었다. 6-8. 1990년대 초반에 소개 된 Gianturco coil은 비교적 간편 하고 쉬어진 운반체계와 높은 폐쇄율을 보여 주었으나, 기구의 조정이 쉽지 않고 중등도 이상 크기의 동맥관의 폐쇄에 있어서 여러 개의 코일이 필요하거나 시술 자체가 매우 어려웠으며 폐동맥과 대동맥으로 코일의 돌출과 색전 등의 합병증이 보고되었다. 11, 12.

이후 Duct-Occlud 와 Cook-detachable coil이 소개되었고 중등도 이하의 폐동맥 폐쇄에 가장 널리 이용되기 시작하였다. 두 기구 모두 코일을 완전히 삽입하여 원하는 위치와 모양이 될 때까지 여러 번의 재조정이 가능하도록 고안 되었으며, 이중 Duct-Occlud는 동맥관의 모양과 유사하게 생긴 원추 모양의 나선형 코일을 기본 형태로 하여 지금까지 여러 차례 기구의 개선과 변형이 이루어져 standard coil, reinforced coil, reinforced reverse cone coil, Nit-Occlud coil 등이 이용되어 왔다. 그에 따라 다양한 형태와 크기의 동맥관 폐쇄가 가능하여 4mm 이상의 비교적 큰 크기의 동맥관의 폐쇄에 Duct-Occlud를 이용함에 있어서는 많은 문제점과 제한이 있어 왔다. 이에 본 기관에서 는 Duct-Occlud를 이용하여 장착되는 코일의 모양을 다양하게 변형하여 쐐기(wedge) 모양, 빗장(cross bar)모양, 두 개의(double) 코일, 역위된(reverse) 모양과 같은 4가지 형태의 변형된 술기를 이용하여 4mm 이상의 큰 동맥관의 폐쇄에까지 확장시켜 시도하였으며 이에 대한 중-장기 결과를 비교 분석함으로써 이 술기에 대한 안정성과 효용성을 알아보고자 하였다.
II. 대상 및 방법

1. 대상
1996년 3월부터 2002년 2월까지 연세대학교 의과대학 심장혈관병원 소아심장과에서 Duct-Oclud (pfm AG, Cologne, Germany)를 이용하여 경피적 동맥관 폐쇄술을 시행 받은 143명의 환자들을 대상으로 하였다. 총 153회의 시술이 시행 되었으며 코일이 색전되어 snare를 이용하여 제거한 후 재시술을 받은 경우가 4례, 두 개의 코일을 사용한 경우가 6례 있었다. 동맥관의 폐쇄 여부를 확인하기 위하여 시술 직후, 1개월, 6개월, 12개월, 이후 1년 간격으로 이학적 검사 및 심초음파를 시행하였으며 이중 시술에 성공하지 못한 4명의 환자와, 시술 후 색전으로 추적결과를 분석할 수 없었던 4명을 제외하여 총 135명의 환자를 대상으로 분석하였다. 대상 환아의 성별은 남 91명, 여 44명 (2.1:1), 나이는 53±46개월 (중앙값: 41개월, 범위:6-229개월)였다. 135명 중 4명은 이전에 Rashkind double umbrella나 Gianturco coil로 시술을 받았던 환자들이었고 5명은 수술적 결찰 후 관류단락으로 진단 받은 환자들이었다.

2. 방법
시술은 케타민 (ketamine) 정맥 마취 하에 진행되었다. 대퇴동맥과 대퇴동맥에 각각 4-5 French 유도관(sheath)을 넣은 후 통상적인 심도자 검사를 통하여 체-폐 혈류비(Qp/Qs)를 구하고 pigtail 카테타를 이용하여 적절한 위치에서 대동맥 조영술을 시행하여 동맥관의 크기와 모양을 확인한 후 적절한 코일의 종류와 크기를 선택하였다. 기구의 운반 도관은 대퇴 정맥을 통하여 우선방과 우심실, 폐동맥을 경유하여 동맥관을 통해 하행대동맥에 위치시킨 후 기구를 운반 도관 안으로 밀어 넣어 하
행대동맥 내에서 동맥관의 모양과 크기에 맞게 일정량의 코일을 풀어 모양을 만든 후 운반도관과 함께 코일을 잡아 당겨 동맥관으로 이어지는 패대부위(ampulla)에 밀착시킨 후 마지막 코일의 남은 부분을 패동맥 안에서 풀어 고정 시켰다. 이 때 코일의 모양이나 위치가 안정화 될 때까지 코일을 지속적으로 재조정하고 적절한 모양으로 만들었으며 최종 모양과 위치가 결정 되었을 때 대동맥 조영술을 통하여 장류단락과 모양을 한 번 더 최종 확인한 후 기구를 연결부에서 분리하였다. 비교적 큰 동맥관 안에서 코일이 기억하고 있는 통상적인 장구 모양의 기본형태(Original)로 장착이 불가능할 때 장착되는 코일의 모양을 채기(wedge) 모양, 빗장(cross bar)모양, 두 개의(double) 코일, 역위된(reverse) 모양(Fig. 1, Fig. 2)과 같은 다양한 모양으로 변형하여 동맥관 내 장착을 유도하였으며 이들을 기본 형태(Original)를 이용하여 장착한 군과 나누어 비교 분석하였다. 각 군 별 연령, 몸무게, 패혈류와 체혈류의 비(Qp/Qs), 패동맥과 대동맥의 압력 비(PA/Ao Pr. Ratio), 동맥관의 최소직경(D1), 동맥관의 최대 직경(D2), 동맥관의 길이(L), 동맥관의 최대직경과 길이의 비(D2/L ratio)를 측정하여 비교하였으며(Fig. 3), 시술 당일 저녁과 다음 날 흉부 방사선 촬영으로 코일의 위치를 확인하고 퇴원 전 이학적 검사 및 심초음파 검사를 시행하였다. 동맥관의 패쇄 여부를 확인하기 위하여 시술 후 1개월, 6개월, 12개월 이후에 외래에서 이학적 검사 및 심초음파 검사를 시행하였으며 이후 장류단락이 남아 있는 그룹은 1년 간격으로 추적 검사를 지속하였다. 장류단락은 색도플러 심초음파 검사(color flow Doppler echocardiography) 상 패동맥에서 난류를 보아 확인하였다.
Figure 1. The Duct-Occlud configuration of Standard method. The small box of the picture shows the magnification of Duct-Occlud configuration.
Figure 2. Modification of the Duct-Occlud Configuration. A: Wedge shape, B: Cross bar shape, C: Reverse shape, D: Double coil.

The small box of each picture shows the magnification of modified Duct-Occlud configuration.
Figure 3. Measurement of Patent Ductus Arteriosus.

D1 : PDA minimum diameter, D2 : PDA maximum diameter, L : PDA length
Abbreviation : PA, Pulmonary artery; Ao, Aorta

3. 통계적 분석

결과는 평균값, 표준편차로 나타내었으며 추적관찰 기간에 따른 각 기구들의 잔류 단락률은 백분율로 표시하였다. 각 비교 대상 군 간 여러 지표들의 비교는 Student’s t-test와 ANOVA test를 시행하였고 P<0.05 일 경우 통계학적으로 유의한 차이가 있다고 기술하였다.
III. 결과

1. 대상 환자군의 특성 (Table 1)
시술이 성공적으로 이루어진 135명의 환자에서 연령은 6개월에서 229개월로 중앙값은 41개월이었고 체중은 6kg에서 65kg으로 중앙값은 14kg이었다. 동맥관의 최소직경은 2.9±1.3mm였으며 패혈류와 체혈류의 비 (Qp/Qs)는 1.5±0.4였다.

Table 1. Characteristics of the Patients (n=135)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male : Female</td>
<td>2.1 : 1</td>
</tr>
<tr>
<td>Age (Months)</td>
<td>53 ± 46 (6 - 229) (Median: 41)</td>
</tr>
<tr>
<td>Body weights (kg)</td>
<td>18 ± 12 (6 - 65) (Median: 14)</td>
</tr>
<tr>
<td>PDA minimum diameter (mm)</td>
<td>2.9 ± 1.3 (0.8 - 6.6)</td>
</tr>
<tr>
<td>Qp/Qs†</td>
<td>1.5 ± 0.4 (1.0 - 2.6)</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>13 ± 7 (7 - 45)</td>
</tr>
</tbody>
</table>

*All data expressed as mean ± standard deviation(range)
†Qp/Qs : Flow for pulmonary and systemic circuits

2. 중-장기 추적 관찰 기간에 따른 변형된 코일모양의 잔류 단락률 비교 (Fig. 4)
Duct-Occlud가 지니고 있는 원래 모양을 그대로 유지한 군 (Original)은 총 135명의 환자 중 68명 (50%)였으며 추적관찰 기간에 따라 시술 직후에 74%, 1일 후에 52%, 1개월 후에 21%, 6개월 후에 4%, 12개월 후에 4%의 잔류 단락률을 보였고, 이 중 12개월 후에도 잔류단락을 보인 3명의 환자 중 2명은 시술 후 각각 4년, 5년 후 추
적검사에서 완전 폐쇄를 보였다. 코일의 모양을 채기 모양으로 비스듬히 높혀 변형한 군(Wedge)은 총 35명(26%)이였으며 시술 직후에 82%, 1일 후에 46%, 1개월 후에 25%, 6개월 후에 6%, 12개월 후에 6%의 잔류 단락률을 보였고 이 중 12개월 후에도 잔류단락을 보인 2 명의 환자 중 1명은 시술 4년 후 추적검사에서 완전 폐쇄를 보였다. 코일을 동맥관 안에서 대동맥과 폐동맥 사이를 가로질러 빗장 모양으로 변형한 군(cross bar)은 총 23명(17%)이였으며 시술 직후에 100%, 1일 후에 68%, 1개월 후에 42%, 6개월 후에 32%, 12개월 후에 17%의 잔류 단락률을 보였고 이 중 12개월 후에도 잔류단락을 보인 4명의 환자 중 1명은 좌흉골연 상부에서 지속성 심잡음이 Grade 2로 청진되고 심초음과 소견상 잔류 단락량이 적지 않아 시술 12개월 만에 Nit-Occlud를 추가 삽입하였다. 나머지 3명 중 1명은 시술 4년 후 추적검사에서 완전폐쇄를 보였다. 코일의 모양을 역전시켜 삽입 한 군(Reverse)은 총 4명(3%), 2개의 코일을 동시에 삽입한 군(Double)은 총 6명(4%)였으며 이들 중 시술 12개월 후에도 잔류단락을 보인 환자는 각각 1명씩 있었으며 시술 2년 후 추적검사에서 각 각 완전 폐쇄를 보였다. 전체적으로 장착 술기에 관계없이 총 135명의 환자군으로 보았을 때 시술 직후에 82%, 1일에 55%, 1개월 후에 28%, 6개월 후에 14%, 12개월 후에 8%였으며 12개월 후에도 잔류 단락률을 보인 11명의 환자 중 6명은 장기 추적 검사 상 5년 이내에 자연폐쇄를 보였고 1명은 추가 시술이 필요하였으며 나머지 4명(3%)은 임상적으로 심잡음이 청진되지 않고 심초음과 상으로만 매우 좁 은 단락이 확인되고(pin-point) 있는 상태여서 감염성 심내막염의 예방적 조치와 함께 추적 관찰 중에 있다.
Figure 4. Echocardiographic Residual Rates of Configurations of Implanted Coil According to Follow-Up Period.

3. 변형된 코일 모양에 따른 임상적, 혈역학적 특성 비교(Table 2)
ANOVA test를 먼저 시행하여 의미 있는 차이를 보이는 군을 선별하여 이를 Student’s t-test를 이용하여 통계적 의의를 살펴보았다. Qp/Qs는 Cross bar 군이 Original과 Wedge 군에 비하여 의미 있게 높았으며(P<0.05), 동맥관의 최소직경은 Original군이 변형된 코일 모양을 이용한 4개의 군 모두에 비해서 의미 있게 작았다(P<0.05).
Table 2. Clinical and Hemodynamic Data by the Configuration of Implanted Coil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original (n=67)</th>
<th>Wedge (n=35)</th>
<th>Cross bar (n=23)</th>
<th>Reverse (n=4)</th>
<th>Double (n=6)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mo)</td>
<td>54 ± 44</td>
<td>50 ± 37</td>
<td>32 ± 50</td>
<td>68 ± 56</td>
<td>34 ± 21</td>
<td>NS</td>
</tr>
<tr>
<td>B. Wt (kg)</td>
<td>19 ± 11</td>
<td>18 ± 11</td>
<td>14 ± 13</td>
<td>20 ± 10</td>
<td>15 ± 4</td>
<td>NS</td>
</tr>
<tr>
<td>Qp/Qs</td>
<td>1.3 ± 0.3</td>
<td>1.4 ± 0.4</td>
<td>1.7 ± 0.4</td>
<td>1.7 ± 0.4</td>
<td>1.8 ± 0.5</td>
<td>NS</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0027</td>
<td>0.0042</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>PA/Ao Pr. Ratio†</td>
<td>0.26 ± 0.05</td>
<td>0.27 ± 0.05</td>
<td>0.28 ± 0.04</td>
<td>0.30 ± 0.03</td>
<td>0.28 ± 0.06</td>
<td>NS</td>
</tr>
<tr>
<td>D2/L ratio</td>
<td>1.0 ± 0.5</td>
<td>1.1 ± 0.3</td>
<td>1.2 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>1.1 ± 0.2</td>
<td>NS</td>
</tr>
</tbody>
</table>

All data are expressed as mean±standard deviation. *Qp/Qs : Flow for pulmonary and systemic circuits, †PA/Ao Pr. Ratio : peak systolic pressure ratio of pulmonary artery to aorta, ‡NS : not significant

4. 시술 5년 후 장기 추적검사 상 잔류단락을 보인 동맥관의 크기와 삽입된 코일의 형태(Fig. 5)

동맥관의 최소 직경이 2mm 미만인 경우는 코일의 형태와 관계없이 모든 환자에서 시술 12개월 후 완전 폐쇄율을 보였으며 중등도 크기의 2mm이상 4mm미만의 동맥관에서는 시술 5년 후 총 65명의 환자 중 1명 (2%)에서 잔류단락을 보였고 4mm이상의 큰 크기의 동맥관에서는 총 21명의 환자 중 3명(14%)이 잔류단락을 보였다. 동맥관의 크기에 따라 삽입된 코일의 모양 분포를 살펴 보면 2mm미만에서는 Original군이 대부분(77%)을 차지 하였고 중등도 크기에서는 42%, 큰 크기에서는 18%로 동맥관의 크기가 커질수록 코일의 모양을 변형시킨 술기가 많이 사
용되었다.

Figure 5. Echo residual rate by the PDA minimum diameter and the configuration of the implanted coil at 5-year-follow up.

5. 시술 12개월 후 잔류단락을 보인 동맥관의 임상적 혈역학적 특성 비교(Table 3)
시술 12개월 후에 동맥관의 완전 폐쇄군(N=124)과 잔류단락이 있는 환자군(N=11) 사이에 임상적 및 혈역학적 차이를 비교하였으며 폐동맥과 대동맥의 압력의 비와 동맥관의 최소직경이 잔류단락이 있는 군에서 더 의미 있게 크게 나왔다(0.25±0.06 vs 0.31±0.04, 2.7±1.1mm vs 3.7±1.0mm)(P<0.05).
Table 3. Clinical and Hemodynamic Data by the Echo residual shunt at 12 months F/U

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Residual shunt (n=131)</th>
<th>(+) (n=11)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mo)</td>
<td>51 ± 41</td>
<td>18 ± 5</td>
<td><0.05</td>
</tr>
<tr>
<td>B. Wt (kg)</td>
<td>18 ± 11</td>
<td>10 ± 2</td>
<td><0.05</td>
</tr>
<tr>
<td>Qp/Qs*</td>
<td>1.4 ± 0.4</td>
<td>1.5 ± 0.3</td>
<td>NS</td>
</tr>
<tr>
<td>PA/Ao pr ratio†</td>
<td>0.25 ± 0.06</td>
<td>0.31 ± 0.04</td>
<td><0.05</td>
</tr>
<tr>
<td>PDA minimum diameter (D1)</td>
<td>2.7 ± 1.1</td>
<td>3.7 ± 1.0</td>
<td><0.05</td>
</tr>
<tr>
<td>PDA maximum diameter (D2)</td>
<td>9.7 ± 3.5</td>
<td>10.1 ± 2.1</td>
<td>NS</td>
</tr>
<tr>
<td>PDA length (L)</td>
<td>9.4 ± 3.3</td>
<td>8.6 ± 2.3</td>
<td>NS</td>
</tr>
<tr>
<td>D2/L ratio</td>
<td>1.1 ± 0.4</td>
<td>1.2 ± 0.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

All data are expressed as mean ± standard deviation. *Qp/Qs : Flow for pulmonary and systemic circuits, †PA/Ao Pr. Ratio : peak systolic pressure ratio of pulmonary artery to aorta, ‡NS : not significant

6. 시술의 합병증(Table 4)

총 4명의 환자에서 코일 후 위치를 안정화하는 데 실패하여 기구를 운반도구와 분리하지 않았고 바로 제거하여 수술적 치료를 시행하였으며 4명의 환자에서 색전이 일어나(좌폐동맥: 2례, 하행대동맥 2례) snare를 이용하여 성공적으로 제거하였으며 환자 1명에서 일시적인 하지의 맥압 저하가 있었으나 외래 추적 상 정상으로 회복 되었다.
Table 4. Clinical Problems of Coil Implant

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of coil implant</td>
<td>4 (3.0%)</td>
</tr>
<tr>
<td>Embolization</td>
<td></td>
</tr>
<tr>
<td>to left pulmonary artery</td>
<td>2 (1.5%)</td>
</tr>
<tr>
<td>to aorta</td>
<td>2 (1.5%)</td>
</tr>
<tr>
<td>Temporary weak arterial pulse</td>
<td>1 (0.7%)</td>
</tr>
<tr>
<td>Total</td>
<td>9 (6.7%)</td>
</tr>
</tbody>
</table>
IV. 고찰

비교적 큰 크기의 동맥관을 카테터를 이용한 경피적 방법으로 폐쇄하기 위하여 그 동안 많은 기구들의 개발과 노력이 있었으나17-19. 이 중에서 Amplatzer duct occluder device(AGA Medical Corporation, Golden Valley, Minesota)가 개발된 이래 많은 보고에서 그 안정성과 효용성이 입증되었으나17, 20, 21, 코일에 비하여 의료비가 많이 들고22, 23, 5kg 미만의 영유아나 특수한 동맥관의 형태 및 주변 구조와의 관계에 따라 시술에 어려움이 있을 수 있다24. 1994년에 Hijazi와 Geggel 등10이 여러 개의 Gianturco 코일을 이용하여 직경이 7mm에 이르는 큰 동맥관의 성공적인 폐쇄를 한 이후 코일을 이용한 큰 동맥관의 폐쇄에 대한 시도는 지속적으로 이어져 왔다22, 23, 25. 이에 반해 Duct-Occlud는 다른 기구들에서 시술 후 합병증으로 지적되어 오던 대동맥이나 폐동맥으로 코일의 들출과 색전의 위험을 감소시키기 위하여 동맥관의 모양과 유사한 이중 원추형의 형상기억합금 코일로 만들어져 있어 동맥관 폐쇄에 더 이상적이지만 이를 이용하여 코일이나 변형된 술기를 적응함으로서 그 효용성을 증대시키기 위한 노력에 대한 보고는 거의 없다. Duct-Occlud는 0.028인치 굵기의 코일로 이루어져 있으며 자체 모양을 기억하여 더 강한 spring back force를 가지기 때문에 소위 아코디언 효과(accordion effect)가 더 작아 동맥관 내에서 더 강한 지지력을 보이면서 색전의 위험이 더 작을 수 있다는 장점이 있다.

Duct-Occlud를 이용한 경피적 동맥관 폐쇄술은 여러 보고들에서 비교적 높은 완전 폐쇄율과 안정성을 보여왔으나15, 16 대부분 4mm 미만의 중등도 이하 크기의 동맥관에 국한된 것으로 아직도 비교적 큰 크기(4mm 이상)의 동맥관 폐쇄에서 Duct-Occlud의 사용은 그 안정성이나 효용성을 입증할 만한 연구나 문헌이 부족하고 아직까지 장기 추적 관찰에 대한
보고는 없는 실정이다. 본원에서는 1996년 3월부터 Duct-Occlud를 이용한 경피적 동맥관 폐쇄술을 시행하였으며 코일의 모래시계 모양의 표준적 형태 이외에 동맥관의 크기나 형태학적 특성에 맞추어 4가지 형태 (wedge shape, cross bar shape, double coil, reverse type)로 변형시키켜 삽입하여 왔으며 이들 환자들을 대상으로 시술 직후, 시술 1일, 1개월, 6개월, 12개월 후 이학적 검사와 심초음파를 통하여 외래 추적검사를 시행하였다. 이들 중 12개월 후까지 잔류단락이 남아 있는 환자들은 1년 간격으로 5년간 지속적인 추적검사를 시행하였다.

동맥관의 크기에 따른 장기 추적 결과를 보면 2mm 미만의 환자 44명 가운데 잔류 단락률은 0%였으며 2mm이상 4mm미만의 환자에서는 69명 중 1명(2%)의 환자가, 4mm이상에서는 22명 중 3명(14%)의 환자가 잔류 단락을 보였다. 작은 동맥관의 크기에서는 대부분 본 코일의 모양을 변형하지 않은 Original군이 대부분이었고(77%) 크기가 클수록 변형된 코일의 모양을 삽입한 군이 많았다. 이는 동맥관의 크기가 클수록 기구가 생산되면서 고안된 본 모양으로는 기구의 안정화된 위치 만들기나 단락의 폐쇄를 유도하기가 쉽지 않아 동맥관의 크기와 형태학적 특성에 맞게 코일의 모양을 변형하여 시술하였기 때문이다. 총 135명의 환자들 중에서 시술 12개월 후 11명(8%)의 환자에서 잔류단락을 보였고 이들의 장기 추적 관찰을 보면 11명 중 1명이 시술 12개월 후에 Nit-occlud를 이용한 코일의 재삽입을 시행 받았으며 11명 중 6명(55%)이 시술 5년 이내에 자연 폐쇄를 보였고 4명(36%)은 진찰 소견상으로는 심장음이 청진되지 않고 (clinically silent PDA) 심초음파상으로 아주 작은 단락의 존재 (pin-point)만 확인되고 있어 현재까지 감염성 심내막염에 대한 예방적 조치와 함께 외래 추적 관찰 중에 있다. 5년간의 장기 추적 결과에 의한 잔류 단락률은 총 4명으로 135명의 환자 중 131명에서 97%의 높은 완전 폐쇄율을 보였다. 동맥관의 크기에 상관 없이 동맥관의 존재는 감염성
심내막염의 가능성을 위해 치료 받는 것이 원칙이나\(^3\) 아직까지 경피적 동맥관 폐쇄술을 시행 받은 환자들에 대한 장기 추적 관찰에 대한 보고가 부족하고 시술 후 잔류단락이 남아 있는 환자들에 대한 자연 경과가 알려진 바가 빈약하여 이에 대한 연구가 더 필요하리라 생각된다.

시술 12개월 후 잔류단락에 영향을 미치는 인자는 잔류 단락군과 완전 폐쇄군 사이의 비교를 통해 폐동맥과 대동맥 압의 비, 동맥관의 최소직 경이 통계적으로 의미가 있는 것으로 나타났다. 동맥관의 크기가 크면 클수록 폐동맥과 대동맥압의 비가 커지므로 결과적으로 동맥관의 크기가 잔류단락에 가장 큰 영향을 미치는 원인으로 생각된다.

시술과 연관된 합병증으로는 총 4례에서 하행 대동맥(2례)과 폐동맥(2례)으로의 색전이 있었으며 4례 모두에서 snare를 이용한 경피적 방법으로 제거 및 새로운 코일을 이용한 폐쇄가 가능하였으며 하지 맥압의 시술 후 일시적인 감소가 1례 있었으나 외래 추적 상 정상으로 회복되었다.

본 연구에서 Duct-Occlud에 의한 경피적 동맥관 폐쇄술은 최소적경이 중등도 이하인 경우 높은 폐쇄율을 보여 안전하고 효과적인 방법임을 확인하였고 코일의 모양을 동맥관의 크기와 형태학적 특성에 맞추어 여러 가지 모양으로 변형하거나 한 개 이상의 코일의 삽입을 하여 중등도 이상의 크기의 동맥관의 폐쇄에까지 그 적응성을 확장하여 치료에 이용할 수 있음을 보여주었다. 또한 경피적 동맥관 폐쇄술 후 잔류단락을 보이는 환자군에서 장기추적을 할 경우 다수에서 자연폐쇄가 일어날 수 있음 을 확인하였으나 적절한 재시술의 시기와 관찰 기간에 대해서는 연구가 더 필요하리라 생각된다.
V. 결론
본 기관에서는 1996년 3월부터 2002년 2월까지 총 143명의 환자들에게 Duct-Occlud를 이용하여 장착되는 코일의 모양을 다양하게 변형하여 위치시키는 새로운 숏기를 이용하여 4mm이상의 큰 동맥관의 폐쇄에까지 확장시켜 시도하였으며 본 연구에서는 이 환자들에 대한 5년간의 추적관찰 결과를 분석하여 이 새로운 숏기에 대한 효용성과 안정성을 알아보려 하였고 다음과 같은 결론을 얻었다.

1. Duct-Occlud에 의한 경피적 동맥관 폐쇄술은 최소직경이 중등도 이하인 경우 높은 폐쇄율을 보여 안전하고 효과적인 방법임을 확인하였다.

2. 코일의 모양을 동맥관의 크기와 형태학적 특성에 맞추어 여러 가지 모양으로 변형하거나 한 개 이상의 코일의 삽입을 하여 중등도 이상의 크기의 동맥관의 폐쇄에까지 그 적응성을 확장하여 치료에 이용할 수 있었다.

3. 경피적 동맥관 폐쇄술 후 잔류단락을 보이는 환자군에서 장기추적을 할 경우 다수에서 자연폐쇄가 일어날 수 있음을 확인하였으나 적절한 재시술의 시기와 관찰 기간에 대해서는 연구가 더 필요하리라 생각된다.
참고문헌

15. Moore JW, DiMeglio D, Javois AP, Takahashi M, Berdjis F, Cheatham JP. Results of the phase I food and drug administration clinical trial of duct-occlud device occlusion of patent ductus arteriosus. Catheterization and

22. Akagi T, Mizumoto Y, Iemura M, Tananari Y, Ishii M, Maeno Y,

Abstract

Mid & Long Term Result of Extended Application of Duct-Occlud Coils in the Treatment of PDA with Various Modifications of the Closing Configuration

Hae Sik Kwon

*Department of Medicine
The Graduate School, Yonsei University*

(Directed by Professor Jun Hee Sul)

The transcatheter closure of ductus arteriosus using embolization coil has been acknowledged as a standard treatment in small sized ductus arteriosus, but the limitations in the application to larger ductus have been encountered. To assess the mid-long term results and efficacy of Duct-Occlud device in transcatheter treatment of ductus arteriosus and to evaluate the effect of extended application of the device to a larger ductus with configurational change, we investigated 135 patients (median age: 41 months, male: female: 91/44 cases).

The obtained results were: 1. The echo closure rates (ECR) on 5 year follow-up were up to 99% (111 out of 112) in small to moderate sized (<4mm in the narrowest portion) ductus and
86% (19 out of 22) in larger ductus (≥4 mm in the narrowest diameter). 2. On 12 month follow up, the narrowest diameter of ductus was larger in patients with residual shunt (3.7±1.0 mm) compared to patients without residual shunt (2.7±1.1 mm, p<0.05). 3. We applied original shaped devices in 67 cases (ECR-5y; 98%) and then tried some modifications with their closing configuration such as: wedge shape: 35 cases (ECR-5y; 97%), cross bar shape: 23 cases (ECR-5y; 94%), double coil: 6 cases (ECR-5y; 100%), and reverse type: 4 cases (ECR-5y; 100%). 4. There were two cases in which the coil had migrated into the distal pulmonary artery and 2 into the descending aorta on the day of coil embolization. However, we could safely retrieve the migrated coil and apply successfully the second coil without further migration.

In conclusion, transcatheter closure of the patent ductus arteriosus with Duct Occlud is an effective and safe therapeutic modality and we can extend its applications to larger ductus with various modifications of its closing configuration. The innovation to facilitate the modification of the closing configuration is mandatory.

Key Words: Patent ductus arteriosus, Transcatheter closure, Duct-Occlud