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ABSTRACT

Role of p53 in antioxidant defense of HPV-positive cervical

carcinoma cells following H,O, exposure

Boxiao Ding

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Nam Hoon Gho

In HPV-positive cervical carcinoma cell lines, pp®tein is functionally
antagonized by the viral E6 oncoprotein; howevermal p53 function and
p53 associated pathways can be demonstrated inasexperimental model
systems, suggesting that p53 is not completelytivated in cervical cancer
cells. Here, we investigated the possible role &8 protein in antioxidant
defense of HPV-positive cervical cancer cell lind& found that SiHa cells
containing integrated HPV 16 had higher expression53 and exhibited the
greatest resistant to,8,-induced oxidative damage, as compared with Hela,
CaSki and ME180 cell lines. Downregulation of pS&g RNA interference
(RNAI) resulted in the inhibition of p53-regulatemtioxidant enzymes and

elevated intracellular ROS in SiHa cells. In costrahe ROS level was not



affected in HeLa, CaSki and ME180 cell lines aitdribition of p53 protein.
Under mild or sever pD,-induced stress, p53-deficient SiHa cells exhibited
much higher ROS levels than control SiHa cells.ttlermore, we analyzed
cell viability and apoptosis after,B, treatment and found that p53 deficiency
sensitized SiHa cells to B, damage. Inhibition of p53 resulted in excessive
oxidation of DNA; control SiHa cells exhibited a morapid removal of
8-0x0-7,8-dihydro-2'-deoxyguanosine from DNA thabB3pleficient SiHa
cells exposed to the same level gkchallenge. Taken together, this present
study provides evidence that endogenous p53 in &#s has an antioxidant

function and involves in the reinforcement of ti@xidant defense.

Key words : p53, SiHa, HO,, ROS, oxidative stress, RNA interference
(RNAI)
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[.INTRODUCTION

Reactive oxygen species (ROS) such as superoxydeoxyl and peroxyl
radicals, and hydrogen peroxide,(®d) are more reactive than molecular
oxygert and therefore can indiscriminately oxidize biotadi molecules,
providing a constant threat to cells in an oxygeh-environmerft In living
cells, endogenous ROS are generated as byproductdlgiar metabolism
and through leakage of electrons from the mitochahatlectron transport
chairt: they are also derived from exogenous sources aadiV radiation,
y-irradiation, and chemicals. Present in all aerobetls, ROS exist in a
physiological balance with biochemical antioxidarxidative stress occurs
when this critical balance is disrupted, increasimitgacellular ROS levels. In
order to maintain intracellular redox homeostasis protect against oxidative

damage, cells have developed a sophisticated #dinxdefense system by



enlisting functional antioxidant buffers throughdog-coupled enzymatic
networks that regenerate oxidized substfatel this system, superoxide
dismutase (SOD) converts the superoxide anionab@®’) to HO, which is
subsequently eliminated by catalase (CAT), glutatdiperoxidase 1 (Gpx1)
and peroxiredoxin (Prx). Gpx1, a selenoproteincassidered the primary
enzyme responsible for the removal of(3 and may have a role in the
regulation of cellular redox staftfs Likewise, Prx is a major reductant of
endogenously produced peroxides in eukaryotes atadlyzes the conversion
of H,O, into H,O by using reducing equivalents provided by thiopeéad
(Trx)®*'°. During the peroxiredoxin catalytic cycle, peratid cysteine is
oxidized to a sulfenic acid form which typicallyaets with a proximal thiol to
form a disulfide bontt*? this intermolecular disulfide bond is subsequentl
reduced by Trx; however, because the formationhef resolving disulfide
bond is slow, high concentrations of ROS causehéurtoxidation of the
peroxidatic cysteine to sulfinic acid, yielding aractive form of Prx, that
cannot be reduced by typical cellular reductantshsas glutathione or
thioredoxirt**>. Sestrins, a family of cysteine sulfinyl reductsare essential
for reactivating Prx by reducing of the cysteindfisic acid to thiol, thus
reestablishing the antioxidant firew4ll

The tumor suppressor protein p53 is an importansaeof cellular stress
and is involved in regulating cellular response® A damage. Depending
on the cell type and the context of stimuli, p5& edher induce cell growth
arrest to allow repair or alternatively, triggernsoptosis to prevent DNA
damage in abnormal or stress-exposed cells fronorbieg fixed as a
mutatiort’. Additional evidence exists suggesting that p53k&dn a more

positive way, participating in the maintenance aitracellular redox



homeostasis and protection of the genome from tixaldamage. First, there
are several p53-regulated genes such as Gpx1,,S@ml aldehyde
dehydrogenase 4 family, member A1 (ALDH4A1) thatc@de products that
act as antioxidant$®®. Second, reactivation of overoxidized Prx is mestia
by two p53-regulated sestrins, namely, PA26 ancbHiéhcoded by SESN1
and SESN2, respectively). Third, in the absencstreks or after mild stress, a
relatively low level of p53 is sufficient enough topregulate several
antioxidant genes that decrease ROS levels ancgbraells from DNA
damagé.

Decreasing intracellular levels of ROS has longnbaegoal for cancer
prevention. Owing to the effects of many cancerapeutics, cancerous cells
can be subjected to oxidative stfésincreasing the understanding of how
ROS homeostasis is achieved in cancer cells whiely tve critical to
developing more effective cancer therapies. Cervieacer is the second
most common cancer among women in the world in botidence and
mortality, and high-risk human papillomavirus (HRVWainly serotypes 16
and 18, is present in more than 90% of such tuthétsMost HPV-positive
cervical carcinoma cells possess the wild-type p&Be, but it is often
rendered non-functional by the E6 oncoprotein wigiamplexes with cellular
proteins E6-AP and p53 to facilitate p53 degradgatiovia an
ubiquitin-dependent proteolytic syst€mWhen studied in cervical carcinoma
cells expressing E6 in the context of its natumnainmter, endogenous p53
protein could exert transcriptional function follmg DNA damage, despite
coexpression of the viral E6 protein, suggestireg the amount of expressed
HPV E6 is proportionate to the inhibition of p53igity. Basal p53 activity,

as measured with luciferase reporter assays in pt¥itive cervical cancer



cells, showed that these cells have residual p&8itsicand that p53 is not
completely inactivated in cervical cancer c¢8if&

To provide new insights into the possible role nfl@egenous p53 in the
antioxidant defense of HPV-positive cervical canamlls, we used a
plasmid-mediated short hairpin RNA (shRNA) to knaltkvn p53 expression
in SiHa, HelLa, CaSki and ME180 cells (all of whiotegrated with high risk
HPV sequences) and investigated whether p53 cooldulate intracellular
ROS levels under both nonstressed and stressedtionad We found that
endogenous p53 in SiHa cells was involved in thelutaiion of ROS levels,
and may participate in maintaining ROS homeostadese findings may
help to facilitate future clinical studies of HPdsitive cervical cancer

therapy.



II. MATERIALSAND METHODS

1. Cell linesand cdll culture

Four cervical carcinoma cell lines, namely, SiHal B, CaSki, and ME180
were used in this study. SiHa and CaSki contaiagited HPV 16; HelLa
cells carry integrated HPV 18; and ME180 cells aonHPV 68 sequences.
SiHa and Hela cells were grown in DMEM medium (GIB®RL, Grand
Island, NY, USA), CaSki and ME180 cells were mdimgd in RPMI 1640
medium (GIBCO-BRL, Grand Island, NY, USA), supplentes with 10%
fetal bovine serum (FBS), 100 units/ml penicilimnd 100 pg/ml
streptomycin. Cultures were maintained at 37°C 8% CQ atmosphere, at
100% humidity.
2. Western blot analysis

Cell lysates were made using the PRO-PREP protditaaion solution
(Intron Biotech, Korea). Lysates were clarifieddgntrifugation at 15,000 x g
at 4°C for 20 min, and the protein concentrationtted supernatant was
determined with a Bradford assay (BioRad). For wwwodi dodecyl
sulfate—polyacrylamide gel electrophoresis (SDS-BAGrotein lysates were
mixed with Laemmli's sample buffer and boiled férrin. Total protein was
separated on a 12% gel and transferred to nitrdosk (Amersham,
Germany). After blocking in TBST (20 mM Tris/137 mNRaCI/0.1% Tween
20, pH 7.6) with 5% skim milk, membranes were iratigd with the primary
antibodies diluted in TBST with 3% skim milk fort2at room temperature.
Next, membranes were washed three times with TB8d,incubated for an
additional 2 hours with horseradish peroxidasedihksecondary antibody

(1:2,000) diluted in TBST with 3% skim milk. Labédlgrotein bands were



visualized with the enhanced chemiluminescence eageECL) (Pierce,
Rockford). Mouse monoclonal DO1 antibody agains® p5:2000) and goat
polyclonal antibody against GAPDH (1:2000) were ghaised from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Mouse owanal antibody
against GPX1 (2png/ml) was obtained from MBL (Japd&tgbbit polyclonal
antibody against SESN2 (2ug/ml) was purchased fQuark Biotech
(Korea). Horseradish peroxidase-labeled seconddilyaaies were purchased
from Zymed. Immunoblotting for GAPDH was performtedverify equivalent
protein loading. Densitometry analysis of Westdotisowas performed using
TINA 2.0 Software (Raytest Isotopenmessgerate GmBtraubenhardt,
Germany).
3. RNA isolation and RT-PCR analysis

Cells were collected and total RNA was extractadguan UltraspecTM-I
RNA isolation kit (Biotecx, Houston, Texas, USA) Pprepare cDNA, five
hundred nanograms of total RNA was mixed with thpe8Script RT-PCR
System (Invitrogen). Five uL of the RT reaction wasn used for PCR using
the HotStarTaqg DNA polymerase (Qiagen). The PCRti@as were carried
out under the following temperature profile: 1) demation at 95°C for 15
min; 2) 35 cycles of 95°C for 40 s, 56°C for 1 mii2°C for 1 min; 3) a final

extension for 10 min at 72°C. To detect the comwesjing gene expression,

we used the following primers: TP53,
5-TCCACTACAACTACATGTGTAAC-3' and
5-GTGAAATATTCTCCATCCAGTG-3' SESN1 (T2),
5'-CGACCAGGACGAGGAACTT-3' and
5-CCAATGTAGTGACGATAATGTAGG-3' ACTB,
5'-AAGAGAGGCATCCTCACCCT-3' and



5-TACATGGCTGGGGTGTTGAA-3'.
4. RNA interference

In order to generate a short hairpin RNAIi speciic p53, we used the
pSuppressorNeo p53 plasmid (IMG-803, Imgenex, Samgd) CA). A
negative control plasmid (IMG-800) with a scrambssdjuence was supplied
from Imegenex. The following sequences, represgritth bp of the mRNAs,
were present in the hairpin transcripts: TP53,
5-GACTCCAGTGGTAATCTAC-3; negative control,
5-AGTCACGTTAATGGTCGTT-3. Cells were cultured overnight and
transfected with Lipofectamine 2000 (Invitrogenri€laad, CA) according to
the protocol of the manufacturer. Briefly, both tDBIA and Lipofectamine
2000 were diluted with serum-free medium. The dduDNA was added to
the diluted Lipofectamine 2000, mixed gently, anttubated at room
temperature for 30 min. Lastly, the DNA-Lipofecta®i2000 mixture was
carefully added to cells at 95% conflueny in frestdium without antibiotics
and incubated at 37°C.
5. Céll praliferation and viability analysis

In order to measure the number of viable cellsrygpdn blue exclusion
assay was used. Cells were seeded in a 24-wedl giat incubated for 24h. At
the indicated time points, cells were collected atadned with 0.2% Trypan
blue. Cell numbers were determined by direct cognof cells under the
microscope, using a standard haemocytometer. Gadility was measured
using a WelCountTM Cell Viability Assay Kit (WelGHENInc, Seoul, Korea).
Briefly, we defrosted the XTT reagent and PMS &3 prepared the reaction
mixture (40 ul PMS and 2 ml XTT reagent per plasgded 20 ul of the

reaction mixture to each well (each containing id®nedia), and incubated
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at 37°C for 4 h. After observing a change in coddrthe solution, we
measured these samples at a wavelength of 490mg aid¥iolecular Devices
VERSAmax microplate reader (Molecular devices, Suate, CA, USA). All
experiments were performed in triplicate.
6. Measurement of ROS accumulation

Intracellular production of ROS was measured usingell-permeable
fluorescent dye, 5-(and-6)-chloromethyl72dichlorodihydrofluorescein
diacetate, acetyl ester (CM-H2DCFDA, Molecular Rgb When
CM-H,DCFDA is oxidized by ROS in cells, its fluorescangnal increases.
For the assay, cells were plated in six-well platesd loaded with
CM-H,DCFDA in the dark for 30 min at 37°C. Next, cellsn& washed twice
with PBS, trypsinized. And fluorescence was meabuseng flow cytometry
(excitation at 488 nm, emission at 515-545 nm)alaialysis was performed
with CELLQuest software and the mean fluorescentensity was used to
guantify the responses. A minimum of 10,000 celeyevacquired for each
sample.
7. Cell Cycle Distribution Observation

Flow cytometry analysis of Pl-stained cells wasfggened to demonstrate
the progression of the cell cycle. Briefly, cellere harvested, washed, and
fixed in 70% ethanol overnight at 4°C. Prior towla@ytometry, cells were
washed and stained with 1 ml of Pl (50 pg/ml) comtg 0.1 mg/ml RNase A.
DNA content was determined with a FACScan flow ayter (Becton
Dickinson) and the proportion of cells in a par@yphase of cell cycle was
determined with CellQuest software.
8. Apoptosis assay by Annexin V/PI staining

An Annexin V-FITC Apoptosis Kit | (BD, San Jose, CBASA) was used to

11



detect apoptosis. Annexin V is a Cafependent phospholipid-binding
protein that has a high affinity for phosphatidyiise (PS). In apoptotic cells,
PS is translocated from the inner leaflet of thesspia membrane to the outer
leaflet. Propidium iodide (PI), a standard flowayietric viability probe, was
used to distinguish between viable and nonviable.dgells that were stained
were detected by a flow cytometer. Briefly, 1X1klls were harvested,
washed with ice-cold PBS, and resuspended in 500f jinnexin binding
buffer. A 100 pl aliquot (2xT0cells) was taken, 5 pl each of Annexin V-FITC
and Pl were added, and cells were incubated fanib5at room temperature
in the dark. 400 pl of binding buffer (10 mM HEPRS80OH pH 7.4, 140 mM
NaCl, 2.5 mM CaG) was added and samples were acquired on a FACScan
flow cytometer (FACSCalibur, Becton Dickinson) arahalyzed using
CELLQuest software with in 1 hour. Cells that wexenexin V/PI" were
counted as necrotic, those that showed up as AmNEXPI" were counted as
late apoptotic or secondarily necrotic, and AnneXiVPI' cells were
recognized as apoptotic. All procedures stated a@bwwere performed
according to the manufacturer’s instructions.
9. Detection of 8-0xo-dG residuesin DNA

After transfection with the pSuppressorNeo p53 @gative control
plasmids for 48 hrs, cells were treated witfOklat concentrations of 0.1 mM
and 0.5 mM for 1 hr. The levels of 8-0x0-dG resglurecellular DNA before
and following treatment with #D, were determined using the OxyDNA assay
kit (EMD Biosciences, San Diego, CA). This assapased upon the direct
binding of a fluorescent probe to 8-oxoguaninehim DNA of fixed cell§>*°
Cells were harvested, washed with PBS, and fixed 2% paraformaldehyde

on ice for 15 minutes. The samples then were waslitghdPBS and fixed in

12



70% ethanol at -20°C overnight. The following d#ye cells were washed
once with PBS, followed by the wash solution preddy the manufacturer.
Next, the cells were incubated with blocking salntiand then treated with
the 8-0x0-dG specific FITC-labeled probe and aredyby flow cytometry
according to the manufacturer's protocol. The isign of the FITC
fluorescent signal was proportional to the leveB8-@xoG residues in DNA.
10. Analysis of 8-0xo0-dG residue removal from DNA

A pulse-chase experiment was used to assay thevatnod 8-oxo-dG
residues from DNA in whole cells. First, cells wetensfected with
pSuppressorNeo p53 or negative control plasmidsi®hrs. Following the
transfection, cells were treated with 0.5 mMOgfor 1 hr. Afterwards, cells
were rinsed with fresh medium (without,®}) incubated. Cells were
harvested before or at various times after incobatn fresh medium.
Relative abundance of 8-oxo-dG in cellular DNA wasasured as described
previously. The decrease of 8-0xoG signal as atiomof the chase time was
taken as 8-oxoG removal from DNA in whole cells.
11. Satistical analysis

Student's-test was used for statistical analysis. Statisgmmificance was

accepted if the null hypothesis was rejected wihvalue < 0.05.
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1. RESULTS

1. Analysis of p53 and p53-regulated antioxidant enzymes in several
cervical carcinoma cell lines

Levels of p53 protein were examined in several Hiesiive cell lines by
immunoblot analysis with the mouse monoclonal amtjpDO1 to human p53.
SiHa cells, which contain only one copy of HPV X8 pell, exhibited higher
amounts of p53 than Caski cells containing 600eopif HPV 16, HelLa cells
with 25 copies of HPV 18, and ME180 cells with HB® (Fig.1a). Further,
we investigated the expression of p53-regulatethxidant enzymes GPX1,
SESN1 and SESN2, and found very high levels of GPKitein, SESN2
protein, and SESN1 mRNA in SiHa cells (Fig. 1a, b).

SiHa CaSki Hel.a ME180
(a) P53 MR
GPXI Wl =
SESN2 -

GAPDI] s W S

(b)  sesviE

Figure 1. Expressions of p53 and p53-regulated antioxidargyrees in

human cervical carcinoma cell lines. (a) Westent ahalysis for p53, GPX1,
and SESN2 (Hi95). GAPDH was used as a loading obr{ts) RT-PCR for

SESN1 and ACTBf-actin). The SiHa cell line showed the highest expion

of p53 and p53-regulated antioxidant enzymes: GFSESEN1 and SESN2.



2. Sensitivity of cervical carcinoma cellsto H,O, challenge

Having shown the status of p53 and its regulatdixdant enzymes in
various cell lines, we next analyzed the sensytioit HPV positive cervical
carcinoma cells to ¥D,-induced oxidative damage. As shown in Fig. 2, we
observed differences in the response to th@,Hhallenge in the four cell
lines. The SiHa cell line was the most resistartii0,, while the other three
cell lines displayed similarly reduced survival.eT$ublethal doses of,8, to

SiHa, HelLa, CaSki and ME180 were 0.8 mM, 0.2 m\ntM, and 0.1mM,

respectively.
6 —4— conirol SlHa 6 —4— control HeLa
—8— 0.4mM .
i 0.6mM .38
= 0.8mM o
=) 4 | 1mM = 4
P -
% %
[+ . 4
s 3 s 3
g vt g
1 = 1
0 0
Oh 6h 12h 18h 24h Oh 6h 12h 18h 24h
Howrs after HyO, treatment Howrs after HyO; treatment
6 CaSki 6 ME180
—+— control —+— control
—8— 0.05mM —5—0.02mM
8 0.1mM 208 0.05mM
i, 0.2mM v 0.1mM o
(=2 —#— 0.4mM = —¥%—0.2mM ’
w 4 w 3
3 3 ¢
< < p
9 3 e 3 o
8 g -
%\ ~
‘g 2 .—->\"./ ’g 2 o
Z z ;
1 1 :
0 0
Oh 6h 12k 18h 24h Oh 6h 12k 18h 24h

Howrs after H, O, treatment Hours after H,O, treatment

Figure 2. Cell viability of SiHa, HeLa, CaSki and ME180 aftél,O,
treatment as detected by Trypan blue assay. Tlaereptesented the means of

pooled results from five independent experiments.
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3. Downregulation of p53 elevated intracellular ROSin SiHa cells

As SiHa cells had a higher expression of p53 an@ weich more resistant
to H,O, challenge than other HPV positive cell lines, wterapted to analyse
the impact of p53 RNAi on intracellular ROS. We disthe human U6
promotor to drive the expression of sShRNA targetd@ in a plasmid-based
system (pSuppressorNeo p53 plasmid). A negativeéraoplasmid, which
contained a scrambled sequence, was also includeskperiments. Each
construct produced a shRNA composed of two 19-wtide repeats in an
inverted orientation as shown in Fig. 3 a.

When the pSuppressorNeo p53 plasmid and negativieot@lasmid were
transfected into SiHa cells, the p53 protein levas markedly decreased after
24-72 hr, as compared to normal expression of pb3hé control SiHa
transfection (Fig.3 b). In contrast to p53, GAPDHsmot affected with either
construct, indicating the reduction of p53 by apply U6-driven shRNA
constructs was specific. We further tested how gdB8ciency affects the
levels of p53-regulated antioxidant enzymes. Irlabiof p53 in SiHa cells
24-72 hr after transfection resulted in a notalgeréase in the p53-inducible
transcript T2* of SESN1 and a virtual disappearance of GPX1 dBEN®
(Fig. 3 b).
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Xho I Xbg I

(a) | U6 promoter, U6 snRNA +27 9nt_ m 19nt .

siRNA/p53

s RN YDA
3'- UUCUGAGGUCACCAUUAGAUG - &'

siRNA/negative control

5'- AGUCACGUUAAUGGUCGUUUU -3'

LI P ]
3'- UUGCAGUGCAAUUACCAGCAA - §'

24h 48h 72h
(b) N sips3 N sips3 N sips3
P53 M S m—

R -
SESN2 W -

GAPDH iy Wy iy NN W .

100

Relative p53 level %
»
e

§ I = ]

Figure 3. Reduction of p53 levels in SiHa cells transfectéith p53 siRNA or

nonspecific siRNA. (a) Schematic illustration ofett6 promoter-driven
shRNA constructs containing the sequence targgit®yand the scrambled
sequence. (b) Upper panel: Expression levels of @3X1 and SESN2 in
control or in si-p53-expressing cells, as detedigdwestern blot analysis.
GAPDH was used as a loading control. Middle paB&pression of SESN1
(T2) and ACTB as detected by RT-PCR. Lower panelar@ification of p53

in western blots above normalized to GAPDH expoassi
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To show the effects of p53 on ROS levels in nosstd cells, SiHa cells w
ere labeled with the cell-permeable fluorescent@yeH,DCFDA, the fluore
scence of which increases following oxidation bydDkHand hydroxyl radical i
n the cells. Fluorescent signals were analyzefiblay cytometry. CM-HDC
F staining indicated that there was an approximdtedfold increase in ROS
levels 24 hr after inhibition of p53, and the higlkels of ROS remained for 7
2 hr (Fig 4 a and b), in agreement with the abdy&ovations that the express
ions of GPX1, SESN1 and SESN2 were markedly deedeafier p53 inhibiti
on by siRNA. Next, we examined whether N-acetyteiyse (NAC, a potent a
ntioxidant) inhibits ROS accumulation in SiHa celAs shown in Fig. 4 c, the

increase in ROS induced by p53 specific sSiRNA A&fter transfection was
almost completely reversed by incubation with 5 WKC. When tested in ce
Il culture, there was no notable change in the ghaate (Fig. 5 a) or cell cycl
e distribution (Fig.5 b) of SiHa cells with inhibd p53, and addition of NAC
(5 mM) did not affect cell proliferation. We alsound the expression of p53-s
pecific SiRNA did not increase ROS levels in HeCaSki, and ME180 cell li

nes, similar to negative control plasmid (Fig. 6).
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Figure 4. Effect of deficiency in p53 on intracellular ROSé¢in SiHa cell
line. @) Intracellular ROS levels in SiHa cells measurgddM-H,DCFDA
staining and FACS-analysis at different time ingdsvafter transfection with
p53 siRNA or nonspecific SIRNAbJ ROS levels are expressed as the mean +
SD intensity of cell fluorescencep* 0.001 compared to the corresponding
negative control by Student's t test.c) ( FACS-analysis of
CM-H,DCFCA-stained cells treated with NAC (5mM, 6 houd8 h after
transfection with p53 siRNA or nonspecific siRN#p < 0.01 compared to

the corresponding untreated group by Studéité'st.
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4. p53 deficiency promoted intracellular ROS level in SiHa cells under
oxidative stress

The results presented above suggest that p53 irbitHa cell line may
provide a protective function by participating intiaxidant defense. To test
the role of p53 in antioxidant defense accordingh severity of oxidative
stress, we compared ROS levels in control and gi8idnct SiHa cells
stimulated with different concentrations of®4. 48 hours after transfection
with either the negative control plasmid (SiHa/N) gb3 shRNA plasmid
(SiHa/sip53), cells were mock treated or treateith different concentrations
of HyO, for 12 hr, and intracellular levels of ROS werealgmed. As
compared to SiHa/N cells with negative sSiRNA, batimtreated and
H.O,-treated SiHa/sip53 cells (in which p53 was in@bitby siRNA)
exhibited markedly increased ROS levels. Intriglyingre also observed that
even at a lethal dose of,GL (1 mM), ROS level in SiHa/sip53 cells was
much higher than that in SiHa/N cells (Fig. 7). dakiogether, the data
strongly suggest that endogenous p53 in HPV-pesBinda cells functions as

an antioxidant and may play an important role fwif@y oxidative stress.
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Figure 7. Effect of p53 deficiency on intracellular ROS lewelSiHa cells
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5. Inhibition of p53 sensitized SiHa cells to H,O,-induced oxidative
damage

Since the reduction of p53 induced a marked ineréashe level of ROS
under both unstressed condition and oxidative ehg#, we investigated
whether p53 deficiency could sensitize SiHa ceatlsoxidative damage. In
order to address this question, we transfected Sl with a negative
control plasmid (SiHa/N) or p53 shRNA plasmid (Si$ip53). After 48 hr
post-transfection, cells were treated with varyaomcentrations of yD, for
either 12 hr or 24 hr. As expected, the proliferatin SiHa/sip53 cells by 0.5
mM H,O, was reduced to 57.5 and 56.5% at the time poinari® 24 hr
treatment, respectively, compared to control SiHzéNs. Likewise, treatment
of control SiHa/N cells with 0.5 mM @, had almost no effect on cell
viability. When tested at a lethal dose ofGd (1 mM) for 12 and 24 hr, we
found that SiHa/sip53 cells were more susceptiblélL,O,-induced damage.
For example, treatment with 1 mM,®, for 12 hr induced death in 68% of
SiHa/sip53 cells, whereas the rate was much lo@&] in SiHa/N cells (Fig.
8 a).

Though the XTT assay is a convenient method to urea=ell death, it doe
s not discriminate between apoptosis and necrosidetermine whether apop
tosis was involved in §D.-induced cell death, SiHa/sip53 cells were furier
xamined by annexin V and propidium iodide stainidgder defined salt and
calcium concentrations, annexin-V is predisposedtds binding externalize
d phosphatidyl serine (PS) that is present on ¢fiesarface during the early st
ages of apoptosis. Addition of Pl helps to distisglbetween early apoptotic
cells and late apoptotic or necrotic cells bec&iseannot enter the cells in th

e early stages of apoptosis when the membraneitytégintact. Cells were t
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reated with HO, for 12 hr, and apoptosis studies indicated thertethvas a str

ong induction in early stage apoptosis (annexiro¥itive) as well as in late a
poptosis (annexin V and Pl double staining posjtineSiHa/sip53 cells, as de
picted in Fig. 8 b. Collectively, the data suggest the reduction of p53 sensi

tized SiHa cells to oxidative damage.
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Figure 8. Inhibition of p53 sensitized SiHa cells tga®}-induced oxidative
damage. & 48 hours after transfection with negative contpsasmid
(SiHa/N) or p53 shRNA plasmid (SiHa/sip53), cellsrevtreated with various
concentrations of D, for eitherl2 hr or 24 hr, after which time celapility
was measured with an XTT assay. Results shownxgressed as mean + SD
of triplicate microcultures.f < 0.01 compared to the corresponding negative
control by Student's test. b) Apoptosis and death levels of SiHa/N and
SiHa/sip53 cells 12 hr after treatment with 0.5 Gnd 1 mM of HO, as
detected by FACS after Annexin V/PI staining. Apdjat (Annexin VV/PI),
dead (Annexin V/PI') and alive (Annexin VPI) populations were readily
identified. The rates of apoptotis and death aosvshin upper right and lower
right panels respectively. p* 0.01 compared to the corresponding untreated

cells (Student'stest).
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6. p53 deficiency increased DNA oxidation in SiHa cells
To determine whether p53 is required for the ptadacof DNA from

oxidative damage, we monitored the rate of fornmataf 8-oxoguanine
(8-0x0-dG), the major product of DNA oxidation, mgi an assay kit as
described in the Materials and Methods section.aSdélls with SiRNA
inhibited p53 displayed a twofold increase in lsved 8-ox0-dG as compared
to control cells (Fig. 9 a). We also examined whethb3 is associated with
oxidative DNA damage induced by challenge witfOF and evaluated the
possible role of p53 in the removal of such DNA dgm in SiHa cells.
Treatment of cells with 0.1 and 0.5 mM®j for 1 hr resulted in an increase
in 8-oxo-dG levels, as indicated by the increaseflilorescence of the
8-oxo-dG signal. However, there was a significaffeence in the levels of
8-oxo0-dG in SiHa/N and SiHa/sip53 cells. SiHa/sip&dls consistently
exhibited higher 8-oxo-dG content than SiHa/N c@igy. 9 b). Therefore,
these data suggest that in the in SiHa cell lifg3 may participate in

protecting DNA from oxidative damage.
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Figure 9. Reduction of p53 expression increased DNA oxidatiorSiHa
cells. @ 8-oxo-dG level in SiHa cells expressing negateatrol plasmid
(SiHa/N) or p53 shRNA plasmid (SiHa/sip53) 48 heatransfection.k) 48

hr after transfection with negative control plasnoid p53 shRNA plasmid,
cells were treated with the indicated concentratiadf HO, for 1 hr.
Quantification of 8-oxo-dG staining was performdteaFACScan analysis
using CellQuest software. 8-oxo-dG levels are esgwd as the mean + SD
intensity of cell fluorescencep*< 0.01 compared to the corresponding cells

with negative control vector by Studenttest.
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7. p53 enhanced the removal of 8-oxo-dG residues from DNA in whole
SiHacélls

Lastly, we performed pulse-chase experiments tortksther p53 enhances
the removal of 8-0xoG residues from DNA in the Sie&dl line. 48 hr after
transfection with negative control plasmid or pBRBIA plasmid, cells were
treated with 0.5 mM kD, for 1 hr to induce 8-oxo-dG accumulation. After
treatment, the medium was changed and the cells Wweubated without
H.O, for various times. To evaluate the rate of 8-o%alimination, the level
of 8-0x0-dG remaining was detected at each timatp8iHa/sip53 cells were
slower than SiHa/N cells to remove 8-oxo-dG frora INA, with the time
for the level of 8-o0x0-dG to decrease by 50%s)(ivas 3.1 hours and more

than 6 hours, respectively. (Fig. 10).
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Figur 10. p53 facilitated the removal of 8-oxo-dG residuesitfrDNA in
whole SiHa cells.d) 48 hr after transfection with negative contrahgrhid
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of 8-0xo-dG to decrease to 50% of their originakls.
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V. DISCUSSION

Persistent infection by high-risk types of HPV Ihagn associated with the
development of human cervical cancer. Based on eapalogical and
experimental evidence, it is widely accepted tharcinogenesis of
HPV-infected cells is a process involving integratiof the viral genome in
cancer cells, resulting in the loss of expressibthe viral E2 gene and the
persistence of E6 and E7 oncoproteins expreSsibhe oncogenic activity of
high-risk HPVs is explained in part by the abilitiythe viral E6 oncoprotein
to target p53 for degradation and thus to inhib8-mediated transcriptiéh
However, studies investigating the functional datd p53 in a series of
HPV-positive cancer cells expressing E6 gene frammosomally integrated
viral sequences under its natural promoter havelymed differing results,
indicating that despite co-expression of the viEdl oncogene, there is
residual p53 activity, indicating that endogenous3 gs not completely
inactivated in HPV-positive cancer céfié* **** To date, there are no suitable
anti-E6 antibodies available for reliable quaniitat and thus the presence of
viral E6 protein has not been unambiguously demmatest in HPV-positive
cancers. Therefore, it is currently widely assurttet E6 protein levels are
very low in HPV-positive carcinoma cell lines atdis may be limited in their
capacity to interfere with p53 function. In the s®at study, we found that
endogenous p53 in SiHa cells is involved in the atatibn of intracellular
ROS levels, participates in maintaining ROS honagistin response to
oxidative stress, and protects DNA against oxidatigmage.

Direct comparison of p53 protein levels between HuBSitive cervical
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carcinoma cell lines, as examined by immunoblothesis indicated that
SiHa cells had the highest steady-state level & @his result is in full
agreement with previous findings Scheffner éf alho showed that p53 level
in SiHa cells is 3-5 times higher than that in oth#V-positive cervical
cancer cells. A Recent study from Sablina ét gtovided evidence that even
the very low levels of p53 present in normal tissirethe absence of stress
were sufficient enough to drive the expression edfesal antioxidant genes.
Therefore, we next addressed the hypothesis tigat Ibivels of p53 in SiHa
cells may contribute to some antioxidant enzymedeéd, among the series
of HPV-positive cancer cell lines investigated imist study, SiHa cells
exhibited the highest expression of GPX1, SESN12E8N2, implying that
SiHa cells may have a powerful antioxidant defesgstem and are thus
tolerant of severe oxidative insults. By employidgO, to induce oxidative
stress, we found that HeLa, CaSki and ME180 cefissvgeverely impaired in
their antioxidant capacity, whereas, SiHa cells)g®ected, exhibited a higher
resistance to D, damage. Given the evidence that p53 is a majaratyy

of the HO, response in human céfisthe above findings raised the question
whether the presence of high steady-state levglh8fin SiHa cells has an
antioxidant function.

Expression of p53 was knocked down by transfedti6goromoter—driven
shRNA constructs into SiHa cells. We were abledmdnstrate that p53 was
reduced 24-72 hr post-transfection, compared toithéne control. Likewise,
the levels of GAPDH protein and ACTB (encodgedctin) mRNA remained
unchanged, indicating that the reduction of p53 syEific. Interestingly, we
also noted that the expression of GPX1, SESN1 aa8N2 were also
inhibited following p53 RNAI in SiHa cells. Thesebservations further

31



supported the idea that p53 is transcriptionallymgetent despite
co-expression of the viral E6 protein and coulducel antioxidant gene
expressions in SiHa cells in the absence of stielevated levels of ROS
were also found in p53-deficient SiHa cells, altplouhis could be reversed
by NAC supplementation. These data strengthened idea that the
antioxidant function of p53 is mediated throughea sf antioxidant gene
products, and the depletion/downregulation of p5&nped down the
antioxidant defense in SiHa cells.

Intriguingly, while p53-deficieny promoted ROS léven SiHa cells, we
did not observe a similar correlation between p&#gin and ROS levels in
the other three HPV-positive cervical cancer ckliéda, CaSki and ME180.
Different scenarios could be envisioned to expltia differences in the
modulation of ROS by p53 in the HPV-positive cancells investigated in
the present study. The transcriptional activitypdB to activate antioxidant
genes is necessarily correlated with p53 proteimdance, and a steady-state
level of p53 may be required for its transcriptibaetivity in HPV-positive
cells under physiological conditions. In additiahere may also be cell
specific differences in the regulation of cellutartioxidant abilities between
these cell lines.

In concordance with the notion that the p53 protsifunctional in SiHa
cells, we observed a much higher level of ROS i8-@é&ficient SiHa cells
following H,O, exposure than in SiHa cells containing wild typ@ piiideed,
it has been shown previously that p53 induces R@&raulation and a
number of genes induced by p53 are associatedhétmetabolism of RO'S
% In the present study, the p53-deficient cellsagtb higher ROS level than

control cells did, even at lethal concentrationsHD, (1 mM). These
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findings were in contrast with a previous sttidin which p53 showed
pro-oxidant activity and thus promoted ROS levelsiPV-negative cell types
under severe oxidative damage. One possible exjpanmay be that the
antioxidant and pro-oxidant function of p53 was pemally separated “°and
the pro-oxidant function of p53 is severely impdine SiHa cells.
Furthermore, cells containing reduced p53 were nsuweceptible to
H.O.-induced cell death. As shown in this study, a meeid and greater
magnitude of cell death was observed in SiHa eells p53 deficiency after
H,0,-challenge, indicating that the antioxidant defenoé¢he SiHa cell line
was achieved , at least in part, by endogenousa%Biherefore depletion of
p53 followed by inhibition of the expression of serantioxidant enzymes
disintegrated the antioxidant firewall and sensilizells to oxidative stress.
The p53 tumor suppressor, a “guardian of the gehorastricts abnormal
or stress-exposed cells before DNA damage becoess &s a mutation A
key target of ROS in cells is the DNA, and undeygblogical conditions, the
endogenous ROS that are byproducts of normal ed&pir modify
approximately 20,000 bases of DNA per day in a lsingelf** Thus,
endogenous ROS are a major source of DNA damagea anbstantial factor
contributing to chromosomal instability, accumwatiof mutation&" * and
deletions that may lead to cantet. A frequent oxidative modification of
DNA is the hydroxylation of guanine at C-8, leaditg the formation of
8-0x0-7,8-dihydro-2'-deoxyguanosine (8-oxo-8G)° In the present study,
we showed that p53 protein in SiHa cell line hagratective role against
DNA oxidation. SiHa cells deficient in p53 displaysignificantly increased
8-0x0-dG levels under both non-stressed and oxielatiressed conditions, a

finding which was consistent with the observatitatt8-oxo-dG residues
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were removed more rapidly from cellular DNA in waoSiHa cells with
wild-type p53. Together, these results suggestatittie endogenous p53 in
SiHa cell line plays a role of in protecting DNA darfiacilitating cellular

responses to ROS-induced DNA damage.
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V. CONCLUSION

In conclusion, we have provided evidence that eadogs p53 in SiHa
cells had an antioxidant function and was involirethe reinforcement of the
antioxidant defense. Depletion of p53 by RNAI itH8icell line resulted in
disintegration of the antioxidant firewall and iaased oxidative damage. As
ROS are also involved in cancer chemoradiotherdage findings may help

to facilitate clinical studies of HPV-positive caral cancer therapy.
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