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ABSTRACT  

 

Alterations in Epidermal Barrier Induced by Long Term 

Exposure of Suberythemal Dose Ultraviolet Light in 

Hairless Mice  

  

       

Hana Bak  

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Sung Ku Ahn)  

 

Background Exposure of ultraviolet (UV) radiation induces various 

cutaneous changes including erythema and pigmentation as well as thickening 

of the epidermis. UV radiation on mammalian skin produces dose- and 

wavelength dependent changes of skin barrier including compromised 

integrity of the epidermal permeability barrier with an increased TEWL 

(transepidermal water loss). Although several studies have reported on the 

biological effects of UV radiation, there have been no reports on the  

changes in epidermal structure, skin barrier function and epidermal lipids of 

murine skin following long term UV irradiation at suberythemal doses.   

  

Objectives To investigate the changes of functions, morphological structures 

and epidermal lipid properties of the skin barrier after long term UV radiation 

at suberythemal dose (SED). 
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Methods Hairless mice were irradiated 3 times weekly for 15 weeks at a SED 

of UV (UVB: 20 mJ/cm2; UVA:14 J/cm2). Every three weeks, visible skin 

changes and epidermal barrier function were assessed and skin specimens 

were taken, and then hematoxylin & eosin stain, immunohistochemical stain 

and calcium ion capture cytochemistry were done. The morphological 

alterations of stratum corneum (SC) lipid lamellae were examined by electron 

microscopy (EM) using ruthenium tetroxide postfixation. Activities of three 

key enzymes for mRNA of serine palmitoyl transferase, fatty acid synthase 

and HMG Co A reductase were analyzed with real time RT-PCR. I analyzed 

the activity of three key enzymes with real time RT-PCR for mRNA of serine 

palmitoyl transferase, fatty acid synthase and HMG Co A reductase. I also 

measured the amount of ceramide, cholesterol sulfate and free fatty acid in the 

SC by high performance thin layer chromatography (HPTLC) with exposed 

time. 

 

Results Visible fine wrinkles were found since 3 weeks to irradiation, and 

progressively worsened in proportion to the duration of irradiation. There 

were significant increases in epidermal and dermal thickness and the 

epidermal differentiation markers including involucrin, loricrin, filaggrin and 

K5/10/16. These changes were accompanied with alteration of epidermal 

calcium gradient and SC intercellular lamellae in EM findings. TEWL was 

increased up to 12 weeks. SC hydration was gradually decreased in proportion 

to exposure time. mRNA of three key lipid synthesis rate limiting enzymes 

were increased until 6 weeks of UV-irradiation and decreased thereafter. 

However three major lipids gradually decreased throughout exposed period 

with a notable decrease in ceramide.  

 

Conclusions In conclusion, long term UV irradiation even with SED to which 

people are usually exposed during their life time influences skin barrier 

function and structure. Notable ceramide decreases in SC intercellular lipid 
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after long term UV irradiation can be implicated in the treatment or 

prevention of photoaging. 

 

Key words: ultraviolet light, suberythemal dose, skin barrier, cornified 

envelope, stratum corneum lipid, ceramide 
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Introduction 

A main function of the skin is to provide a protective barrier at the interface 

between the hazardous external environment and the organism1. Although the 

skin has many functions, the formation of a permeability barrier that impedes 

transepidermal water loss (TEWL) is of major importance, because it is 

required for life in a dry environment. This permeability barrier is localized to 

the outermost, the stratum corneum (SC), and it is mediated primarily by 

extracellular, nonpolar, lipid-enriched lamellar membranes that are 

impermeable to water1. A variety of insults, including mechanical trauma, 

produced by tape stripping, or contact with either solvents or detergents, can 

injure the SC, resulting in acute perturbations of cutaneous permeability 

barrier function. Disruption of the permeability barrier stimulates a vigorous 

homeostatic repair response in the underlying viable epidermis that leads to 

the rapid restoration of permeability barrier function2.  
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Epidermal differentiation leads to the formation of the SC, heterogeneous 

tissue composed of lipid-depleted corneocytes embedded in a lipid-enriched 

extracellular matrix, which subserves the barrier. These lipids derive from a 

highly active, lipid-synthetic factory, operative in all of the nucleated cell 

layers of the epidermis, which generates a unique lipid and hydrolase-

enriched, secretory organelle, the epidermal lamellar body (LB)3-5. Following 

secretion of their contents at the stratum granulosum (SG) –SC interface, LB 

contents are processed from a polar lipid mixture into a hydrophobic mixture 

of ceramides, free fatty acid (FFA), and cholesterol, organized into the 

lamellar membranes that form the hydrophobic matrix within which 

corneocytes are embedded6. Although corneocyte proteins have been studied 

intensively as markers of epidermal differentiation, their role in the 

permeability barrier is less clear7. Yet, these SC is well known to perform 

other critical epidermal functions. The corneocytes influence the permeability 

barrier through their function as ‘‘spacers’’, they force water and xenobiotes 

to traverse a tortuous, extracellular hydrophobic pathway, and by serving as a 

scaffold for lamellar membrane organization8. 

Proteins of the cornified envelope (CE), and its external, ceramide-enriched, 

cornified-bound lipid envelope together provide a stable, mechanically and 

chemically resistant scaffold for the deposition and organization of the 

extracellular matrix9. The CE, a uniform, 15 nm thick, peripheral envelope 

that encloses the corneocyte cytosol, consists of several highly cross-linked, 

cytosolic proteins, including involucrin, loricrin, elafin, desmoplakin, 

envoplakin, cytostatins, and pancornulins/cornifins (small proline-rich 

proteins)9-12. Involucrin, a 68 kDa rod-shaped molecule with a series of highly 

conserved 10 amino acid repeats, containing 3 glutamine residues each as 

potential cross-linking sites, accounts for 5–15% of the CE expressed in the 

late spinous and SG layer, and it appears to be the first envelope precursor 

that is cross-linked by transglutaminase 1 (TG1), and therefore localizes to the 
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outer SG12. Loricrin is a cysteine (7%), serine (22%), and glycine (55%) 

enriched, 38 kDa, highly insoluble peptide, comprising one component of 

keratohyalin granules, and accounts for up to 80% of CE mass. Loricrin is 

cross-linked into the CE late in differentiation, immediately after LB 

secretion11,13.  

CE-associated proteins, while being necessary for the steady-state 

maintenance of normal barrier homeostasis, are transiently downregulated 

following acute barrier perturbations, apparently as a form of metabolic 

conservation, but subsequently upregulated during later stages of barrier 

recovery14,15. Keratins are the most abundant structural proteins of the 

epidermis and its appendages, contributing to the mechanical properties of 

these epithelium16. Keratins are of two types, type l or acidic (K9–20) and 

type II or basic (K1–8), which are co-expressed in pairs, and all keratins 

display a similar secondary structure, with a central, rod domain comprising 

four a helices, and distinctive, non-helical, head and tail sequences17. Whereas 

K5 and 14 are expressed in the basal layer, K1, 2e, and 10 are expressed in 

suprabasal layers, eventually accounting for 80% of the mass of the 

corneocyte7,16,18. Profilaggrin is a large, histidine-rich, highly cationic 

phosphoprotein, consisting of 37 kDa filaggrin repeats, connected by peptide 

segments enriched in hydrophobic amino acids19. Profilaggrin is concentrated 

within keratohyalin granules, where it may sequester loricrin, which also 

localizes to keratohyalin. During terminal differentiation, profilaggrin is both 

dephosphorylated and proteolytically processed by a Ca2þ-dependent protein 

convertase, furin, at the N-terminus to yield filaggrin, which ionically binds to 

Kl/l0, inducing the formation of macrofibrils in the corneocyte cytosol 20,21.  

The processing of secreted LB contents leads to the progressive generation 

of a mixture of relatively non-polar lipids, which is enriched in ceramides, 

cholesterol, and FFA, present in an approximately equimolar ratio 22. The 
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‘‘mortar’’ which means endogenous synthetic lipids in the keratinocytes also 

contain abundant cholesterol, which is secreted unchanged from LB23. 

Although a variety of studies have shown that cholesterol is critical for 

permeability barrier function, cholesterol derived from cholesterol sulfate is 

not required24,25. The key lipid constituent of the mortar is a family of nine 

ceramide species26. Ceramides 1, 4, and 7 are the principal repositories for the 

essential fatty acid (EFA), linoleic acid, a critical structural ingredient in the 

barrier27,28.  

A 10 nm, tightly apposed, electron-lucent, plasma membrane-like structure 

replaces the plasma membrane on the external aspect of corneocytes29,30. The 

cornified bound lipid envelope comprises o-hydroxyceramides , with very 

long-chain, Nacyl fatty acids, covalently bound to the CE29,30. These o-

hydroxy derive from insertion of the b-glucosyl ohydroxyceramide-enriched 

limiting membrane of the LB into the apical plasma membrane of the 

outermost granular cells31,32. The cornified bound lipid envelope could restrict 

water movement to extracellular domains, while limiting both water uptake 

into the corneocyte, and egress of water-soluble, hygroscopic amino acids out 

of the corneocyte cytosol33. 

These significant advances in our understanding of the homeostasis 

mechanisms that regulate epidermal barrier function have been achieved over 

the past two decades6. For example, an acute perturbation stimulates a well 

coordinated repair response within the epidermis, including the immediate 

secretion and regeneration of LB, the generation of key barrier lipids, and 

increased epidermal proliferation34-38. Since occlusion with a vapor 

impermeable membarane blocks all of these responses, permeability barrier 

integrity is linked to epidermal lipid and DNA synthesis. As hazards, 

Ultraviolet (UV) irradiation of mammalian skin produces responses including 

not only inflammation, erythema, hyperproliferation, and desquamation but 
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also changes in biophysical properties of skin barrier.  

UV irradiation induces various cutaneous responses including physiologic 

and morphologic changes in the skin. These include inflammatory responses 

such as erythema, epidermal proliferation, apoptosis, hyperpigmentation and 

immunosuppression39-42. Moreover, UV irradiation of mammalian skin 

produces dose- and wavelength- dependent responses including compromised 

integrity of the epidermal permeability barrier43-45. The researches about UV 

exposure to the skin have commonly were performend with high minimal 

erythemal dose (MED), that is to mean, more than 1 MED UV light which 

could implicated in sunburn44,46,47. A single exposure of human skin to 2MED 

ultraviolet B (UVB) irradiation induces a delayed increase in TEWL48. 

Likewise, increased TEWL also occurs after exposure of hairless mice skin to 

a single high dose of UVB, a combination of UVA and UVB or UVC 

exposure43,49,50. Furthermore, UV irradiation of human or rat skin also results 

in increased transepidermal delivery of xenobiotics51. Haratake et al. 

demonstrated that the UVB-induced barrier abrogation (1.5-7.5 MED) is dose 

dependent and delayed by at least 48 hours after exposure in young hairless 

mice44. A single UVB irradiation with high MED (7.5 MED) caused not only 

a significant increase in TEWL but also marked morphological abnormalities 

in the intercellular domains, including abnormal profile of LB and its contents 

at the interface between SC and SG52. Adult hairless mice irradiated for 7 days 

with high MED (1.5-7.5 MED) UVB showed delayed alteration in barrier 

function and both an epidermal proliferative response and thymocyte-

mediated events appear to contribute to UVB induced abrogation of the 

permeability barrier46.  

People are commonly exposed to low dose, that is to mean, suberythemal 

dose (SED) of ultraviolet A (UVA) and UVB during their lifetime. Photoaging 

results from accumulation of responses of these SED UV exposure. Narbutt et 
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al.  demonstrated that short term UVB irradiation with SED (0.7 MED) 

protected to a limited extent against the effects of an erythemal UVB dose on 

cytokine expression and thymine dimer formation47. Hairless mice irradiated 

with 1/3 MED of UVB and UVA for 10 weeks showed alteration of the 

physical properties of the skin and increases in keratin content of SC53. These 

results showed the early events of wrinkle formation only with limited data. 

Wherease we can easily expect that suberythemal UV exposure have 

important role of photoaging, relatively few functional and structural 

abnormalities in the epidermis irradiated with long term UV with SED was 

reported. The aim of this study was to evaluate the effects of long term UV 

irradiation with with SED on function and morphology of skin barrier. 
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II. Materials and Methods 

 

1. Animals and UV irradiation  

All animal experiments were performed with 7–8-week-old female hairless 

(hr-hr ) mice (n=40), which are purchased from the animal laboratory of 

Yonsei University,  in an ambient environment of 23°C, 50% relative 

humidity. The MED which means the minimum dose necessary to cause a 

discernable erythema after 24 hours measured on randomly selected mice with 

a UV-dosimeter (Villingen-Schwenningen, Germany), was UVB 80±5 

mJ/cm2 and UVA 20±5 J/cm2. Treatment group was irradiated with SED of 

UVB (20 mJ/cm2) and UVA (14 J/cm2) three times a week for 15 weeks. 

Hairless mice in the control group were sham-irradiated during the same 

minutes. UVB irradiation was delivered with Philips TL20W/12 fluorescent 

lamps (Philips, Eindhoven, Netherlands). As a UVA source, Philips, UVA 

sunlamp 40W (Philips, Eindhoven, Netherlands) was used. Irradiance was 

measured with a UV-dosimeter (Villingen-Schwenningen, Germany). Under 

general anesthesia with 4% chloral hydrate by intraperitoneal injection, the 

dorsal skin of each mouse was irradiated with a suberythemal dose of UV. 

Skin biopsies and the measurements were performed on the dorsal skin of the 

hairless mice at every three weeks after the first UV irradiation. 

 

2. Visual score / Assessment of epidermal barrier function and 

stratum corneum hydration 

Prior to the measurements hairless mice were acclimatized for at least 15 

minutes to standardized laboratory environment. Visual scoring was 

performed every week by a trained investigator using a grading system 

developed by Bisset et al50. The scale ranged from 0 for normal skin to 3 for 

heavily wrinkled skin. The minimum difference of the scale was decided as 

0.5. 
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 TEWL was measured on the dorsal surface of hairless mice by using a 

Tewameter TM210 (Courage and Khazaka, Klon, Germary) once a week. 

Each value used for the final calculations represented the arithmetic mean of 

two single measurements. SC hydration was measured using a Corneometer 

CM 825 (Courage and Khazaka, Klon, Germary) once a week. 

 

3. Assessment of epidermal/dermal thickness, epidermal prolifera 

-tion and differentiation 

Whole skin sections were fixed in formalin and stained with hematolxilin 

and eosin. The thickness of epidermis considered as the distance from the 

basal layer to the stratum granulosum/stratum corneum (SC) junction, was 

randomly measured on 10 points on each photograph using Photoshop 3.0 

(Adobe Systems, Mountain View, CA). The dermal thickness considered as 

the distance from the basal layer to the lower dermis/subcutaneous fat  

junction, was measured in the same way to the epidermal thickness 

measurement. For the light microscopic examination, the specimen was fixed 

in 10 % formalin solution and was embedded in paraffin. Sections of 5µm 

thickness were cut and stained with differentiation markers such as involucrin, 

loricrin, filaagrin, Keratin 5 (K5) (BabCo, Richmond, CA), Keratin 10 (K10) 

(BabCo, Richmond, CA), Keratin 16 (K16) (BabCo, Richmond, CA). Briefly, 

after deparaffinization, the sections were treated sequentially with 100%, 90% 

and 70% ethanol solution for rehydration. Then the samples were treated to 

inactivate endogenous peroxidases by incubation for 5min in Tris-buffered 

saline (TBS). Samples were then blocked for 10 min with blocking serum 

solution (DAKO, Carpinteria, CA, USA) and incubated overnight at 4℃ with 

the primary antibody. After several washes in TBS, they were incubated for 30 

min with a secondary biotinylated antibody. The antigen was detected with the 

avidin-biotin complex system (Vector, Burlingame, CA, USA), according to 

the manufacturer’s instructions by using 3,3’-diaminobenzidine 

tetrahydrochloride (Sigma Chemical Co., St Louis, MO, USA), as the 
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substrate. Then they were examined under a light microscope. 

 

4. Electron microscopic studies 

 

1) Calcium ion-capture cytochemistry electron microscopy 

At every 3 weeks after UV irradiation, the skin samples were taken and 

fixed for ultrastructural examination. Calcium ion-capture cytochemistry was 

performed in order to investigate the epidermal calcium ion distribution. 

Briefly, biopsized samples were finely minced and were immersed in an ice-

cold fixative which contained 2% glutaraldehyde, 2% formaldehyde, 90 mM 

potassium oxalate and 1.4% sucrose (pH 7.4); they were left overnight in the 

ice-cold fixative in the dark.  

 

2) RuO4 postfixation 

To see the SC intercellular lipid lamellae, RuO4 postfixation was done. 

Briefly, biopsized samples were fixed in modified Karnovsky’s fixative 

overnight, washed in 0.1 M cacodylate buffer, and postfixed in 0.25% 

ruthenium tetroxide (RuO4) (Polyscienses Inc., Warrington, PA, .S.A.) in 0.1 

M cacodylate buffer for 45 min in the dark at room temperature, or processed 

routinely. After rinsing in a buffer, samples were dehydrated in graded 

ethanol solutions, and embedded in an Epon-epoxy mixture. Ultrathin sections 

were examined using an electron microscope (Joel, Tokyo, Japan) after 

further contrasting with uranyl-lead citrate. 

 

5. Real-time RT-PCR for epidermal lipid synthesis rate limiting 

enzymes 

Serine palmitoyl transferase (SPT), HMG-CoA reductase (HCR) and fatty 

acid synthase (FAS) mRNA were quantified with real-time PCR by using a 
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LightCycler FastStart Master Hybridization Probe kit (Roche Diagnostics 

GmbH, Mannheim, Germany) according to the manufacturer's instructions. 

Briefly, primers and two labelled probes were designed for SPT, FAS, HMG-

CoA reductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

respectively. In all experiments, primer concentrations were first optimized to 

avoid unspecific binding of primers, and after running the PCR products, a 

dissociation curve analysis was performed to verify the specificity of the 

amplification products. For each gene, a specific PCR primer pair based on 

the cDNA sequence published as indicated: GADPH 5’-

AATGGTGAAGGTCGGTGTGA-3’/5’-CTGGAAGATGGTGATGGGC-3’; 

SPT 5’-CTGCTGAAGTCCTCAAGGAGTA-3’/ 5’-GGTTCAGCTCATCA 

CTCAGAATC-3’; HCR 5’-GATCCAGGAGCGAACCAA-3’/ 5’-

GSGAATAGACACACCACGTT-3’; FAS 5’-CCTCACTGCCATCCA 

GATTG-3’/5’-CTGTTTACATTCCTCCCAGGAC -3’. PCR mixture 

contained 2 µl of DNA template, 2 µl of LightCycler FastStart Master 

Hybridization probes (Roche Diagnostics GmbH, Mannheim, Germany), 

2 mM MgCl2 and 0.5 uM forward primer, 0.5 uM reverse primer, 0.2 uM FL-

probe and 0.2 uM LC-probe, respectively. The PCR reaction was performed in 

20 µl (final volume) and the conditions for thermal cycling were as follows: 

initial denaturation for 10 min, followed by 55 amplification cycles at 95°C 

for 10 s, 56°C (SPT)/ 57°C (HCR,FAS)for 15 s and 72°C for 8 s, cooling at 

40°C for 1min. 

 

6. High performance thin layer chromatography (HPTLC) for SC 

lipid analysis 

Epidermal lipids were extracted using the method of Bligh and Dyer, 

dissolved in chloroform/methanol (2:1, vol/vol) and stored in liquid nitrogen 

until used54. Lipids were separated by one-dimensional HPTLC on 10 x 20 cm 

glass plates coated with Kiesel gel 60 (Merk, Darmstadt, Germany). For 

quantification, lipid standards consisting of cholesterol sulfate, free fatty acid 
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and ceramide were run in parallel. The quantification was performed using 

scanning densitometry (Camag, Muttenz, Switzerland)) after charring of the 

lipids. 

 

7. Statistics  

The results are expressed as the mean ± SD. Statistical differences among 

groups were determined by unpaired Student’s t-test using SPSS version 10. P 

< 0.05 was considered statistically significant. 
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III. Results  

 
1. Visible scores of wrinkle increases in proportion to UV exposed 

time. 

Long term UV radiation even with low dose induced wrinkle formation. 

The skin originally showed no wrinkles and smooth surface features (Fig.1). 

Wrinkles became deeper and wider following 15-week UV irradiation. The 

degree of wrinkling is summarized in Figure 2. The first significant sign of 

wrinkle, in comparison to the control group, was detected at 3 weeks of 

irradiation (p < 0.01). The skin wrinkles and surface features worsened 

progressively over the 15-week irradiation period. 

 

2. Long term SED UV irradiation affects on epidermal barrier 

function and SC hydration in proportion to exposure time.  

Epidermal barrier function was determined by measurement of TEWL (Fig. 

4). Basal TEWL was not different until 9 week exposure, but increased 

significantly, relative to control group, after 12 weeks of UV irradiation. 

Figure 3 indicates SC hydration values. SC hydration decreased since 3 weeks 

of irradiation and progressively more decreased until 15 week post irradiation. 

 

3. Long term SED UV irradiation induce alterations in both 

epidermal and dermal thickness.  

Histopathologic changes including increases in epidermal and dermal 

thickness after long term UV exposure was most prominent over 15 weeks of 

UV irradiation (Fig. 5). The first significant increase in epidermal thickness 

was found at 9 weeks, while significant increase in dermal thickness started at 

12 weeks post irradiation (Fig. 6,7). The change that epidermal thickness 

increased earlier than dermal thickness would be an interesting manifestation 

asking a further interpretation. 
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Figure 1. Gross appearance of hairless mouse skin. Control group 

showed normal looking appearance while UV treated group of 0, 3, 6, 

9, 12 and 15 weeks exposure increased rough wrinkles. 
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Figure 2. Changes of wrinkle grade in long term SED UV irradiated 

mice (O) and non-irradiated mice (●). The values of wrinkle grade were 

expressed as mean ± SD. Visible scores increased following irradiation. 

*p < 0.05, **p <0.01, vs. non-irradiated mice 
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Figure 3. Changes in SC hydration after long term SED UV 

irradiation. The water content of the epidermis decreased in proportion 

to the irradiation time.  (*p < 0.05, **p < 0.01) 
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Figure 4. Changes in TEWL after long term SED UV irradiation. 

Basal TEWL increased significantly from 12 weeks of  UV 

irradiation.  (*p < 0.05) time.  (*p < 0.05, **p < 0.01) 
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Figure 5. Histopathologic changes after long term SED UV irradiation. 

Epidermal hyperplasia and an increase in dermal thickness were more 

prominent in UV irradiated groups (9, 12, 15 weeks) compared to control. 

(H&E, X 200) 
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Figure 6.  The changes in epidermal thickness after long-term SED 

UV irradiation. The first significant increase in epidermal thickness 

was found at 9 weeks (*p < 0.05, **p < 0.01) 
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Figure 7.  The changes in dermal thickness after long-term SED UV 

irradiation . The first significant increase in epidermal thickness was 

found at 12 weeks (*p < 0.05, **p < 0.01) 
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4. Long term SED UV irradiation affects epidermal differentiation. 

To determine whether structural changes of the epidermis were induced by 

long term UVB and UVA at low doses, we examined the expression of the 

epidermal differentiation related proteins such as involucrin, loricrin, filaggrin, 

K5, K10, and K16 (Fig. 8). After long term SED UV irradiation, involucrin, 

loricrin and filaggrn are overexpressed from the stratum spinosum (SS) to the 

SG, compared to the control. Wherease K5 are normaly expressed in the basal 

layer, K10 and K16 are overexpressed from the SS to the SG in the epidermis 

of UV irradiated mice with epidermal hyperplasia. Following the irradiation 

period, these findings were more prominent compared to the control group. 

These results suggest that long term UV irradiation even at low doses 

influences epidermal differentiation as well as epidermal proliferation.  

 

 

5. Long term SED UV irradiation induces changes in epidermal 

calcium gradient. 

The epidermis in the control group displayed a characteristic calcium 

gradient in which calcium is sparse in the basal and spinous layers, increasing 

to the highest levels in the granular layer, and declining again in the stratum 

corneum. The epidermal calcium gradient began to change at 3 week post UV 

irradiation. The epidermis after 6 week UV irradiation displays evenly 

dispersed calcium precipitates in all epidermal layers (Fig. 9) These perturbed 

calicium gradient was persisted to 15 weeks post UV irradiation. 
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Figure 8. The expression of the epidermal differentiation related 

proteins such as involucrin, loricrin, filaggrin, K5, K10, and K16. 

Immunohistochemical staining for each of these proteins except K5 

were overexpressed in the epidermis of UV irradiated mice with 

epidermal hyperplasia. (X 200) 
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Figure 9. Changes in epidermal calcium gradient examined by 

calcium ion capture cytochemistry. The changes of epidermal calcium 

gradient in the control group (NL) showed normal calcium gradient. 

However, long term UV irradiated group after 6 weeks, and 15 weeks 

showed increased calcium ions within whole epidermis including 

stratum corneum (arrows). SC: stratum corneum, SG: stratum 

granulosum, SS: stratum spinosum, SB: stratum basale,  Scale 

bar:0.2µm 
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6. Long term SED UV irradiation affects ultrastuctural changes of 

SC intercellular space. 

To gain further insight into the mechanisms by which UV irradiation 

affects epidermal lipid structure, we examined the ultrastructure of the 

epidermis in the hairless mice. In normal epidermis, SC intercellular space 

contains multiple, alternating dense and lucent bands indicating the lipid 

lamellae (Fig. 10). In the SC intercellular space after the first 6 week after UV 

irradiation, incomplete SC lipid lamellae can be seen (Fig. 10). Following the 

irradiation period, more prominent abnormal findings including incomplete 

and separated lamellae with fragmentation could be seen as shown in Figure. 

10.  

 

 

7. The mRNA levels of epidermal lipid synthesis rate limiting 

enzymes were affected by long term suberythemal dose UV 

irradiation. 

To determine whether long term UV irradiation with low doses affects 

epidermal lipid production including ceramide, fatty acid, and cholesterol, we 

measured mRNA levels of SPT, FAS, and HMG CoA reductase. This study 

demonstrated an increase in SPT, FAS, and HMG CoA reductase up to 6 

weeks of UV irradiation (Fig. 11). But these increased mRNA levels for the 

three key enzymes decreased from 9 weeks to 15 weeks of UV irradiation 

(Fig. 12). Thus, barrier disruption by UV irradiation results in an increase in 

the mRNA levels for the three key enzymes, ceramide, fatty acid, and 

cholesterol synthesis until 9 weeks of the irradiation. Thereafter, even the 

levels of the enzymes represented as compensatory epidermal lipid synthesis 

were downregulated after 9 weeks of the irradiation. 
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Figure 10. Changes in SC intercellular spaces. The SC intercelluar 

spaces including lipid lamellae of the control group (NL) showed 

normal in appearance. The UV irradiated group after 6 weeks and 

15weeks showed remarkable changes including incomplete bilayer with 

fragmentation. (RuO4 postfixation) Scale bar: 100nm 
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Figure 11. Relative mRNA expressions of three major key enzymes of 

cholesterol, ceramide, and fatty acid synthesis. The values were up-

regulated in murine epidermis until 6 weeks of UV exposure (A), but 

were down-regulated at 15 weeks (B), suggesting the possibility that 

even compensatory epidermal lipid synthesis is disturbed by chronic 

UV irradiation. (HMG, HMG CoA reductase; SPT, serine palmitoyl 

transferase; FAS, fatty acid synthase) 
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Figure 12. SC lipids analysis by HPTLC. Lipids including cholesterol, 

free fatty acid and ceramide were slightly reuced in murine epidermis at 

6 weeks of UV exposure (A), but were more reduced at 15 weeks (B). 

This result implicates the possibility that epidermal lipid synthesis is 

disturbed by long term UV irradiation. (CHOL, Cholesterol; FFA, Free 

fatty acid; CER, Ceramide) * Arbitrary unit 
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8. SC lipids were decreased in proportion to UV exposure time. 

To analyze the amounts of ceramide, fatty acid, and cholesterol, we used 

the HPTLC. Figure 12 shows the level of ceramide, fatty acid, and cholesterol 

obtained. The results reveal that the levels of these three main lipids started to 

decrease from 6 weeks of UV irradiation. It could be a meaningful finding 

that, following UV irradiation, the ceramides had more marked decreased rate  

than fatty acid and cholesterol. 
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IV. Discussion 

Chronic sun exposure causes various changes in the skin that are 

recognized as photoaging, immunosuppression and photocarcinogenesis. 

Long term exposure to solar UV irradiation leads to alterations in human skin, 

a process referred to as photoaging. Individuals who have outdoor lifestyles, 

live in sunny climates, and are lightly pigmented will experience the greatest 

degree of photoaging.  

UV irradiation of mammalian skin induces a variety of well-documented 

acute responses, including erythema, hyperproliferation, desquamation, and 

permeability barrier alterations52. Diminished permeability barrier fuction also 

has been reported in response to UVB, combined UVA and UVB or 

UVC43,48,50,51. UV irradiation stimulates the generation of a number of effector 

molecules immediately after exposure including a family of epidermal 

cytokines and prostaglandins initiating a complex cutaneous response55-59.  

UV light has a distinct effect on the production and secretion of cytokines 

from KC, depending upon its wavelength60. These mediators initiate both an 

inflammatory response, including erythema and epidermal hyperplasia61. The 

delayed UV light induced barrier abnormality occurs within this setting of 

epidermal hyperplasia and cutaneous inflammation55. 

The researches about UV exposure to the skin have commonly performed 

with high MED which means more than 1 MED UV light implicated in 

sunburn44,52,46. A single exposure of UVB irradiation with high MED 

perturbed skin barrier function and triggered cutaneous inflammatory 

responses by directly inducing epidermal keratinocytes to elaborate specific 

pro-inflammatory cytokines, such as IL-1a and TNF-a62. A single UVB 

irradiation with high MED caused not only a significant increase in TEWL but 

also marked morphological changes in the SC intercellular space52.  
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But commonly exposed sun light to people is usually UV with SED. 

Photoaging process might result from accumulation of UV irradiation with 

SED. But because of experimental limits, there were few reports on the effects 

of long term UV irradiation with SED50. In this study, performed on the 

hairless mice, I have shown that long term UV irradiation even at a SED 

influence not only biophysical properties but also morphologic changes of the 

epidermis and SC intercellular spaces. 

 Wrinkles and sagging are characteristically observed in photoaged skin63-65. 

Earlier studies have reported decreased collagen, disappearance of reticular 

structure of elastic fibers, accumulation of abnormal elastic fibers, and 

deposition of glycosaminoglycans in the dermal extracellular matrix of 

photoaged skin66-68. Kambayashi et al. reported that chronic low dose of UV 

irradiation induced wrinkle formation in hairless mice and the increased 

keratin content of the stratum corneum may result in changes to the physical 

properties of the skin53. In this study, long term UV irradiation with SED 

induced wrinkle formation. These might result from the above causes in those 

researches. Also, the reason why fine wrinkle formation developed early at 3 

week post irradiation might result from decreases in SC hydration shown in 

figure 2 and 3.   

To elucidate the meanings of the results, we assembled and newly arranged 

the data obtained from the study. First, to assess the impact of long term UV 

irradiation on permeability barrier function, we compared the TEWL in each 

group. Although SC hydration decreased as seen in Figure 4, the TEWL had 

no significant change until 12 weeks of UV irradiation when the only 

significant increase found at. In this study, these result before 12 weeks of the 

treatment is coincident with that of Choi as regard to the skin barrier 

protective responses after short term UV irradiation with SED (in press). 

Kambayashi et al. demonstrated that low dose UV irradiation induces wrinkle 
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formation in hairless mice and TEWL increased significantly after 10 weeks 

of irradiation and this increase persisted 24 weeks without irradiation. In this 

study, the TEWL increased significantly after 12 weeks of irradiation and 

conversely, decreased at 15 weeks of treatment53. Up to this point, I suggest 

that the cumulative hazardous responses of UV irradiation with SED take 

approximately 12 weeks considering the result of skin barrier disruption 

represented as TEWL at 12 weeks of the treatment. The TEWL decreased at 

15 weeks post irradiation. That might means that there could also have been 

some compensatory mechanisms during UV irradiation considering decrease 

in TEWL at 15 weeks of the treatment. Moreover light microscopy revealed a 

significant increase in both epidermal and dermal thickness (Fig. 6,7). 

Increases in epidermal thickness began to appear at 9 weeks of UV irradiation, 

while increases in dermal thickness began at 12 weeks of the treatment. I 

suggest that epidermal and dermal thickness, might partially contribute to the 

recovery of TEWL at 15 weeks of UV irradiation even though SC hydration 

decreased following UV irradiation period and lipid synthesis decreased from 

9 weeks after UV irradiation, as shown previously. Alterations in epidermal 

proliferation are known consequences of acute UV irradiation61. Haratake et al. 

reported that hyperproliferative response is required for the UVB induced 

barrier defect and inhibition of epidermal proliferation diminished the effects 

of acute UVB exposure on the barrier44.   

Earlier researches demonstrated that low dose UV irradiation with SED for 

10 weeks induced wrinkle formation with primary altering the epidermal 

components of the skin, rather than the dermis53. But, changes of dermal 

components might involved in photoaging process after some period of UV 

irradiation considering increased dermal thickness after 12 weeks of UV 

irradiation in this study. In addition, Werner et al. reported that keratinocytes 

stimulate fibroblasts to synthesize growth factors, which in turn will stimulate 

keratinocyte proliferation in a double paracrine manner70. Up to this reason, I 



 34 

found that epidermal thickness increased earlier than dermal thickness after 

UV irradiation in this study. 

  UVB irradiation has also been reported to decrease DNA, RNA, and 

protein synthesis within the first few hours after exposure, with each of these 

parameters increasing subsequently, culminating with accelerated 

desquamation71. Exposure of normal adult human skin to mild  erythema 

inducing doses of UV induces p53 and proliferating cell nuclear antigen 

expression, both of which, however, are associated with cell cycle progression 

but neither induce a mitotic response nor increased the replication-associated 

antigens, DNA polymerase or Ki 6772. Likewise, my study showed increased 

expression of keratinocyte differentiation represented by markers such as 

involucrin, loricrin, filaggrin and K10 and proliferation processes represented 

by K16 except K5 which commonly expressed in basal layer of the epidermis. 

Denda et al reported that exposure to changes in environmental humidity 

alone induces increased keratinocyte proliferation and markers of 

inflammation, and these changes are attributable to changes in stratum 

corneum moisture content73. Moreover It was well known that 1,25-

dihydroxyvitamin D3 which synthesized endogenously by a cascade of 

reactions including UVB-induced photochemical reaction and subsequent 

hydroxylations in the keratinocytes appear to play an important role in 

keratinocyte differentiation74. 25-dihydroxyvitamin D3 increases expression of 

major epidermal differentiation proteins such as involucrin, loricrin, filaggrin, 

and transglutaminase and stimulates cornified envelope formation, which is 

required for optimal epidermal differentiation and permeability barrier 

homeostasis75,76. Vitamin D receptor knockout mice exhibit reduced epidermal 

differentiation marker expression76. Also, in this study, the expression of 

keratinocyte proliferation and differentiation markers increased and SC 

hydration decreased in proportion to the irradiation time. Then I suggest that 

UV irradiation induced keratinocyte differentiation and proliferation and 
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consequent dry skin represented as decreased SC hydration might accelerate 

these processes. 

Calcium plays various roles including induction of terminal differentiation, 

formation of the cornified cell envelope, and also epidermal lipid synthesis77,78. 

Menon et al demonstrated that alterations of the calcium gradient affect 

exocytosis of the LB in SC-SG interstices79. My results show disruption of the 

calcium gradient after long term UV irradiation with SED. This disruption 

might be mediated by various mechanisms including alteration of epidermal 

differentiation and lipid synthesis.  

In addition to lipid synthesis, barrier homeostasis requires the assembly and 

secretion of epidermal `lamellar bodies, followed by postsecretory, 

extracellular processing6,80,81. The epidermal lamellar body is a unique 

secretory organelle that delivers lipid precursors and hydrolytic enzymes to 

the SC interstices, leading to barrier formation6. Holleran et al. reported that 

the generating capacity of the lamellar body was diminished in epidermis with 

UVB irradiation and that T-cell dependent hyperproliferative response in the 

epidermis correlates with barrier abnormality44,52,82. In addition to potential 

reduction in the number of cells available for LB formation, incomplete 

stratum corneum lipid lamellae was found after UV irradiation and more 

prominent abnormal findings appeared including incomplete and separated 

lamellae with fragmentation could be seen following the irradiation period. 

The SC intercellular lipid levels play critical roles in cutaneous barrier 

homeostasis. In addition, barrier homeostasis after damage to the barrier 

includes a series of biochemical phenomena such as an increase of lipid 

synthesis and lipid processing6. We examined changes in lipid synthesis 

abnormality after long term UV exposure with SED. It should be noticed that 

the three major enzymes for lipid synthesis were activated until 6 weeks of 

UV irradiation to compensate the unrecognizable microscopic changes and 
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conversely decreased from 9 weeks to 15 weeks of treatment. These result 

show that compensatory processes of lipid synthesis were sustained until 6 

weeks and thereafter, downregulated from 9 weeks of UV irradiation. I 

hypothesized that some inefficient lipid formation processes including 

abnormal LB formation could be the reason for these results. 

In lipids profile after UV irradiation, the levels of ceramides, fatty acid, and 

cholesterol began to decrease significantly at 9 weeks of UV irradiation. 

These results were accompanied with down-regulated activity of lipid 

synthetic enzymes as shown previously. Moreover, there was a particularly 

significant reduction of ceramide among the lipids, although Holleran et al. 

reported an increase of ceramide synthesis accompanied by increased SPT 

activity following high doses and short term UVB irradiation83. In 

chronologically aged mice, a deficiency in lipid synthesis, particularly in 

cholesterologenesis, accounts for barrier abnormality and lipid-induced 

acceleration of barrier recovery in aged epidermis correlates with repletion of 

the extracellular spaces with normal lamellar structures84. Although the total 

lipid content decreased in the stratum corneum of aged mice (approximately 

30%), the distribution of ceramides (including ceramide 1), cholesterol, and 

free fatty acids was unchanged85. Compared to these previous report, it was 

the distinguished point that, in this study, a significant reduction of ceramide 

was found in the hairless mice treated with long term UV irradiation with 

SED. Although further study to elucidate the underlying mechanisms of 

diminished lipid profiles after long term UV irradiation is warranted to 

confirm the alteration and compensatory responses, it is supposed that 

reduced lipid profiles resulted from cumulative result of long term UV 

irradiation with SED. Also, although we need more research about recovery 

after application of ceramide containing moisturizer, we suggest that 

ceramidogenesis can be associated with barrier disruption and down regulated 
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in photoaged mice. These results could implicate phototherapy, photoaging, 

and photooncogenesis.  
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V. Conclusion 

 In conclusion, long term UV irradiation even with SED to which people are 

commonly exposed influences skin barrier function and structure. Marked 

ceramide decreases in SC intercellular lipid after long term UV irradiation can 

be implicated in the treatment or prevention of photoaging. 
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무모생쥐에서무모생쥐에서무모생쥐에서무모생쥐에서 장기간장기간장기간장기간의의의의 자외선자외선자외선자외선 

조사가조사가조사가조사가 피부장벽에피부장벽에피부장벽에피부장벽에 미치는미치는미치는미치는 영향영향영향영향 

 

< 지도교수 안안안안 성성성성 구구구구 > 

       

연세대학교 대학원 의학과 

 

박박박박 하하하하 나나나나  

 

자외선 조사는 피부의 물리적, 생화학적 성상의 변화를 초래하여 

홍반의 발생, 표피세포의 증식, 과색소 침착, DNA 손상 등을 

일으킨다. 또한 이러한 반응은 자외선의 파장과 용량에 따라 차이가 

있음이 여러 연구를 통해 밝혀졌다. 본 연구에서 무모 생쥐의 정상 

피부에 홍반을 일으키지 않는 저용량(suberythemal dose)의 자외선 A 

와 B를 1주에 3회씩 15주간 반복 조사함으로써 지속적인 장기간의 

자외선 조사가 피부장벽에 미치는 영향을 관찰하고자 하고자 3주 

간격으로 피부 장벽의 기능과 구조적인 변화를 측정하였다. 

자외선 조사 3주 경부터 육안적인 주름이 생기고 조사기간이 

증가함에 따라 점점 심해지는 양상을 보였다. 경표피수분 손실량은 

증가하는 경향을 보이고 각질층 피부 함유량은 조사기간에 

비례하여 감소하였다. 조직병리학적 검사소견상 표피와 진피의 

두께는 시간에 따라 증가하였고 각질형성세포 분화의 표지자에 

해당하는 involucrin, loricrin, filaggrin, K5, K10, K16에 대한 

면역조직화학 염색상 과발현 되거나 비정상적인 표현이 관찰되어 

표피증식과 분화이상을 관찰하였다. 표피에서 칼슘 이온의 분포는 
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자외선 조사기간이 길어질 수록 칼슘 이온 농도의 기울기가 

정상에서 벗어나 왜곡되어 있음이 관찰되었다. 전자현미경 소견에 

의하면 각질층의 각질세포간 지질막구조가 불완전하고 열공이 

확장되어 가는 것을 관찰하였다. 지질 생성의 주요 효소인 serine 

palmitoyl transferase, HMG CoA reductase, fatty acid synthase의 mRNA에 

대한 real time RT-PCR상 6주까지 점차 증가되어 있다가 9주부터 

감소하는 경향을 보였고 특히 세라마이드의 생성에 중요한 역할을 

하는 serine palmitoyl transferase의 mRNA가 현저하게 감소하였다. 

각질층 지질의 주요 성분인 세라마이드, 콜레스테롤, 지방산에 대한 

지질분석상 6주부터 감소하는 경향을 보였으며 특히 세라마이드의 

뚜렷한 감소가 관찰되었다. 

결론적으로 일상 생활에서 흔히 접할 수 있는 저용량의 

자외선일지라도 반복적으로 장기간 노출되면 피부장벽의 

기능적이고 구조적인 변화를 초래하여 손상을 줄 수 있음을 알 수 

있었다. 특히 장기간의 자외선 조사 후에 각질세포간 지질막 조성의 

변화를 동반하는 세라마이드의 두드러진 감소의 발견은 향후 예방 

및 치료제 개발에 이용할 수 있다. 

 

 

핵심핵심핵심핵심 되는되는되는되는 말말말말 : 자외선, 홍반하 용량, 피부장벽, 각질세포 외막, 

각질세포간 지질막, 세라마이드 
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