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Abstract

Induction of mucosal and systemic immunity after intranasal
immunization of HIV-1 gp120 and gp41 peptides with choleratoxin
and neoadjuvant in a mouse model

Young Goo Song

Lepartment of Medical Science

The Graduate School, Yonsei lniversity

(Directed by Professor June Myung Kim)

Background: Mucosa is the main route for HIV to enter a huntheyefore mucosal
immunity is an important target for HIV vaccine éé&pmentAntibodies of the IgA,
IgG, and IgM isotypes to thenv protein of HIV are present in the cervix and
cervicovaginal fluid of women who remain HIV-sergadve despite repeated
exposure to the virus, further suggesting that realconmunity is protective against
sexual transmission of HIV. To develop an effectimacosal vaccine, investigations
should focus on an appropriate antigenic epitopeeféective and safe adjuvant, a
vaccination schedule, route, and so forth. The aifrthis study were to evaluate the
immunogenicity of gpl20 and gp4l peptides for imdgcmucosal and systemic
immunity and to prove the adjuvant effects of aanticholera toxin.

Materials and Methods: BALB/c mice were intranasally immunized with HIV-1
gp120 peptide (KQINMWQEVGKAMYACTRPNYNKRKRIHIGPGRAFYTK) and
HIV-1 gp4l peptide (EKNEQELLELDKWASLWC) with or wibut the mucosal
adjuvant cholera toxin or nontoxic mutant cholerdn. Blood was collected from the

retro-orbital plexus using heparinized capillarpguand vaginal wash samples were



collected by washing the vaginal cavity with 100 gfisterile PBS. ELISA was used
to determine the presence of anti-peptide antilsodie serum and vaginal wash
samples. Ag-specific ELISPOT assay was performéaguspleen cells to determine
peptide specific immune responses.

Results: In all groups with gpl20 or gp4l peptides, theelsvof vaginal IgA
significantly increased over the course of 4 weéksll groups, the changes of serum
IgA levels were not significant. In gp120 groupe tthanges in serum IgG levels were
not significant. In gp120+cholera toxin or mutahblera toxin groups, the levels of
serum IgG significantly increased. In the gp41 grdhe changes in serum IgG levels
were not significant. In the gp41+cholera toxinnoutant cholera toxin groups, the
levels of serum IgG significantly increased. In t®ups given gpl20 peptide as
antigen, the cytotoxic T lymphocyte (CTL) responsese significantly induced when
compared to the PBS group. However, CTL responsge not induced in the groups
given gp4l peptide. In the groups given gpl120 deptcholera toxin and nontoxic
mutant cholera toxin induced significant adjuvaif¢&s in both humoral and cellular
responses. However, in the groups given gp4l peptdolera toxin and nontoxic
mutant cholera toxin did not induce a significafif¢t.

Conclusions: HIV-1 peptides, which consist of epitopes on gpd2@p41, can induce
mucosal and systemic immune responses by nasal nimation, and cholera toxin
and nontoxic mutant cholera toxin are effective asat adjuvants for the induction of
mucosal and systemic immunity in a mouse model.d€welop proper mucosal
vaccines for HIV, further studies are needed fdinitey epitopes to induce systemic

and mucosal immunities, and developing effective safe adjuvants.

Key Words: HIV, HIV infection, AIDS, mucosal immunity, gpl20gp41,

cholera toxin



Induction of mucosal and systemic immunity after intranasal
immunization of HIV-1 gp120 and gp41 peptides with choleratoxin
and neoadjuvant in a mouse model

Young Goo Song

Lepartment of Medical Science

The Graduate School, Yonsei lniversity

(Directed by Professor June Myung Kim)

I. Introduction

It is estimated that 40 million people worldwideeativing with human
immunodeficiency virus (HIV) infection Routes of HIV transmission include sexual
contact, transfusion of blood and blood productgriag of contaminated needles,
vertical transmission, and occupational exposurése main mode of transmission
varies according to region or ethnicity. Howevdre tpredominant route of HIV
transmission is via sexual contact, where HIV asmitted at the mucosal surface of
the genitourinary tract or rectimindeed, it is estimated that 70-85% of HIV
infections are transmitted sexudlfy HIV transmission may also occur after oral
exposure to HIV. Because the mucosa is the most common site ¢gécbbetween
the host and HIV, the induction of a mucosal immuesponse is likely to be an
essential component for protection against HIV dtite™°. Antibodies of the IgA,

IgG, and IgM isotypes to thenv protein of HIV are present in the cervix and in the



cervicovaginal fluid of women who remain HIV-sergagve, despite repeated
exposure to the virus, further suggesting that realconmunity is protective against
sexual transmissidfi*®

There have been numerous attempts to produce acpivat HIV vaccine which
induces both mucosal and systemic immurfiti&¥ Although a variety of HIV
vaccine immunization protocols have been shown niduée serum neutralizing
antibody responses after systemic vaccine admaistr, immunization via a systemic
route rarely induces a mucosal IgA immune respdriderhe development of HIV
vaccines that induce secretory IgA responses igiitapt for protection against sexual
transmission of HIV, since secretory IgA exhibitsique effector functions that are
well suited to protecting the mucosal surfaces. ddat immunization is known to be
the proper method for inducing mucosal IgA respsiis&lucosal immunization at
one anatomical location has also been shown tocadudetectable response at the
site of immunization, as well as in distant muces#dctor tissues, an observation that
has led to the term 'common mucosal immunologitesys.

Many obstacles have been encountered in designireg$al vaccines. This includes
the weakness in the human secretory antibody respeticited by vaccination at
mucosal sites. The oral polio vaccine is the onlgilable mucosal vaccine for human
usé>*®*° To develop an effective mucosal vaccine, we shéatus our investigation
on finding the appropriate antigenic epitope, afeaive and safe adjuvant, a
vaccination schedule, route, and so forth.

A variety of approaches to produce a protective M#¢cine have been investigated
including: attenuated, recombinant bacterial vexterpressing antigenic epitopes
from HIV, recombinant adenovirus vectors, recombin&accinia virus, hybrid
hepatitis particles expressing a V3 loop peptiddAlvaccines expressing gp120, and
synthetic peptides containing T and B cell epitope#IV as immunogedis™'®%

Studies to develop a HIV mucosal vaccine have legmucted using recombinant



SIV proteins or peptid&4®? live attenuated SIV?°, SIV encoded virus or bacterial
vectors®?® DNA vaccine&*’ and a prime/boost regimér> These studies point to
the importance of a mucosal HIV vaccine for thevprgion of HIV-1 infection.

HIV can exploit several cellular routes to penetrtiie mucosal epithelial layers,
including epithelial cells and dendritic céfié> HIV-1 can directly infect epithelial
cells, or contact of HIV-1-infected cells with tapical surface of an epithelial cell can
lead transcytosis of HIV-1 across the epitheliatiee™>** And, recent studies support
an important role for dendritic cells as the priynaioute of mucosal HIV-1
transmissioff >

The hybrid C4/V3 HIV peptide with T helper, cytotoxX, and B cell epitopes from
HIV-1 gp120 have been shown to elicit a specifiatradizing antibody response, as
well as an HLA restricted CTL response, when adstémed systemicalfy**

Mucosal secretions in exposed, uninfected womenagorigG antibodies to the
ELDKWA sequence of gp41 that is recognized by tteggetive monoclonal antibody
2F5°4

Nasal immunization is an effective approach foritiguction of both mucosal and
systemic immune responégsNasal immunization with peptide vaccines, togethe
with mucosal adjuvant, more effectively induces osat immunity in the female
reproductive tract than oral immunization does.

Although native cholera toxin is a potent mucoshlieant, it is not practical for use
in humans because of its toxicity. Nasal applicatid cholera toxin B subunit or
native cholera toxin results in its accumulationtlie olfactory bulbs of the CNS
through GM1 binding and in its subsequent retrograstonal transport into the
olfactory neurori8. Furthermore, native cholera toxin is known toticel high levels
of total and antigen-specific IgE response due he mnature of IL-4 dependent
adjuvanticity”*® To overcome these potent pathological problemsnuant of

cholera toxin (mCT; E112K) that retains the adjuvagmwoperties, minus the



toxicity-associated ADP-ribosyltransferase enzywteviy, has been used.
The aims of this study were to evaluate the immenagty of gp120 and gp4l
peptides for inducing mucosal and systemic immuniépd to demonstrate the

adjuvant effects of mutant cholera toxin.



II. Materials and Methods

1. Study animals

Female BALB/c mice, weighing 16-18 g, were procufi@in Samtaco Co., Seoul,

Korea. All experimental groups consisted of sixnaals. All of the animals were

provided food and water ad libitum. All experimemisre conducted in accordance
with the guidelines for the care and use of lalmyatanimals by the Yonsei

University College of Medicine. All procedures fose and care of the mice were

approved by Yonsei University's Institutional AninGare and Use Committee.

2. Peptides and adjuvants used

The sequence of gpl20 peptide is as follows: KQIWREV
GKAMYACTRPNYNKRKRIHIGPGRAFYTTK. The gpl120 peptideoatains, at the
amino terminus, sequences from HIV gpl20MN betweaerino acids 428-443
(KQIINMWQEVGKAMYA), previously shown to evoke CD4 Thelper cell
responses in mié&>". This sequence has been linked to a carboxyl-tefraguence
derived from the third variable (V3) domain of HiVgp120 (amino acids 320-324),
which contains both a principal neutralizing detierant (amino acids 302-319) and a
site designated as recognized by CD8+ cytotoxigrniphocytes in BALB/c mice
(amino acids 320-324;FYTTRY The sequence of gp4l peptide is as follows:
EKNEQELLELDKWASLWC. This peptide corresponds to t889-675 amino acid
sequence of the gp4l protein of HIV-1 with the #ddiof a C-terminus-cysteine
residué®* All peptides were commercially synthesized in tRap Inc. (Daejeon,
Korea). Peptides were solubilized in water with 2%#etic acid and dialyzed
extensively against 25% acetic acid in distilledewvaThe peptide solution was then
dialyzed twice against two liters of distilled watélhe insoluble material was

removed by filtration across a 0.45 um filter, ah@ soluble material was then



lyophilized and stored at@ until used.

Nontoxic mutant cholera toxin E112K was kindly po®d by Dr. Hiroshi Kiyono

of University of Tokyo, Japan.

3. Immunization

The mice were divided into seven groups. Group temwere intranasally
immunized with gp120 peptide and native cholerantogroup 2 mice with gp120
peptide, group 3 with gp4l peptide and native dlaotexin, group 4 with gp4l
peptide, group 5 with gp120 peptide and nontoxitamiucholera toxin, group 6 with
gp41l peptide and nontoxic mutant cholera toxin, graup 7 with PBS. The mice
were intranasally immunized on day 0, 7, 14, andwith 50 ug of peptides, with or
without 1 pg of native or nontoxic mutant cholesain. Antigen preparations were
diluted to the appropriate concentration in steRBS, and 10 pL of the antigen
mixture was introduced into each nostril (Figure The mice were monitored until

they regained consciousness.



Figure 1. Intranasalimmunization of BALB/c mousewith HIV Ag and adjuvant

4. Sample collection

Bloods and vaginal wash samples were collectedayn7d 14, 21, and 28 before
nasal immunization. Blood was collected from théror@rbital plexus using a
heparinized Natelson capillary tube while the miage under isoflurane anesthesia.
Serum was obtained by standard methods and stbr86@ until use.

Vaginal samples were collected by washing the \&giavity with 50 pL of sterile
PBS in and out of the vagina gently until a disereflump of mucus was removed

while the mice were under isoflurane anesthesias Tkually took four to eight



cycles of pipetting. A second vaginal wash with [HO of PBS was then done to
ensure a more complete recovery of the vaginaleteo; and this material was
combined with the first wash. Vaginal samples waetrifuged at 12,000 x g for 10
min shortly after collection in a microcentrifuge separate the mucus from the PBS
wash solution. The mucus and supernatant wereftbean separately at -80. The
PBS wash solution contained a cocktail of protegnasibitors (153.8 nM aprotinin,
3.2 UM bestatin, and 10 uM leupeptin). In ordeolddain complete recovery of IgA
from the vaginal mucus, samples were thawed armderd twice for 2 h each time
in 100 pL of PBS per sample, with rotation at 2 ip a 12 mL polystyrene tube at
4°C. The two extracts and the original wash supernat@ne pooled, up to 300 pL

per sample, and stored at “8Quntil assayed for antibodi&s

5. Cell isolation

Lymphocytes were removed from spleen. The spleenteased apart using sterile
forceps and passed through a sterile screen tinaditayle-cell suspensions. The red
blood cells were removed from the cell suspensisimgiammonium potassium

chloride lysis buffer for 10 min.

6. Serological assays

The presence and titers of IgG and IgA antibodipscific for the gp120 and gp41
peptides used in the immunization protocols, wemuated in blood and vaginal
wash samples obtained from the immunized mice by emzyme-linked
immunosorbent assay (ELISA). HIV-1 peptides werated onto 96-well microtiter
plates at 1 pg/mL in PBS. After an overnight indidraat 4C, the contents of the
wells were discarded, and nonspecific protein lnigdivas blocked by incubation
with 5% (wt/vol) dry milk in PBS for 1 h at roomrtgerature. Diluted mouse sera or

vaginal wash samples were added to the wells andbated for 1 h at room

_10_



temperature. After three washes, wells were trefated h at room temperature with
peroxidase conjugated goat anti-mouse IgG or IgiferAhree additional washes, the
reaction was visualized with 0.075% 4-chloro-1-rthph in 0.056% hydrogen
peroxide and then stopped with 2N sulfuric acidsédpance was determined at 492

nm.

7. CTL assays

An enzyme linked immunospot (ELISPOT) assay wadopmed to establish the
number of IFNy producing cells. Nitrocellulose membranes in 96rouell
polyvinylidene difluoride-backed plates were coategrnight at 4= with 50 pL of
anti-mouse-IFNg monoclonal antibody. The antibody-coated platesewtren
washed four times with PBS and treated with 180 lPIMR1640 medium containing
10% heat inactivated fetal calf serum for 1 h atC37The responder cells for this
assay were spleen cells. A total of 21 these spleen cells were incubated
overnight, at 37T in 5% CO2, with HIV-1 peptides (10 pL/mL) in nitreltulose
membrane 96-well plates. The plates were washedtimes with PBS containing
1% BSA and 2 pL/mL of the secondary antibody (biatbnjugated anti-mouse-IFN-
¥y monoclonal antibody) were added to each well; tagep were then incubated for 2
h at 37C in CO2. The plates were washed four times with [BB&aining 1% BSA
and then treated with avidin-bound, biotinylatedseoadish peroxidase H for 1 h at
room temperature. The plates were then washed diticexdl three times with PBS
containing 1% BSA and three times with PBS alon#odved by a 5 min incubation
with 100 pL of 3-amino-9-ethylcarbazole per welhelreaction was stopped with
running tap water. Red-brown spots, representinglesicell producing IFNg, were
counted using a dissecting microscope. Spleen cedtgnulated with
phytohemagglutinin were used as a positive confiieé number of antigen-specific

spleen cells producing IFN-was calculated by subtracting the number of

- 11 -



spot-forming cells in the medium control from theptide-stimulated cells.

8. Statistical analysis

SPSS 11.0 software package was used for statistiedysis. The Mann-Whitney
test, Kruskal-Wallis test, and Friedman test weseduto determine the significance of
differences between groups. Allvalues were two tailed andpavalue of <0.05 or

less was considered significant.

- 12 -



II1. Results

1. Vaginal immunoglobulin

In the gp120 group, the levels of vaginal IgA sigaintly increased (median values
at 1, 2, 3, and 4 weeks after immunization; 1900,2R00, and 250 ng/mL,
respectivelyp=0.001, Figure 2). In gp120+cholera toxin group, lvels of vaginal
IgA significantly increased (median values at 1, 2, and 4 weeks after
immunization; 115, 170, 235, and 610 ng/mL, redpelst, p=0.001). In
gpl20+mutant cholera toxin, the level of vagina kjgnificantly increased (median
values at 1, 2, 3, and 4 weeks after immunizati@%, 252, 335, and 728 ng/mL,
respectivelyp=0.041).

In the gp41 group, the levels of vaginal IgA sigrahtly increased (median values at
1, 2, 3, and 4 weeks after immunization; 200, 3, and 715 ng/mL, respectively,
p=0.007). In gp4l+cholera toxin group, the levels vafginal IgA significantly
increased (median values at 1, 2, 3, and 4 wee&s iaimunization; 135, 242, 410,
and 635 ng/mL, respectivelp=0.007). In gp41l+mutant cholera toxin, the level of
vaginal IgA also increased significantly (medianues at 1, 2, 3, and 4 weeks after

immunization; 87, 224, 600, and 712 ng/mL, respebti p=0.011, Figure 2).

_13_
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Figure 2. Changes of specific IgA levels in vagwakhing fluids.

2. Serum immunoglobulin
In all groups, the changes of serum IgA levels wastsignificant p>0.05, Figure
3).
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Figure 3. Changes of specific IgA levels in serum.
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In the gp120 group, the changes in serum IgG lewel® not significant (median
values at 1, 2, 3, and 4 weeks, 324, 330, 340,38B5dng/mL, respectivelyp>0.05,
Figure 4). In the gpl20+cholera toxin group, theels of serum IgG significantly
increased (median values at 1, 2, 3, and 4 wee&s isfimunization; 310, 317, 372,
and 411 ng/mL, respectivelp=0.001). In the gp120+mutant cholera toxin, theslev
of serum IgG significantly increased (median valaed, 2, 3, and 4 weeks after
immunization; 321, 331, 356, and 405 ng/mL, respelst, p=0.004).

In the gp4l group, the changes in serum IgG lewese not significant (median
values at 1, 2, 3, and 4 weeks after immunizat894, 400, 406, and 414 ng/mL,
respectively,p=0.552). In the gp4l+cholera toxin group, the Ilevef serum IgG
significantly increased (median values at 1, &r®] 4 weeks after immunization; 385,
396, 411, and 437 ng/mL, respectivahz0.029). In the gp41l+mutant cholera toxin,
the level of serum IgG significantly increased (imedvalues at 1, 2, 3, and 4 weeks
after immunization; 393, 404, 427, and 455 ng/nelspectivelyp=0.011, Figure 4).
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SO0, 00—
g Sl
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Lwm=
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Figure 4. Changes of specific IgG levels in serum.
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3. Cytotoxic T lymphocyte responses
In the groups using gpl20 peptide as antigen, ytaaxic T lymphocyte (CTL)
responses were significantly induced comparedd¢dBS groupf<0.05). However,

CTL responses were not induced in the groups wgd peptide (Figure 5).
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Figure 5. Cytotoxic T lymphocyte responses in splegls.

4. Effects of adjuvants

In the groups using gpl120 peptide, both native ranthnt cholera toxin induced a
significant increase in vaginal IgA and serum Ig@lgle 1). Also, both forms of the
cholera toxin induced significant CTL responses.

However, in the groups using gp4l peptide, neifioem of the cholera toxin

induced significant adjuvant effects.
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Table 1. Differences in humoral and cellular immuesponses according to the use

of adjuvants

with nontoxic
without adjuvant with cholera toxin mutant cholera p value
toxin

gpl120

vaginal IgA

at 4 weeks 250 610 728 0.002
(ng/mL)

serum IgA
at 4 weeks 620 625 750 0.222
(ng/mL)

serum 1gG

at 4 weeks 355 411 405 0.005
(ng/mL)

CTL
(SFC/16cells)
gp4l

vaginal IgA
at 4 weeks 570 635 712 0.436
(ng/mL)

190 1,100 1,310 0.001

serum IgA
at 4 weeks 659 643 712 0.114
(ng/mL)

serum 1gG
at 4 weeks 414 437 455 0.145
(ng/mL)

CTL

(SFC/16cells) 24 39 42 0.166
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IV. Discussion

This study provides evidence that HIV-1 peptideficlw consist of epitopes in
gpl120 or gp4l, can induce mucosal and systemic memesponses by nasal
immunization. Also, this study indicates both chaléoxin and nontoxic mutant
cholera toxin are effective mucosal adjuvants foe induction of mucosal and
systemic immunity in gpl20 group. The 40-amino agul20 synthetic peptide
contains a T helper, a neutralizing B cell, as veall CTL epitope from gpl120 of
HIV-1%*"2 |t has been previously shown that the hybrid G4MIV peptide
containing T helper, CTL, and neutralizing B cgdltepes from HIV-1 gp120 induced
type-specific neutralizing antibody response asl ves class-I restricted CTL
responses when administered systemitaffy ELDKWA on HIV-1 gp4l is a
conserved epitope recognized by one broadly né&itrglmonoclonal antibody 2F5,
which is a promising candidate target for vacciresigi®>*. The gp41 peptide,
corresponding to the 659-675 amino acid sequendé thie addition of a C
terminus-cysteine residue, contains the ELDKWAa@mit These peptides are selected
among candidates which induces immune responsesnouse models. The antibody
reactivity to ELDKWA-epitope on the C-domain of dp# associated with disease
progression in children perinatally infected with\vHL, and at least 80% of children
have not detectable antibody reactivity to thigam, indicating that the ELDKWA
determinant could be an important component in fdrenulation of a vacciré.
Sequence analysis of primary isolates suggests ttat major determinant of
monoclonal antibody 2F5 binding corresponds to d@heno-acid sequence LDKW.
Naturally occurring and in vitro selected neutratian-resistant viruses contained
changes in the D and K positions of the ELDKWA maind the amino-acid changes
from D to N, D to E, and K to N caused abrogati6ér2le5-binding to the ELDKWA
epitope. The restricted antigenic variability ofetrELDKWA-epitope enables
ELDKWA-epitope to be developed as an effectiveaipeptide-vaccine.

_18_



Vaccination at a single site would provide both lbuwah and cell-mediated
protection, not only at the relevant mucosal s@fdmt also throughout the body. In
this regard, nasal vaccination has shown particoddential. In mice, monkeys and
humans, nasal administration of vaccines has irdlgpecific mucosal IgA antibody
responses in the salivary glands, upper and loesgimatory tracts, male and female
genital tracts, and the small and large intestinéghe nasal route can also induce
CTLs in distant mucosal tissues including the femgenital tracf'"*° In addition,
nasal immunization studies in humans and mice medigreater systemic antibody
responses than other mucosal immunization roytesesumably because antigens or
antigen-presenting cells were readily traffickedltaining lymph nodes from this site.
In mice and monkeys, nasal immunization with certaie viral vectors generated
systemic antiviral CTLs and IgG at concentratiohat twere comparable to those
induced by parenteral vaccination rodtg% Although nasal immunization might be
particularly effective for protection against respory pathogens, optimal protection
of the gastrointestinal tract, the rectum and fenganital tract might still require oral,
rectal or vaginal vaccines.

HIV might be considered a mucosal pathogen becaassmission occurs mainly
through exposure of mucosal surfaces to HIV and -hfécted cells. Mucosal
transmission of simian immunodeficiency virus innfwman primates, and
presumably of HIV in humans, can occur without legial cell damage to the oral,
rectal, and genital muco¥z’.

Epithelial cells are not productively infected biMbut they serve as gateways for
delivering infectious HIV to antigen-presenting dstic cells and macrophag&s®
As mucosal antigen presenting cells interact wottel CD4+ T cells, they infect and
disable the very cells needed to mount an effedtiv@une response. Infection of
local target cells can occur rapidly after depositof virus on mucosal surfaé@s

However, dissemination of the virus to regional hfrmodes and other tissues can be

_19_



delayed for up to several days, providing a winddwpportunity for local control of
the infection by mucosal immune effectdfs. In any case, whether transmitted
mucosally or injected, HIV and SIV replicate prefietially in mucosal tissues, such as
the intestinal mucosa, that are rich in CD4+ T<elf. Therefore, the ultimate goals
of HIV vaccines should be to first interrupt mudasansmission at its earliest stages,
before the virus has crossed the epithelial baatet infected its first target cell, and
then to prevent the establishment of viral resesvioi mucosal tissues.

To achieve these goals, HIV-specific vaccines ngeerate multiple immune
effectors, including HIV envelope-specific antibeslin mucosal secretions and CTLs
and neutralizing HIV envelope-specific antibodies the mucosa and circulation.
Given what we know about the induction of mucosahune responses, it is unlikely
that injected HIV vaccines alone will induce theawosal responses that are required.
Although correlates of mucosal protection are nett gstablished, there is evidence
from highly exposed, uninfected human subjects tihatosal HIV-specific CTLs and
IgA antibodies in secretions are associated wiistance to sexually transmitted HIV
infection®®’. The challenge is to identify the required keyeeférs and then design a
vaccination strategy to induce them.

Although HIV-1 peptides have been shown to indusetralizing antibodies, as well
as CTL responses when administered systemicallgosal immune responses are
rarely induced with this method. To induce mucasahune responses to HIV, mice
were immunized with the HIV peptides and the mutesfuvants by an intranasal
route. Intranasal immunization with HIV-1 synthetieptides plus adjuvants induced
both high serum IgG responses as well as vagiralégponses. Therefore, intranasal
immunization with HIV peptides is as effective atliicing serum IgG responses as
systemic immunization, but has the advantage ofidimd) vaginal IgA responses.
Another advantage of intranasal immunization ig th#& route is noninvasive and

thus eliminates the use of needles.
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The use of cholera toxin induced high titered selgG and CTL responses as well
as vaginal IgA responses. The mechanism by whictech toxin acts as a mucosal
adjuvant is not clear. Several reports suggestttieaadjuvant action of cholera toxin
may be related to its ability to prime T cells b tcoadministered antigen, increase
permeability to luminal antigens, and stimulate douction of the costimulatory
cytokines IL-1 and IL-6 by epithelial celf® Due to its side effects, the use of
cholera toxin as an adjuvant in humans seems Umliléwus, extensive effort has
been expended on creating genetically manipula@adatoxic mutants of cholera toxin
that would retain adjuvanticity, but not toxidlyIn the current study, we sought to
examine the mucosal adjuvanticity of mutant choterén E112K as a nasal adjuvant
when coadministered to mice with HIV-1 gp120 or fpeptides. In this study, the
nasal application of mutant cholera toxin as a reatadjuvant effectively induced
HIV-1 gpl20 peptide-specific antibody responsesboth mucosal and systemic
immunity, and cellular immune responses of spledis.cThe differences of adjuvant
effects between peptides were not clearly undedstbat the specific relationships
between peptide and adjuvant could be presumethdfstudies are needed for exam
the differences of adjuvant effects between peptide

This study provides evidence that nontoxic mutamblera toxin E112K is an
effective mucosal adjuvant for the induction of HlVspecific immunity in the mouse
model. Nontoxic mutant cholera toxin E112K retaidjusant properties despite
lacking the ADP-ribosyltransferase enzyme actigigociated with toxicify® These
findings reveal the efficacy of mutant cholera k112K as a mucosal adjuvant and
suggest its potential for use in trial vaccines.

However, native cholera toxin and even its nontowrigtant forms pose additional
dangers when administered via the nasal route. INa&&zines using either native
cholera toxin or its nontoxic mutant as adjuvask entering the CNS because of the

proximity of the olfactory nerves/epithelium andagtory bulbs to the brain. This
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potential for neurotoxicity has been a major olstéar the use of enterotoxin-based
mucosal adjuvants in humans intranasally. Neurasabciation of cholera toxin B
through GM1 ganglioside binding appears to preclefficient clearing of these
enterotoxin-based mucosal adjuvants and causesdexteaccumulation in neuronal
tissues associated with the olfactory tfactThese results show that nasally
administered cholera toxin derivatives retain sduowdcity and are targeted to the
CNS, posing a serious obstacle to human use. Haowavehe previous studies,
nontoxic mutant cholera toxin E112K did not eligity increase in NGB-expression
in the olfactory tissues of non human prim&te®nly minimal NGFS1 synthesis was
detected in the olfactory CNS tissues of rhesusaouaes given mutant cholera toxin
E112K as nasal adjuvant.

Although intranasal immunization with HIV-1 peptgland adjuvant induced high
serum IgG titers, serum IgA was not induced. Simiee were immunized via a
mucosal route, we anticipated the induction of selgA responses. Induction of
serum IgA responses to intranasally administereigiem varies with the immunizing
antigen”"*. However, anti-gp120 peptide IgA spot-forming sellere detected in the
lymph nodes and spleen of the mouse after intrairagaunization with HIV-1 gp120
peptides with cholera toxin, even though serum-pepitide IgA responses were not
detectedf. It is possible that high serum IgG responses etetpfor antigens in the
ELISA and inhibited the ability to detect margisakrum IgA responses. Alternatively,
the anti-peptide IgA spot-forming cells detectedhie lymph nodes may have been
transiently migrating through the lymph nodes tocosal effector sites. This latter
hypothesis seems more likely, since anti-HIV-1 peptgA responses were detected
in vaginal secretions in the absence of serum &Egponses.

In the groups given gpl20 peptide as antigen, Ca8dpwonses were significantly
induced when compared to the PBS group. Howevel, i€3ponses were not induced

in the groups given gp4l peptide. This results weaesed by the differences of
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epitopes between peptides. The gpl20 peptide ceataCTL epitope, but gp4l
peptide did not contain any CTL epitopes.

This study has provided evidence the intranasalunipation with HIV-1 gp120
peptide plus a cholera toxin adjuvant is able wuge antigen-specific serum IgG,
vaginal IgA, and systemic CTL responses. Intranasaiunization with HIV-1 gp41
peptide can induce antigen-specific serum IgG daé agevaginal IgA responses. It
also shows that mCT E112K is an effective mucogpivant when administered with
HIV-1 gpl120 peptide intranasally. Further studié®wdd be undertaken upon the

effective and safe mucosal vaccines for the priotiectf HIV infections.
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V. Conclusion

HIV-1 peptides, which consist of epitopes in gpiit0gp41, can induce mucosal
and systemic immune responses by nasal immunizdfibalera toxin and nontoxic
mutant cholera toxin are effective mucosal adjusdot the induction of mucosal and
systemic immunity in mouse model. To develop propeicosal vaccines for HIV,
further studies are needed for defining epitopesnthuce systemic and mucosal

immunities, and developing effective and safe aaljs.
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Abstract (In Korean)
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HIV 5o] IgA =% 45 9 F938A F7Mstdd. 28y g9 U IgA &

TE f98A WHItetA 2okl gpl20 FEFol= Fol A A g IgG HEE
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th. gpl20 HElo] =5 ALE3 FEo|A cholera 544 H =54 Wo| cholera &
A7 AN L AEA E’i‘%ﬂ% FAA 7 E 93 adjuvant EF S YeEFW T
a8y, gpdl HER)E=E AFEE FEoA = cholera 4y B EA WOl

cholera =47} #9 % adjuvant &%= Yeb#] &9kt
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