치주치료 후 구강 내
Volatile Sulfur Compounds (VSC)의 변화

연세대학교 대학원
치의학과
김 성 현
치주치료 후 구강 내
Volatile Sulfur Compounds (VSC)의 변화

지도교수 최 성 호

이 논문을 석사 학위논문으로 제출함

2006년 6월 일

연세대학교 대학원
치의학과
김 성 현
김성현의 석사 학위논문을 인준함

심사위원 _______________인
심사위원 _______________인
심사위원 _______________인

연세대학교 대학원

2006년 6월 1일
감사의 글

저의 부족한 논문이 나오기까지 큰 관심과 지도 편달을 아끼지 않으신 최성호 교수님과 방은경 교수님, 심사에 참여하시면서 많은 지도와 가르침을 보내주신 김종관 교수님께 깊은 감사를 드립니다. 그리고 따뜻한 관심으로 지켜봐 주신 최종규 교수님, 조규성 교수님, 김창성 교수님, 정의원 교수님, 채정준 선생님께 진심으로 감사드립니다.

일산병원 치주과 의국원 김지선 선생, 이서경 선생에게도 감사하다는 말을 전합니다.

늘 아낌없는 사랑과 기도로 후원해 주시는 부모님, 장인, 장모님, 모자란 남편을 아낌없이 성원해 주고 사랑으로 대변 주는 아내, 귀여운 딸에 전해드릴 수 없게 깊은 사랑과 고마운 마음을 전합니다.

끝으로, 항상 선한 길로 인도하시는 하나님의 감사와 찬양을 드립니다.
감사합니다.

2006년 6월 일
저 자 쓰
차 례

그림 및 표차례----------------------------- ii
국문요약------------------------------------- iii
I. 서론-------------------------------------- 1
II. 연구대상 및 방법--------------------- 4
 1. 연구 대상--------------------------- 4
 2. 가스 측정--------------------------- 4
 3. 임상지수 측정----------------------- 5
 4. 측정 ------------------------------- 5
 5. 통계 분석----------------------------- 6
III. 연구결과------------------------------- 7
IV. 고찰-------------------------------------- 10
V. 결론-------------------------------------- 14
참고문헌------------------------------------ 15
영문요약------------------------------------ 20
그림 차례

Fig 1. Oral Chloma®(ABILIT Cor. Japan)-------------------5
Fig. 2. CH₃SH/H₂S ratio and probing pocket depth--------- 8
Fig. 3. CH₃SH/H₂S ratio and bleeding on probing (BOP)------ 9

표 차례

Table 1. Gas and clinical data measurement------------------6
Table 2. VSC concentrations at initial examination-------- 7
Table 3. VSC concentration changes at the periodontal treatment-- 8
국문요약

치주치료 후 구강 내

Volatile Sulfur Compounds (VSC)의 변화

구취가 발생할 경우 주변 사람들에게 불쾌감을 야기하거나 사회생활에 지장을 초래하기도 한다. 구취의 발생 원인 중 대부분은 구강 내에서 발생하는 황화합물인 Volatile sulfur Compounds (VSC)로 알려져 있으며 이를 생성하는 원인 균들이 치주질환을 일으키는 원인 균들로 밝혀졌다. 본 연구의 목적은 치주치료 후 VSC 가 어떻게 변화하는지 알아보고자 한다.

국민건강보험공단 일산병원 치주과에 내원한 환자 40 명을 대상으로 하였으며 치주낭 깊이가 5mm 이상인 곳이 2 군데 이상인 그룹 20 명을 실험군으로 선정하였고 모두 5mm 미만인 그룹 20 명을 대조군으로 선정하였다. Gas chromatography 를 이용하여 치료 전, 스케일링 2 주 후, 치주치료 1 개월 후에 VSC 농도를 측정하였으며, 치료전과 치주치료 1 개월 후에 최고 치주낭 탐침 깊이 및 탐침 시 출혈 비율을 측정하였다.

본 연구를 통해 다음과 같은 결과를 얻을 수 있었다.
1. 실험군에서 대조군보다 구강내 H₂S, CH₃SH 농도 및 CH₃SH/H₂S 비율이 통계적으로 유의성 있게 증가되었다. (p<0.05)
2. 실험군에서 구강내 H₂S, CH₃SH 농도 및 CH₃SH/H₂S 비율이
스케일링 2주 후 및 치주치료 1개월 후 점차 감소하는 경향을 보이며, 치주치료 1개월 후 CH₃SH/H₂S 비율은 초진시에 비해 통계적으로 유의차를 보였다. (p<0.05)

3. 최고 치주낭 탐침깊이 및 탐침시 출혈이 증가함에 따라서 구강내 CH₃SH/H₂S 비율은 점차 증가하는 경향을 보였다.

따라서 치주치료가 구취를 감소시키는 한 인자가 될 수 있으며, 치주치료가 구취를 감소시킬 수 있을 것으로 사료된다.

핵심되는 말: 구취, Volatile Sulfur Compounds, gas chromatography, 치주치료
치주치료 후 구강 내

Volatile Sulfur Compounds(VSC)의 변화

<지도교수 최성호>
연세대학교 대학원 치의학과
김성현

I. 서론

구취란 일반적으로 원인에 관계없이 구강 내에서 발생하는 불쾌한 냄새를 말한다. 구취가 발생할 경우 불쾌한 냄새로 인하여 사회생활에 지장을 줄 수도 하며, 구취가 있다고 생각하는 사람은 그렇지 않더라도 대화 시에 멀어져서 이야기 하거나 손으로 입을 가리는 등 행동의 변화를 야기하기도 한다. (Oxtoby 등, 1994)

Delanghe(1997)의 연구에 의하면 구취의 원인으로 87%는 구강 내 원인에 의하고 5-8%가량이 이비인후과 영역에서 유발되며 5%는 신체 다른 부분에서 유발된다고 보고하였다.

구강 내에서 불쾌한 냄새를 유발하는 화합물 중에서 주된 것은 volatile sulfur compounds(VSC)인데 구취의 강도는 구강 내 VSC 의 농도에 의하여 결정되는 것으로 알려져 있다. (Rosenberg 등, 1991)
VSC는 amino acids의 bacterial metabolism에 의하여 발생하고 hydrogen sulfide(H$_2$S), methyl mercaptan(CH$_3$SH), dimethyl sulfide(CH$_3$SSCH$_3$)로 구성되어 있다. (Tonsethich, 1977)

VSC의 생성은 구강 내 상피세포, 백혈구 등의 전사나 단백질 함유 음식물들의 부패에 의하며 (Tonsethich, 1978) 주로 치은 열구나 혈에서 발견되는데 특히 치은 열구는 VSC의 생성에 이상적인 조건을 제공한다. (Coil 등, 1992)

VSC를 유발하는 원인균으로는 Treponema denticola, Porphyromonas gingivalis, Bacteroides forsythus 등이 있으며 대부분 치주질환의 원인균들이다. (Persson 등, 1990; Awano 등, 2002)

Morita 등(2001)의 치조골 소실이 증가할수록 VSC가 증가하며 치주낭 깊이, 임상부착 수준 등의 수치와 VSC가 관련이 있음을 보고하였다.

VSC는 직, 간접적으로 치주조직의 파괴에도 영향을 미친다. 여기에는 특히 methyl mercaptan이 관련되는데 이는 조직의 염증과 파괴에 관여한다. 따라서 구강내 methyl mercaptan의 농도가 높을수록 치주질환의 심할 것으로 예상할 수 있는데, Yaegaki(1992)는 구강내 methyl mercaptan/hydrogen sulfide의 비율이 치주낭이 깊어질수록 증가한다고 보고하였다.

과거에 치주질환과 구취와의 관계에 관한 여러 연구들은 있었으나, 치주치료 후에 구취의 변화에 관한 연구는 부족한 설정이다.

이에 본 연구에서는 만성치주염 환자에서 VSC 중 hydrogen sulfide, methyl mercaptan 각각의 구강 내 농도 및 methyl mercaptan/hydrogen sulfide의 비율을 건강한 치주조직을 가진 사람들과 비교하고, 치주치료에 따라 이러한 수치들이 어떻게 변화하는지 평가하고자 하였다.
II. 연구대상 및 방법

1. 연구대상
 국민건강보험공단 일산병원 치과(치주과)에 내원한 환자 중 구취를
 야기하는 내과적 질환이 없고, 깊은 우식이나 불량한 보철물이 없으며
 최근 6 개월간 치주치료 경험이 없는 치주 질환자 중에서 6 개의
 치아(16,14,21,41,34,36 번)에서 각 치아당 6 부위의 치주낭 깊이를
 측정하여 5mm 이상인 곳이 2 부위 이상인 사람 20 명을 실험군으로
 선정하였고, 치주낭 깊이가 모두 5mm 미만으로 건강한 치주조직을
 가진 20 명을 대조군으로 선정하였다.

2. 연구방법
 가. 가스측정
 구취측정기 Oral Chloma®(ABILIT Cor. Japan)를 사용하여 가스를
 측정하였다.(Fig.1.) 제조자의 지시대로 시린지를 사용하여 비 호흡을
 하면서 입 속의 공기를 30 초 이상 머물게 한 뒤 2 회 이상 시린지의
 피스톤을 끊까지 왕복하여 구강 내 가스를 채취하였다.
 채취한 가스의 \(\text{H}_2\text{S} \) 와 \(\text{CH}_3\text{SH} \)의 농도를 측정하고 \(\text{CH}_3\text{SH}/\text{H}_2\text{S} \)의
 비율을 구하였다.
나. 임상지수 측정

6개 대상치아(16,14,21,41,34,36)에서 치주낭 탐침깊이, 탐침시 출혈을 측정하였으며, 각 대상 치아 협심면의 근심, 중앙, 원심 6부위에서 측정하였다.

치주낭 탐침깊이는 최대 수치를 대표값으로 선정하였고, 탐침시 출혈은 출혈부위의 백분율(%)로 정하였다.

d. 측정

실험군 에서는 초진시, 치석제거술 2주 후, 모든 치주치료(저근 환록술, 치은판막수술) 1개월 후에 가스분석을 시행하였고, 임상지수 측정은 초진시와 치주치료 1개월 후에 시행하였다.

대조군 에서도 가스분석과 임상지수를 측정하였다. (Table1)
<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>initial</td>
<td>2wks after Sc</td>
</tr>
<tr>
<td>gas</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>clinical index</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

라. 통계 분석

조전시 대조군과 실험군 간의 가스 농도비 비교에는 unpaired t-test 를 사용하였고, 실험군에서 숲전, 치석제거술 후, 치주치료 후의 CH3SH/H2S 가스비의 변화에 대해서는 ANOVA 를 사용하여 통계적 유의성을 검증하였다.
Ⅲ. 결과

1. 치주질환에 VSC 및 CH₃SH/H₂S 가스비에 미치는 영향

치주질환군(실험군)에서 건전 치주군(대조군)에 비하여 VSC의 농도 및 CH₃SH/H₂S 가스비 모두 유의성 있게 크게 나타났다. (p<0.05) (Table 2)

Table2. VSC concentrations at initial examination (Mean±SD, n=20)

<table>
<thead>
<tr>
<th></th>
<th>H₂S(ppb)</th>
<th>CH₃SH(ppb)</th>
<th>CH₃SH/H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimental</td>
<td>194.7±160.1*</td>
<td>54.0±51.5*</td>
<td>0.271±0.185*</td>
</tr>
<tr>
<td>control</td>
<td>52.0±66.4</td>
<td>9.4±24.2</td>
<td>0.043±0.097</td>
</tr>
</tbody>
</table>

*: statistically significantly different from control group (p<0.05)

2. 치주치료가 VSC 및 CH₃SH/H₂S 가스비에 미치는 영향

치주 질환군에서 치석제거술 2 주 후와 치주치료 1 개월 후의 H₂S, CH₃SH 가스농도 및 CH₃SH/H₂S 농도비율의 변화를 측정한 결과, 치석제거술 2 주 후와 치주치료 1 개월 후의 H₂S 가스농도는 전반적으로 감소하는 경향을 보였고 CH₃SH 농도는 치석제거술 2 주 후에서 약간 증가하다가 치주치료 1 개월 후에서 감소 하였으나 모두 통계적으로 유의성 있는 차이는 없었다. CH₃SH/H₂S 농도비율은 치주치료 1 개월 후에서 초전 시에 비하여 통계적으로 유의성 있게 감소하였다. (p<0.05) (Table 3)
Table 3. VSC concentration changes at the periodontal treatment
(Mean±SD, n=20)

<table>
<thead>
<tr>
<th></th>
<th>H₂S(ppb)</th>
<th>CH₃SH(ppb)</th>
<th>CH₃SH/H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>194.7±160.1</td>
<td>54.0±51.5</td>
<td>0.271±0.185</td>
</tr>
<tr>
<td>2weeks after scaling</td>
<td>168.4±307.8</td>
<td>77.5±182.7</td>
<td>0.171±0.225</td>
</tr>
<tr>
<td>1month after perio. treatment</td>
<td>105.4±111.8</td>
<td>17.2±22.4</td>
<td>0.122±0.163 *</td>
</tr>
</tbody>
</table>

*: statistically significantly different from initial exam

3. 임상지수와 CH₃SH/H₂S 비의 관계

(1) 치주낭 탐침 깊이

실험군 및 대조군에서 초진시 최대 치주낭 탐침 깊이에 따른 CH₃SH/H₂S 농도 비율을 관찰한 결과 치주낭 탐침 깊이가 증가함에 따라 CH₃SH/H₂S 농도 비율도 증가하는 양상을 보였다. (Fig.2.)

![Fig. 2. CH₃SH/H₂S ratio and probing pocket depth](image-url)
(2) 탐침시 출혈

실험군 및 대조군에서 초진 시 탐침시 출혈 정도에 따른 CH$_3$SH/H$_2$S 비율을 관찰한 결과 탐침시 출혈이 증가함에 따라 CH$_3$SH/H$_2$S 비율이 증가하는 양상을 보였다. (Fig.3.)

![Fig. 3. CH$_3$SH/H$_2$S ratio and bleeding on probing (BOP)](image_url)
Ⅳ. 고찰

구취는 사회적,심리적으로 많은 영향을 가르며 구취로 인하여 치과에 내원하는 환자는 점차로 증가하고 있다.

구취의 대부분은 구강내 원인에 의하여 유발되는데 주된 원인인 Volatile Sulfur Compounds(VSC)는 혀나 치주낭에서 세균이 양을 포 함하는 아미노산을 분해함으로써 발생하게 된다.(Rosenberg, 1996)
이러한 VSC는 낮은 농도에도 조직에 독성을 떠는 것으로 밝혀졌는데, 이로서 VSC가 구취의 주된 원인일 뿐 아니라 치은염이나 치주염의 원인요소로도 작용할 수 있을 것으로 보인다. (Perry 등, 1999)

VSC 중에서 특히 치주염과 관련된 가스는 methyl mercaptan(CH\(_3\)SH)이다. (Coil 등, 1992) 이 가스는 상피조직의 투과성을 증가시켜서 (Ng 등, 1984) bacterial invasion작용을 도와 bacterial antigens (lipopolysaccharide-LPS)가 염증반응을 가속화 시키도록 하며(Ratcliff 등, 1999). IL-1이나 LPS와 함께 섬유모세포가 prostaglandin E\(_2\)와 교원질 분해효소를 분비하도록 함으로써 염증과 조직반응을 야기한다. (Ratkay 등, 1995) 또한 교원질 대사에도 영향을 가지는 단백질의 합성을 저하시키고 분해를 돕는 역할을 하며 (Johnson 등, 1996). 골의 대사에도 영향을 미쳐서 골의 주된 세포의 기질인 제1형 교원질의 변성에 작용하여 골의 손실을 가속화시킨다. (Coil 등, 1992)

VSC의 분석은 기체 색층분광법 (gas chromatographic technic)을 이용한 Oral Chloma® (ABILIT Cor. Japan)을 사용하여 측정하였다. 이 기계를 사용하여 구강 내 가스 중 hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), dimethyl sulfide (CH₃SSCH₃) 를 ppb 단위로 측정할 수 있었다.

측정된 가스 중에서 H₂S 와 CH₃SH 각각의 가스 농도 및 CH₃SH/H₂S 비율이 건강한 치주 조직을 가진 군(대조군)과 치주질환 군(실험군) 사이에 어떠한 차이가 있는지 알아보고, 치주질환 군에서 스케일링 및 치근활택술 또는 치온관막 수술 후 어떠한 변화를 보이는지 살펴보았다. 실험군, 대조군의 비교에 있어서는 모두 통계적 유의차를 보이며 실험군에서 높은 수치를 보였다 (p<0.05) 이것은 치주질환이 심할수록 유의성 있게 VSC가 증가한다는 Morita 등 (2001)의 연구 결과와 일치하였다.

실험군에서 스케일링 및 치주치료 완료 후 측정한 가스농도 수치는 대체로 감소하는 경향을 보였으나 CH₃SH 농도는 오히려 스케일링 후
약간 증가하는 경향을 보였다. 하지만 통계적 유의차는 보이지 않았다. CH₃SH/ H₂S 비율은 조작과 치주치료 1달 후에서만 유의성 있는 감소를 볼 수 있었다. (p<0.05) CH₃SH 가스 농도의 경우 스케일링 이후의 측정에서 20명 중 절반 가량이 0의 수치를 보였음에도 불구하고 이와 같은 결과가 나운 것은 4명의 환자에서 급작스런 가스 농도의 증가 있 었기 때문으로 보인다. 이것은 아마도 치주질환 외의 인자-인자, 구강 건조, 음식물 섭취 등-에 의한 것으로 보인다. Kaizu(1976)는 치주질환 자에 있어서 설계가 구취에 미치는 영향은 크지 않다고 하였으나 Yaegaki (1992)는 치주질환자에 있어서도 설계의 제거는 CH₃SH의 농 도 감소에 큰 영향을 미친다고 보고하였다. 아마도 이러한 치주질환 외 의 구취유발 요소들을 통제할 수 있다면 모두 유의성 있는 감소를 보 일 것으로 예상된다. 이(2004)는 치주질환자에 계 치주치료를 시행한 결과 전체 VSC의 농도가 감소됨을 보고하였다.

실험군 및 대조군에서 조건시 최대 치주낭 탐침깊이 및 탐침시 출혈 정도를 측정하고 이때의 가스농도를 통하여 CH₃SH/H₂S 와의 관계를 살펴 보았다. 대체로 최대 치주낭 탐침깊이가 증가함에 따라서 CH₃SH/H₂S 비율이 점차로 증가하는 성향을 보였다.

- 12 -
이상의 결과로 치주질환의 심도가 깊음수록 구강내 CH\textsubscript{3}SH/H\textsubscript{2}S 가스농도 비율이 점차 증가하는 것으로 볼 수 있었다.

치주질환의 심도와 구강내의 VSC, 특히 methyl mercaptan(CH\textsubscript{3}SH)가스는 상관관계가 있는 것으로 보인다. 때문에 치주염 환자에서 치주치료를 시행할 경우 구취를 감소시킬 수 있을 것으로 예상된다. 하지만 치주질환 이외에도 설태나 음식물 잔사와 같은 VSC를 발생하는 다른 요인이 있으므로 구취의 감소를 위하여는 치주질환의 치료와 더불어설태 제거나 구강건조증 치료와 같은 다각도의 접근이 필요할 것으로 사료된다.
V. 결론

국민건강보험공단 일산병원 치주과에 내원한 치주질환자 20명 및 건강한 치주조직군 20명에 대하여 Oral Chloma®(ABILIT Cor. Japan)를 이용하여 구강내 H₂S, CH₃SH 가스의 농도 및 최대 치주낭 탐침깊이와 탐침시 출혈을 측정한 결과는 다음과 같다.

1. 실험군에서 대조군보다 구강내 H₂S, CH₃SH 농도 및 CH₃SH/H₂S 비율이 통계적으로 유의성 있게 증가되었다. (p<0.05)

2. 실험군에서 구강내 H₂S, CH₃SH 농도 및 CH₃SH/H₂S 비율이 스케일링 2주 후 및 치주치료 1개월 후 점차 감소하는 경향을 보이며, 치주치료 1개월 후 CH₃SH/H₂S 비율은 초기시에 비해 통계적으로 유의차를 보였다. (p<0.05)

3. 최고 치주낭 탐침깊이 및 탐침시 출혈이 증가함에 따라서 구강내 CH₃SH/H₂S 비율은 점차 증가하는 경향을 보였다.

따라서 치주질환의 구취를 유발시키는 한 인자가 될 수 있으며, 치주치료가 구취를 감소시킬 수 있을 것으로 사료된다.
참고문헌

Persson S. Volatile sulfur compounds in periodontal pockets (Dissertation). Umea, Sweden: Umea University, 64pp, 1993

Zhu W, Sha Y. : The relationship between oral malodor, VSCs levels in the mouth air with periodontitis and tongue coating. Zhonghua Kou Qiang Yi Xue Za Zhi. 2002 Jul;37(4):300–303,
Abstract

The change of Oral Volatile Sulfur Compounds (VSC) concentration after periodontal treatment

Sung Hyun Kim

Department of Dentistry

The Graduate School, Yonsei University

(Directed by professor Seong Ho Choi)

Oral malodor may cause a significant social or psychological handicap to those suffering from it. Oral malodor has been correlated with the concentration of Volatile Sulfur Compounds (VSC) produced in the oral cavity. Specific bacteria identified in the production of VSC have been reported and many of these bacteria are commonly suspected periodontal pathogens. The aim of this study was to estimate VSC’s variation after periodontal treatment.

Twenty subjects with probing depth (PD) ≥5mm (experimental group) and 20 subjects with PD <5mm (control group) participated. VSC concentration measurement was made with gas chromatography. VSC concentration was measured at pre-treatment, 2 weeks after scaling and 1 month after periodontal treatment (root
planning and flap operation). Maximum probing depth and bleeding on probing (BOP) were also examined at pretreatment and 1 month after periodontal treatment.

The conclusion were as follow:

1. In the experimental group VSC concentration and \(\text{CH}_3\text{SH}/\text{H}_2\text{S} \) ratio were higher than control group. \((p<0.05)\)

2. Both figures of VSC concentration and \(\text{CH}_3\text{SH}/\text{H}_2\text{S} \) ratio showed decrease after the periodontal treatment. But only \(\text{CH}_3\text{SH}/\text{H}_2\text{S} \) ratio after 1 month periodontal treatment was statistically significantly different from pre-treatment. \((p<0.05)\)

3. \(\text{CH}_3\text{SH}/\text{H}_2\text{S} \) ratio tended to be on increase according to maximum probing depth and bleeding on probing.

Periodontal disease could be a factor that caused oral malodor and oral malodor could be decreased after periodontal treatment.

Key words: oral malodor, Volatile Sulfur Compounds, gas chromatography, periodontal treatment