한국인 손 발레근육의 형태 및 신경분포 변이

연세대학교 대학원
의과학과
허미선
한국인 손 별레근육의 형태 및 신경분포 변이

지도교수 정 인 혁

이 논문을 석사 학위논문으로 제출함

2005년 12월 일

연세대학교 대학원
의과학과
허 미 선
허미선의 석사 학위논문을 인준함

심사위원____________________인

심사위원____________________인

심사위원____________________인

심사위원____________________인

연세대학교 대학원

2005년 12월 일
감사의 글

이 논문이 나오기까지 학자가 지녀야 할 진정한 자세를 몸소 보여 주시고 늘 제자에 대한 따뜻한 배려로 감동을 주신 정인혁 교수님께 진심으로 감사의 말씀을 드립니다.

또한 언제나 온화하신 미소로 꼼꼼하게 논문 지도를 해 주신 성균관대학교 의과대학 오창석 교수님, 그리고 바쁜 임상에 계시면서도 충고와 격려를 아끼지 않으신 이진우 교수님께 감사를 드립니다.

대학원 생활동안 많은 관심을 보여 주시고 어려운 일이 있을 때 조언을 아끼지 않으신 이해연 부교수님께도 감사드립니다. 그리고 대학원이라는 한 울타리 안에서 저를 많이 도와 주셨던 정원석, 김영진, 원형선, 김태종 선생님께 고마운 마음 전합니다.

늘 밝은 모습으로 그림 작업을 도와주신 장동수 선생님, 바쁘시지만 항상 좋은 표본 준비를 위해 애써주신 최승룡, 김대원, 김준호 선생님께도 감사드립니다.

어느 때나 한결같이 저를 믿어 주시고 힘이 되어 주시는 부모님께 깊은 감사를 드리며, 군 복무중인 동생 혼에 게도 사랑과 고마움을 전합니다.

저자 쓴
차 례

그림 차례 .. iii

표 차례 .. iv

국문요약 .. 1

I. 서 론 ... 3

II. 재료 및 방법 .. 5
 1. 실험재료 ... 5
 2. 해부방법 ... 5
 3. 형태분석 및 계측 ... 6

III. 결 과 ... 7
 1. 벌레근육의 형태 .. 7
 2. 손목골에서 벌레근육 이는곳까지의 거리 .. 11
 3. 벌레근육의 신경분포 유형 .. 14
 4. 벌레근육의 이중신경분포 ... 16
 5. 자신경의 벌레근육분포 .. 19
 6. 이중신경분포를 받는 벌레근육 속의 신경연결 23
IV. 고찰 ... 24

V. 결론 ... 31

참고문헌 ... 33

영문요약 ... 38
그림 차례

그림 1. 한국 성인 70 손에서 빌레근육의 형태변이8

그림 2. 한국 성인 50 손에서 빌레근육의 신경분포변이 …15

그림 3. 손에서 자신경 얕은가지와 정중신경 사이
교통가지의 신경다발분리 이전과 이후17

그림 4. 손에서 자신경 얕은가지와 정중신경 사이
교통가지를 신경분리결과, 자신경 다발이
넷째 손가락 빌레근에 분포하는 경우와
모두 고유바닥쪽손가락신경이 되는 경우18

그림 5. 자신경 깊은가지의 빌레근육 분포20

그림 6. 자신경 얕은가지의 빌레근육 분포21

그림 7. 빌레근육 속에서 자신경 얕은가지와
자신경 깊은가지의 연결22

그림 8. 빌레근육의 이중신경분포23
표 차례

표 1. 한국 성인 52 손에서 벌레근육 힘살이 손목관 속으로 들어간 길이 ... 12

표 2. 한국 성인 52 손에서 손목관 속에 관찰된 벌레근육 힘살 .. 13

표 3. 벌레근육의 모양 변이와 다른 연구결과와 비교 ... 26

표 4. 벌레근육이 두 가닥으로 나눠져 닿는 빈도와 다른 연구결과와 비교 ... 27
국문요약

한국인 손 벌레근육의 형태 및 신경분포 변이

벌레근육의 신경분포는 둘째와 셋째 손가락 벌레근에 정중신경이, 넷째와 다섯째 손가락 벌레근에는 자신신경이 분포하는 것으로 알려져 있다. 손에서 자신신경 양행계에서 정중신경으로의 교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락 벌레근에 혼자서 분포한다. 넷째 손가락 벌레근에 분포하는 신경가지의 기원은 신경다발의 분리로 확인할 수 있다. 이 연구의 목적은 벌레근육의 다양한 형태변이를 관찰하고 벌레근육에 분포하는 신경다발을 분리하여 벌레근육의 정확한 신경분포를 밝히기 위함이다.

한국 성인 시신 45구의 손 70쪽을 사용하였다. 신경다발의 분리가 필요할 경우는 벌레근육과 분포신경을 함께 벌어내 0.1M Guanidine hydrochloride 용액에 일주일 담근 후 초음파세척기로 한 시간 동안 처리하여 결합조직을 부드럽게 하였다. 신경다발 분리는 수술현미경 하에서 하였다.

벌레근육은 근육 모양에 따라 크게 3가지로 구분하고 벌레근육이 닿는 부위에 따라 10가지 유형으로 분류하였다. 벌레근육의 근육 모양은 크게 둘째와 셋째 손가락 벌레근이 반깃근육이고 넷째와 다섯째 손가락 벌레근이 깃근육인 경우, 둘째 손가락 벌레근은 반깃근육이고 셋째, 넷째, 다섯째 손가락 벌레근은 깃근육인 경우, 벌레근 4개 중 벌레근이 하나라도 없는 경우로 구분하였다. 둘째와 셋째 손가락 벌레근이 반깃근육이고 넷째와 다섯째 손가락 벌레근이 깃근육인 경우, 벌레근 4개가 모두 해당 손가락의 노쪽에 닿는 유형은 40.0%, 넷째 손가락 벌레근, 다섯째 손가락 벌레근은 두 가지로 나뉘어 닿는 유형은 각각 12.9%, 14.3%였다. 넷째와 다섯째 손가락 벌레근이 모두 두 가지로 나뉘어 닿는 유형은 2.9%였다. 둘째 손가락 벌레근은 반깃근육이고 셋째, 넷째, 다섯째 손가락 벌레근은 깃근육인 경우, 벌레근 4개가 모두 해당 손가락의 노쪽에 닿는 유형은 14.3%, 넷째 손가락 벌레근, 다섯째 손가락 벌레근이 두 가지로 나뉘어 닿는 유
형은 각각 5.7%, 4.3%였다. 벌레근 4개 중 벌레근이 하나라도 없는 경우는 2.9%었다. 급협근지지병 아레모서리에서 벌레근 이는곳까지의 평균거리는 둘째, 셋째, 넷째, 다섯째 손가락 벌레근의 경우 각각 +1.8 mm, -1.4 mm, +5.1 mm, +11.2 mm였다. 벌레근육의 신경분포는 정중신경과 자신신경의 분포 또는 이중신경분포에 따라 7가지 유형으로 분류하였다. 둘째와 셋째 손가락 벌레근에 정중신경이, 넷째와 다섯째 손가락 벌레근에 자신신경이 분포하는 유형은 26.0%에서만 나타났다. 일반적인 유형은 둘째와 셋째 손가락 벌레근에 정중신경이 분포하고, 넷째 손가락 벌레근에 정중신경과 자신신경의 이중신경분포를, 다섯째 손가락 벌레근에 자신신경이 분포하는 경우로 60.0%였다. 벌레근육의 이중신경분포는 둘째, 셋째, 넷째 손가락 벌레근에서 나타났다. 벌레근육의 이중신경분포 빈도는 68.0%였으며, 넷째 손가락 벌레근의 이중신경분포 빈도는 64.0%였다. 손에서 자신신경 얕은가지에서 정중신경으로의 교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락 벌레근 앞면에 분포하는 경우는 19쪽(38.0%)이었다. 이 교통가지의 신경다발을 분리한 결과, 교통가지에서 유래한 자신신 경 다발이 정중신경과 함께 넷째 손가락 벌레근 앞면에 분포하는 경우는 9쪽(18.0%)이었고, 자신신경 다발이 모두 고유바닥쪽손가락신경이 되고 정중신경이 넷째 손가락 벌레근 앞면에 분포하는 경우는 10쪽(20.0%)이었다. 자신신경 얕은가지가 넷째 손가락 벌레근 앞면에 분포하는 경우는 모두 자신신경 깊은가지가 분포하였다. 벌레근육의 신경분포 빈도는 주로 깊은가지에서 일어났다. 자신신경 얕은가지와 자신신경 깊은가지가 동시에 벌레근육에 분포하는 경우는 다섯째 손가락 벌레근에 5쪽(10.0%), 넷째 손가락 벌레근에 10쪽(20.0%)이었다. 전기진단에서 셋째 손가락 벌레근은 손목골절후군의 예후를 판단하는 데 중요한 신경 다발이므로, 이는 둘째와 넷째 손가락 벌레근은 근육피판수술에 사용될 수 있다. 이에 벌레근육의 신경분포 변이에 대한 자료는 전기진단과 근육피판수술에 도움이 될 수 있는 것으로 생각된다.

핵심되는 말 : 벌레근육, 정중신경, 자신신경, 이중신경분포, 손목골절후군, 변이
한국인 손 볼레근육의 형태 및 신경분포 변이

< 지도교수 정인혁 >

연세대학교 대학원 의과학과

허미선

I. 서론

손에 볼레근육은 4개가 있으며, 깊은손가락굽힘근 형줄에서 일어나 해당 손가락 골근간 형줄의 노뼈쪽으로 닿는다. 둘째와 셋째 손가락 볼레근은 깊은손가락굽힘근의 둘째와 셋째 손가락 형줄에서 일어나고, 넷째와 다섯째 손가락 볼레근은 넷째와 다섯째 손가락 형줄의 노뼈쪽에서 일어난다고 알려져 있다로 알려져 있으나 여러 문헌에서는 볼레근육의 형태변이가 있는지, 닿는지 그리고 근육 모양에 따라 다양한 유형으로 보고하였다. 그리고 볼레근육이 비정상적으로 깊은손가락굽힘근, 아래 팔 또는 간염지굽힘근 등 형줄에서 일어난 사례보고도 있다. 볼레근육은 손가락을 굽힐 때 손목굴 속으로 들어갈 수 있고 볼레근육이 손목굴 속에서 일어날 수 있다. 볼레근육의 힘살 또는 형줄에 길고 두꺼운 경우는 손목굴증후군을 일으킬 수 있다. 볼레근육의 신경분포는 둘째와 셋째 손가락 볼레근에는 정중신경이, 넷째와 다섯째 손가락 볼레근에는 자신경이 분포하는 것으로 알려져 있다. 볼레근육의 신경분포에 관한 문헌에는 특히 넷째 손가락 볼레근에 이중신경분포로 정중신경이 분포하는 민도가 높았으며 둘째와 셋째 손가락 볼레근에도 자신경 깊은가지가 분포하
는 경우가 보고되어 있었다. 손에서 자신경 왼손가지에서 정중신경으로의
교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락 볼래근에 분포하
는 경우가 흔하게 관찰되었다. Martin-Gruber 연구에서는 아래팔에서 정중
신경과 자신경 사이의 연결 가지를 신경분리한 결과, 연결고리에서 나온 가
지가 근육에 분포를 하거나 자신경으로 연결된 가지가 정중신경과 연결되
지 않고 깊은손가락금갑근에 분포하는 경우가 있었다. 이는 신경다발을
분리함으로써 확인될 수 있었다. 이와 마찬가지로 손에서 자신경 왼손가지
와 정중신경 사이 교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락
볼래근에 분포하는 경우 또한 정확한 신경분포를 확인하기 위해 신경다발
분리가 필요하였다. 이 연구의 목적은 볼레근육의 형태변이를 관찰하고 볼
레근육의 정확한 신경분포를 밝히기 위함이다.
II. 재료 및 방법

1. 실험재료

재료는 한국 성인 시신 45구의 손 70쪽을 사용하였다. 별래근육의 형태는 70쪽에서, 굽힘근저지며 아래모서리에서 각 별래근 이는곳까지의 거리계측은 52쪽에서, 그리고 별래근육의 신경분포는 50쪽에서 관찰하였다. 조사에 사용된 손은 오른쪽이 33쪽(47.1%), 왼쪽이 37쪽(52.9%)이었다.

2. 해부방법

손바닥날힘줄과 손바닥에 있는 동맥, 앞손가락굽힘근의 힘줄을 제거하여 별래근육의 형태와 별래근육 앞면에 분포하는 신경을 관찰하였다. 손목 윗부분에서 깊은손가락굽힘근의 힘줄을 잘라 아래쪽으로 젖혀 벌레근육 뒷면에 분포하는 신경을 관찰하였다. 손에서 자신경에서 정중신경으로의 교통가지 이후에 정중신경에서 나오는 가지가 넷째 손가락 별래근에 분포하는 경우는 별래근육과 분포신경을 함께 써어내 0.1M Guanidine hydrochloride 용액에 일주일 담근 후 초음파세척기로 한 시간 동안 처리하여 결합조직을 부드럽게 하였다. 신경 다발의 분리는 수술현미경 하에서 하였다.
3. 형태분석 및 측정

가. 벌레근육의 형태

벌레근육의 형태는 각 벌레근의 근육 모양과 닫는 부위에 따라 분류하였다. 4개의 벌레근을 노족부터 각각 둘째, 셋째, 넷째, 다섯째 손가락 벌레근으로 기술하였고 그림과 표에는 로마자로 해당 손가락의 벌레근을 표시하였다.

나. 손목골에서 벌레근육 이는곳까지 거리 측정

군함근지지마 아래모서리를 확인한 후 그 높이를 수채색연필로 표시하고 군함근지지마를 얻 후, 표시한 곳에서 각 벌레근의 이는곳까지의 거리를 자로 측정하였다.

다. 벌레근육 험살 속의 신경연결

벌레근육의 앞면과 뒷면으로 두 신경이 각각 분포할 때에는 험살 속에서 두 신경이 연결되는지 관찰하였다.
III. 결과

1. 벌레근육의 형태

가. 벌레근육의 형태 유형

벌레근육은 근육 모양에 따라 크게 3가지로 구분하고 벌레근육이 닿는 부위에 따라 10가지 유형으로 분류하였다 (그림 1). 벌레근육의 근육 모양은 둘째와 셋째 손가락 벌레근이 반깃근육이고 넷째와 다섯째 손가락 벌레근이 깃근육인 A 유형과 둘째 손가락 벌레근은 반깃근육이고 넷째, 넷째, 다섯째 손가락 벌레근은 깃근육인 B 유형, 벌레근 4개 중 벌레근이 하나라도 없는 C 유형으로 구분하였다. 둘째와 셋째 손가락 벌레근이 반깃근육이고 넷째와 다섯째 손가락 벌레근이 깃근육인 A 유형에서는, 벌레근 4개가 모두 해당 손가락의 노쪽에 닿는 A-1 유형이 40.0%, 넷째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 A-2 유형이 12.9%, 다섯째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 A-3 유형이 14.3%, 넷째와 다섯째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 A-4 유형이 2.9%, 다섯째 손가락 벌레근이 넷째 손가락의 자쪽에 닿는 A-5 유형이 2.9%였다. 둘째 손가락 벌레근은 반깃근육이고 셋째, 넷째, 다섯째 손가락 벌레근은 깃근육인 B 유형에서는, 벌레근 4개가 모두 해당 손가락의 노쪽에 닿는 B-1 유형이 14.3%, 넷째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 B-2 유형이 5.7%, 다섯째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 B-3 유형이 4.3%였다. 벌레근 4개 중 벌레근이 하나라도 없는 C 유형에서는, 셋째와 넷째 손가락 벌레근이 없는 C-1 유형과 넷째 손가락 벌레근이 없는 C-2 유형이 1.4%(1 예)씩 있었다.
나. 벌레근육의 근육 모양

벌레근육의 근육 모양은 반깃근육인 경우와 깃근육인 경우가 있었다. 둘째 손가락 벌레근의 근육 모양은 모두 반깃근육이었다. 70% 중에서 셋째 손가락 벌레근이 반깃근육인 경우는 74.3%, 깃근육인 경우는 24.3%었고 1.4%에서 존재하지 않았다. 넷째 손가락 벌레근이 깃근육인 경우는 97.1%였고 2.9%에서 존재하지 않았다. 다섯째 손가락 벌레근은 모두 깃근육이었다.

다. 벌레근육의 닿는곳과 형태

둘째와 셋째 손가락 벌레근은 모두 해당 손가락의 노쪽 폄근널힘줄에 한 가닥으로 닿았다. 넷째와 다섯째 손가락 벌레근 중에는 벌레근 힘살이 두 가닥으로 나뉘어져 양쪽 손가락에 닿는 형태가 있었다. 넷째 손가락 벌레근이 두 가닥으로 나뉘어지는 경우는 21.4%, 다섯째 손가락 벌레근이 두 가닥으로 나뉘어지는 경우는 22.8%였다.

넷째 손가락 벌레근이 두 가닥으로 나뉘어진 21.4% 중에서 힘살이 각각 셋째 손가락의 자쪽 폄근널힘줄과 넷째 손가락의 노쪽 폄근널힘줄에 닿는 경우는 15.7%였고 나머지 5.7%는 힘살이 각각 넷째 손가락의 손허리손가락관절 부위와 넷째 손가락의 노쪽 폄근널힘줄에 닿았다. 이때 손허리손가락관절 부위에 닿은 힘살은 폄근널힘줄에 닿는 힘살에 비하여 두께가 얇고 길이가 짧았다.

다섯째 손가락 벌레근이 두 가닥으로 나뉘어진 22.8% 중에서 힘살이 각각 넷째 손가락의 자쪽 폄근널힘줄과 다섯째 손가락의 노쪽 폄근널힘줄에 닿는 경우는 21.4%였고 나머지 1.4%(1 예)에서는 넷째 손가락의 자쪽 폄근널힘줄과 다섯째 손가락의 손허리손가락관절 부분에 닿았다.
라. 빌레근육의 이는곳과 형태

둘째 손가락 빌레근은 모두 둘째 손가락으로 가는 깊은손가락굽힘근 힘줄(FDP2)의 앞면과 옆면에서 일어났다. 둘째 손가락 빌레근 대부분이 힘줄 앞면의 노족면과 옆면에서 일어났으며 일부는 힘줄 앞면 전체와 옆면에서 일어났다. 셋째 손가락 빌레근은 대개 셋째 손가락으로 가는 깊은손가락굽힘근 힘줄(FDP3)의 앞면과 옆면에서 일어났으며 일부는 FDP3의 옆면에서만 일어났다. 셋째 손가락 빌레근이 깃근육인 경우에는 대부분 FDP2의 앞면과 FDP3의 앞면과 옆면에서 일어났고 FDP2와 FDP3 사이의 힘줄집에서도 일어나는 경우가 있었다. 넷째 손가락 빌레근은 대개 FDP3과 FDP4의 앞면과 FDP3과 FDP4 사이의 힘줄집에서 일어났고 일부는 FDP3과 FDP4의 앞면에서만 일어나 빌레근이 시옷자 모양으로 일어났다. 다섯째 손가락 빌레근은 대부분 FDP4의 앞면과 FDP5의 앞면, 그리고 FDP3과 FDP3 사이의 힘줄집에서 일어났다. 일부는 빌레근이 FDP3과 FDP5의 힘줄에서만 일어나 힘살이 시옷자 모양으로 일어났다.
2. 손목굴에서 별래근육 이는곳까지의 거리

굴힘근지지띠 아래모서리에서 멀어지는 별래근 합살의 길이를 ‘+’로 표시하고 손목굴 속으로 들어오는 별래근 협살의 길이를 ‘-’로 표시하였다. 굴힘근지지띠 아래모서리에서 둘째, 셋째, 넷째, 다섯째 손가락 별래근이 이는곳까지의 평균거리는 각각 +1.8 mm(범위 -14~+23 mm), -1.4 mm(범위 -26~+21 mm), +5.1 mm(범위 -22~+23 mm), +11.2 mm(범위 -8~+24 mm) 였다.

별래근이 손목굴 속에서 일어난 경우는 4개의 별래근 모두에서 관찰되었다(표 1). 52 손에서 둘째 손가락 별래근이 손목굴 속에서 일어난 경우는 34.6%였고, 셋째 손가락 별래근의 경우는 38.5%, 넷째 손가락 별래근의 경우는 11.5%, 다섯째 손가락 별래근의 경우는 1.9%(1예)였다.

별래근 4개 중 하나라도 손목굴 속에서 관찰되는 경우는 52 손에서 42.3%였었다(표 2). 둘째 손가락 별래근만 손목굴 속에서 일어나는 경우는 3.8%(2예), 둘째와 셋째 손가락 별래근이 손목굴 속에서 일어나는 경우는 21.2%, 둘째, 셋째, 넷째 손가락 별래근이 손목굴 속에서 일어나는 경우는 7.7%, 4개의 별래근이 모두 손목굴 속에서 일어나는 경우는 1.9%(1예)였 다. 셋째 손가락 별래근만 손목굴 속에서 일어나는 경우는 5.8%, 셋째와 넷째 손가락 별래근이 손목굴 속에서 일어나는 경우는 1.9%(1예)였다.
표 1. 한국 성인 52 손에서 별레근육 힘살이 손목골 속으로 들어간 길이

<table>
<thead>
<tr>
<th>별레근육</th>
<th>갯수</th>
<th>백도(%)</th>
<th>길이</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-5 mm</td>
</tr>
<tr>
<td>II</td>
<td>18</td>
<td>34.6</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>20</td>
<td>38.5</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>6</td>
<td>11.5</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>1.9</td>
<td>0</td>
</tr>
</tbody>
</table>

로마자는 해당 손가락의 별레근육 나타냄.
표 2. 한국 성인 52 손에서 손목관 속에 관찰된 벌레근육 분류

<table>
<thead>
<tr>
<th>벌레근육</th>
<th>갯수</th>
<th>비도(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>II + III</td>
<td>11</td>
<td>21.2</td>
</tr>
<tr>
<td>II + III + IV</td>
<td>4</td>
<td>7.7</td>
</tr>
<tr>
<td>II + III + IV + V</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>5.8</td>
</tr>
<tr>
<td>III + IV</td>
<td>1</td>
<td>1.9</td>
</tr>
</tbody>
</table>

로마자로는 해당 손가락의 벌레근육을 나타냅.
3. 벌레근육의 신경분포 유형

벌레근육의 신경분포는 정중신경과 자신경의 분포 또는 이중신경분포에 따라 7가지 유형으로 분류하였다(그림 2). 둘째와 셋째 손가락 벌레근에 정중신경이 분포하고 넷째와 다섯째 손가락 벌레근에 자신경이 분포하는 A 유형은 26.0%였다. B 유형은 둘째와 셋째 손가락 벌레근에 정중신경이 분포하고, 넷째 손가락 벌레근에 정중신경과 자신경의 이중신경분포를, 다섯째 손가락 벌레근에는 자신경이 분포하는 경우로 60.0%였다. C 유형은 6.0%로 둘째, 셋째, 넷째 손가락 벌레근에 정중신경이 분포하고 다섯째 손가락 벌레근에 자신경이 분포하였다. 그 외에 둘째 손가락 벌레근에 정중신경이, 셋째 손가락 벌레근에 이중신경이, 넷째와 다섯째 손가락 벌레근에 자신경이 분포하는 D 유형, 둘째 손가락 벌레근에 이중신경이, 넷째와 넷째 손가락 벌레근에 이중신경이, 다섯째 손가락 벌레근에 자신경이 분포하는 E 유형, 둘째 손가락 벌레근에 정중신경이, 넷째와 넷째 손가락 벌레근에 이중신경이, 다섯째 손가락 벌레근에 자신경이 분포하는 F 유형이 각각 2.0%(1예)씩 있었다.
4. 벌레근육의 이중신경분포

벌레근육의 이중신경분포는 둘째, 셋째 그리고 넷째 손가락 벌레근에서 나타났다. 벌레근육의 이중신경분포는 50쪽 중 68.0%에서 관찰되었다. 그 중 넷째 손가락 벌레근의 이중신경분포는 64.0%였다.

벌레근육의 이중신경분포는 분포하는 신경에 따라 3가지 경우가 있었 다. 정중신경과 자신경 깊은가지가 분포하는 경우는 52.0%, 정중신경과 자신경 얕은가지, 자신경 깊은가지가 분포하는 경우는 18.0%, 정중신경과 자신경 얕은가지가 분포하는 경우는 2.0%(1예)였다. 한쪽 손에서 벌레근 2개가 동시에 이중신경분포를 받는 경우는 4.0%(2예)였다.

손에서 자신경 얕은가지에서 정중신경으로의 교통가지 이후에 정중신경 에서 나온 가지가 넷째 손가락 벌레근 앞면에 분포하는 경우는 19쪽 (38.0%)이었다. 이 교통가지의 신경다발을 분리한 결과, 교통가지에서 유래 한 자신경 다발이 정중신경과 함께 넷째 손가락 벌레근 앞면에 분포하는 경우는 9쪽(18.0%)이었고(그림 3, 그림 4A), 자신경 다발이 모두 고유바닥 쪽손가락신경이 되고 정중신경이 넷째 손가락 벌레근 앞면에 분포하는 경우는 10쪽(20.0%)이었다(그림 4B). 손에서 자신경 얕은가지에서 정중신경 으로의 교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락 벌레근 앞 면에 분포하는 경우는 모두 자신경 깊은가지가 넷째 손가락 벌레근 뒷면에 분포하였다.
그림 3. 손에서 자신경 양은가지와 정중신경 사이 교통가지의 신경다발분리 이전과 이 후. (A) 자신경 양은가지에서 정중신경으로의 교통가지 이후에 정중신경에서 나온 가지 가 넷째 손가락 발래근에 분포하는 경우 (B) 교통가지의 신경다발을 분리한 결과, 교통가지에서 유래한 자신경 다발이 정중신경과 합쳐진 후 넷째 손가락 발래근에 분포하는 경우 (MN : 정중신경, sUN : 자신경 양은가지, RC : 교통가지, IV : 넷째 손가락 발래근) (➡ : (A) 넷째 손가락 발래근에 분포하는 신경가지를 가리킴 (B) 각각 자신경 양은 가지와 정중신경 가지를 가리킴)
그림 4. 손에서 자신경 양손가지와 정중신경 사이 교통가지를 신경분리결과, 자신경 다발이 넷째 손가락 발래근에 분포하는 경우와 모두 고유바닥폭손가락신경이 되는 경우. (A) 교통가지에서 일어난 자신경 양손가지와 정중신경이 합쳐져서 넷째 손가락 발래근 앞면에 분포하는 경우 (B) 교통가지의 자신경이 모두 고유바닥폭손가락신경이 되고 정중신경 가지가 넷째 손가락 발래근 앞면에 분포하는 경우 (MN : 정중신경, sUN : 자신경 양손가지, IV : 넷째 손가락 발래근) (☞) : (A) 각각 자신경 양손가지와 정중신경 가지를 가리킴, (B) 정중신경 가지를 가리킴)
5. 자신경의 벌레근육 분포

가. 자신경 깊은가지의 벌레근육 분포

벌레근육에 분포하는 자신경은 주로 깊은가지에서 일어났다. 50쪽의 88.0%에서 자신경 깊은가지가 넷째와 다섯째 손가락 벌레근에 분포하였고 (그림 5A), 자신경 깊은가지가 4개의 벌레근 중 다섯째 손가락 벌레근에만 분포하는 경우는 6.0%였다 (그림 5B). 자신경 깊은가지가 둘째, 다섯째 손가락 벌레근에 분포하는 경우도 2.0%(1예)었다 (그림 5C). 그리고 자신경 깊은가지가 넷째와 다섯째 손가락 벌레근 외에 둘째 손가락 벌레근에도 분포하는 경우와 (그림 5D) 셋째 손가락 벌레근에도 분포하는 경우가 (그림 5E) 2.0%(1예)씩 있었다.
그림 5. 자선경 깊은가지의 팔래근육 분포. 자선경 깊은가지가 (A) 넷째, 다섯째 손가락 팔래근육에 분포 (B) 다섯째 손가락 팔래근육에 분포 (C) 넷째, 다섯째 손가락 팔래근육에 분포 (D) 넷째, 다섯째, 다섯째 손가락 팔래근육에 분포 (E) 넷째, 다섯째, 다섯째 손가락 팔래근육에 분포(컴퓨터상에서 신경이 잘 보이도록 하였다) (UN : 자선경, FDP : 깊은손가락플립근합, II : 넷째 손가락 팔래근, III : 넷째 손가락 팔래근, IV : 넷째 손가락 팔래근, V : 다섯째 손가락 팔래근)
나. 자신경 얕은가지의 벌레근육 분포

벌레근육에 분포하는 자신경 얕은가지는 셋째, 넷째 그리고 다섯째 손가락 벌레근의 앞면에 분포하였다. 자신경 얕은가지가 다섯째 손가락 벌레근의 앞면에 분포한 경우는 10.0%였고 (그림 6A), 자신경 얕은가지가 넷째 손가락 벌레근에 교통가지를 통해 분포하는 경우는 18.0%였다. 자신경 얕은가지줄기에서 직접 일어나 교통가치 없이 셋째와 넷째 손가락 벌레근에 분포하는 경우는 2.0%(1예)이었다 (그림 6B).

그림 6. 자신경 얕은가지의 벌레근육 분포. (A) 자신경 얕은가지가 다섯째 손가락 벌레근의 앞면에 분포하는 경우 (B) 자신경 얕은가지줄기에서 직접 일어나 셋째와 넷째 손가락 벌레근 앞면에 분포하는 경우. 자신경 얕은가지는 자신경과 정중신경 사이 교통가치 없이 벌레근에 분포하였다 (컴퓨터 상에서 신경에 짙게 색칠하여 신경이 잘 보이도록 하였다) (MN: 정중신경, sUN: 자신경 얕은가지, II: 둘째 손가락 벌레근, III: 셋째 손가락 벌레근, IV: 넷째 손가락 벌레근, V: 다섯째 손가락 벌레근) (★: 자신경 얕은가지를 가리키는)
다. 자신경 얕은가지와 자신경 깊은가지의 벌레근육 동시 분포

자신경 얕은가지와 깊은가지가 동시에 분포하는 경우는 다섯째 손가락 벌레근에 10.0%, 넷째 손가락 벌레근에 20.0%였다. 자신경 얕은가지가 다섯째 손가락 벌레근 앞면에 분포한 10.0% 모두 벌레근의 힘살 속에서 자신경 얕은가지와 자신경 깊은가지가 연결되어 있었다(그림 7A). 자신경 얕은가지줄기에서 직접 일어나 교통가지 없이 넷째 손가락 벌레근에 분포 한 1 예는 힘살 속에서 자신경 얕은가지와 자신경 깊은가지가 연결되어 있었다(그림 7B). 자신경 얕은가지가 정중신경으로의 교통가지를 통해 넷째 손가락 벌레근에 분포한 18.0%의 대부분은 정중신경과 자신경이 합쳐져서 넷째 손가락 벌레근의 힘살 속에 들어갔고 많은 가지로 나뉘어진 뒤 자신 경 깊은가지와 연결되었다.

그림 7. 벌레근육 속에서 자신경 얕은가지와 자신경 깊은가지의 연결. (A) 다섯째 손가락 벌레근에 분포한 자신경 얕은가지가 힘살 속에서 자신경 깊은가지와 연결되는 경우 (B) 넷째 손가락 벌레근에 분포하는 자신경 얕은가지와 자신경 깊은가지가 힘살 속에서 많은 가지를 나누 후 연결되는 경우 (컴퓨터 상에서 신경에 짙게 색칠하여 신경이 잘 보이도록 하였다) (MN : 정중신경, sUN : 자신경 얕은가지, dUN : 자신경 깊은가지, III : 셋째 손가락 벌레근, IV : 넷째 손가락 벌레근, V : 다섯째 손가락 벌레근) (♣ : 자신 경 얕은가지와 자신경 깊은가지를 가리킴)
6. 이중신경분포를 받는 빗레근육 속의 신경연결

leared근육의 이중신경분포는 정중신경과 자신경 간은가지가 분포하는 경우, 정중신경과 자신경 앞은가지, 자신경 간은가지가 분포하는 경우, 그리고 정중신경과 자신경 앞은가지가 분포하는 경우로 대부분 정중신경과 자신경이 힘살 속에서 연결되었다 (그림 8).

그림 8. 빗레근육의 이중신경분포. (A) 넷째 손가락 빗레근이 정중신경과 자신경 앞은가지의 이중신경분포를 받고 두 신경가지가 힘살 속에서 연결되는 경우 (B) 셋째 손가락 빗레근이 정중신경과 자신경 앞은가지의 이중신경분포를 받고 두 신경가지가 힘살 속에서 연결되는 경우 (컴퓨터 상에서 신경에 짙게 색칠하여 신경이 잘 보이도록 하였다) (MN : 정중신경, sUN : 자신경 앞은가지, dUN : 자신경 간은가지, III : 셋째 손가락 빗레근, IV : 넷째 손가락 빗레근, V : 다섯째 손가락 빗레근) (● : 자신경 앞은가지와 정중신경 가지를 가리킴)
IV. 고찰

벌레근육은 근육 모양과 닫는 부위에 따라 10가지 유형으로 다양하게 분류되었다. 많은 교과서에 기술된 벌레근육 형태는 둘째와 셋째 손가락 벌레근이 반깃근육이고 넷째와 다섯째 손가락 벌레근이 짐근육이면서 모두 각 해당 손가락의 손쪽 팔근밀힘줄에 닫는 유형으로 이 연구에서는 40.0%로 가장 많이 나타났다. 이 유형은 한국인을 대상으로 한 벌레근육 보고에서 각각 44.2%\(^2\), 62.0%\(^3\), 46.0%\(^4\)로 관찰되었고 외국의 벌레근육 보고에서는 41.7%\(^8\) 관찰되었다. 손우열의 연구(1972)에서는 교과서 유형이 62.0%로 문헌 중 높은 빈도로 나타났고 다른 연구의 빈도는 서로 비슷하게 나타났다. 이러한 차이는 손우열의 연구(1972)가 태아를 대상으로 하였으므로 다른 보고와 빈도 차이가 나는 것으로 생각된다. 그리고 문헌마다 조사한 손의 개수가 다른 것도 빈도 차이의 원인으로 생각된다.

이 연구에서 관찰되지 않았지만 이전 보고에서 관찰된 유형은\(^2-8\) 셋째 손가락 벌레근이 두 가닥으로 나눠져 둘째와 넷째 손가락에 닫는 경우와 넷째 손가락 벌레근이 셋째 손가락의 자쪽에 닫는 경우, 다섯째 손가락 벌레근이 없는 경우, 다섯째 손가락 벌레근이 반깃근육인 경우였다. 이 연구에서는 관찰되지 않았지만 다른 보고에서\(^2-8\) 관찰되지 않은 형태는 다섯째 손가락 벌레근이 두 가닥으로 나눠져 각각 다섯째 손가락의 팔근밀힘줄과 손허리손가락관절 부분에 닫는 경우와 셋째와 넷째 손가락 벌레근이 없는 경우였다.

벌레근 4개 중에서 벌레근이 하나라도 없는 경우로는 넷째 손가락 벌레근이 가장 흔하게 없다는 보고와\(^27\) 다섯째 손가락 벌레근이 가장 흔하게 없다는 보고가\(^9\) 있다. 이 연구에서는 한 시신의 한쪽 손에는 셋째와 넷째 손가락 벌레근이 없었고 다른 쪽 손에는 넷째 손가락 벌레근이 없었다. 따라서 넷째 손가락 벌레근이 없는 빈도가 다른 벌레근에 비해 조금 높게 나타났다.
벌레근육의 근육 모양에서 셋째 손가락 벌레근이 깃근육인 경우는 다른 문헌에 비해 높은 빈도로 나타났다(표 3)\(^3\sim\)\(^8\). 그러나 넷째와 다섯째 손가락 벌레근이 반깃근육인 경우에는 낮은 빈도로 나타났다. 셋째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 경우는 이전 보고에서는 0\textasciitilde3.5\%로\(^3\sim\)\(^8\) 드물게 나타났으며 이 연구에서는 나타나지 않았다. 그러나 넷째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 경우의 빈도는 다른 보고에 비해 중간 수치로 나타났고 다섯째 손가락 벌레근이 두 가닥으로 나뉘어져 닿는 경우는 높은 빈도로 나타났다(표 4)\(^3\sim\)\(^8\).
<table>
<thead>
<tr>
<th>연구자</th>
<th>업수</th>
<th>III (첫근육)</th>
<th>IV (반첫근육)</th>
<th>V (반첫근육)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood(1868)*</td>
<td>102</td>
<td>5.1</td>
<td>3.9</td>
<td>0</td>
</tr>
<tr>
<td>Basu와 Hazary(1960)²</td>
<td>72</td>
<td>22.2</td>
<td>0</td>
<td>2.8</td>
</tr>
<tr>
<td>Mehta와 Gardner(1961)³</td>
<td>75</td>
<td>28.0</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>손우열(1972)³</td>
<td>200</td>
<td>8.5</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>이두성(1977)⁴</td>
<td>74</td>
<td>14.9</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>이 연구(2005)</td>
<td>70</td>
<td>24.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* 이두성(1977)의 논문에서 인용함.

로마자는 해당 연구자들의 발레근육을 나타냅니다.
<table>
<thead>
<tr>
<th>연구자</th>
<th>겉수</th>
<th>III 번도(%)</th>
<th>IV 번도(%)</th>
<th>V 번도(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyler과 Markee(1954)*</td>
<td>33</td>
<td>0</td>
<td>15.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Basu와 Hazary(1960)§</td>
<td>72</td>
<td>2.8</td>
<td>20.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Mehta와 Gardner(1961)§</td>
<td>75</td>
<td>1.3</td>
<td>38.7</td>
<td>8.0</td>
</tr>
<tr>
<td>손우열(1972)§</td>
<td>200</td>
<td>3.5</td>
<td>17.0</td>
<td>4.0</td>
</tr>
<tr>
<td>이우상(1977)§</td>
<td>74</td>
<td>1.4</td>
<td>20.3</td>
<td>19.1</td>
</tr>
<tr>
<td>Perkins과 Hast(1993)§</td>
<td>80</td>
<td>0</td>
<td>33.8</td>
<td>5.0</td>
</tr>
<tr>
<td>이 연구 (2006)</td>
<td>70</td>
<td>0</td>
<td>21.4</td>
<td>22.8</td>
</tr>
</tbody>
</table>

* 이우상(1977)의 논문에서 인용함.
로마자는 해당 손가락의 빌레근을 나타냄.
많은 교과서와 그림책은 벌레근육의 이는곳을 깊은손가락굽힘근 힘줄의 옆면에서 일어나는 것으로 표현하고 있다. 이 연구에서는 둘째와 셋째 손가락 벌레근이 대부분 FDP2와 FDP3의 앞면과 옆면에서 일어났고 다섯째 손가락 벌레근은 FDP4와 FDP5의 앞면 외에 FDP4의 앞면에서도 일어났다. 다섯째 손가락 벌레근이 FDP4의 앞면에서도 일어났다고 기술된 문헌은 찾을 수 없었다.

고정하지 않은 시신에서 손가락을 꿇을 때 벌레근육이 대개 손목골 밖에서 일어났지만 근육을 때는 벌레근 4개 모두 손목골 속으로 들어갔고 벌레근육이 커진 경우 손목골이 가장 좁은 갈고리뼈 갈고리 부위까지 들어갈 수 있다고 보고되었다. 이 연구에서는 벌레근육의 약 45%가 손목골의 경계 또는 손목골 속에서 일어났다. 손목골 속으로 벌레근육이 들어오면 손목골의 압력을 올린다. 직업적으로 손목을 굽히고 펴는 운동을 많이 할 때 벌레근육이 커질 수 있고 이는 손목골 속의 압력을 높여 손목골증후군의 원인이 될 수 있다.

벌레근육의 신경분포는 많은 교과서와 일부 연구에서 둘째와 셋째 손가락 벌레 근에 정중신경이 분포하고 넷째와 다섯째 손가락 벌레 근에 자신경 깊은 가지가 분포하는 것으로 기술되어 있다. 이 연구에서는 많은 교과서에 기술된 벌레근육의 신경분포 유형이 26.0%에서 나타났고, 일반적인 유형은 둘째와 셋째 손가락 벌레 근에 정중신경이 분포하고 넷째 손가락 벌레 근에 이중신경분포를, 다섯째 손가락 벌레 근에 자신경이 분포하는 경우로 60.0%에서 관찰되었다.

Mehta와 Gardner의 연구(1961)에서는 둘째, 셋째, 넷째 손가락 벌레 근이 이중신경분포를 받았다고 보고하였다. 이 연구에서도 벌레근육의 이중신경분포가 둘째, 셋째, 넷째 손가락 벌레 근에서 나타났고, 넷째 손가락 벌레 근의 이중신경분포 비도가 벌레근육 이중신경분포의 대부분을 차지하였다.

Sato와 Akita의 문헌(2000)에서는 넷째 손가락 벌레 근의 이중신경분포 비도가 50%까지 나타났다고 기술되어 있었다. Mehta와 Gardner의 연구(1961)에서는 둘째와 셋째 손가락 벌레 근의 이중신경분포 비도가 각각 1.3%였고, 넷째 손가락 벌레 근 양면에 정중신경과 자신경 사이의 연결고리에서 나온 가지가 분포하는 경우가 19.7%, 정중신경이 분포하는 경우는 37.3%였다. 이 연구에서는 둘째, 셋째, 넷째 손가락 벌레 근의 이중신경분포 비도가 각각 4.0%, 4.0%, 64.0%로 높게 나타났다. 손에서 자신경 얇은 가지에서 정중신경으로의 교통가지 이후에 정중신경에서 나온 가지를 신경
분리한 경우의 거의 절반에서 자신경 얕은가지가 넷째 손가락 볼래근에 분포하였다. 손에서 자신경 얕은가지와 정중신경 사이의 교통가지는 대개 감각신경으로 알려져 있다
ef{31}-
ef{32}. 이 교통가지의 신경다발을 분리 후 자신경 얕은가지가 넷째 손가락 볼래근에 분포한 결과는 이 교통가지에 운동신경이 포함될 수 있음을 나타낸다. 자신경 얕은가지가 넷째 손가락 볼래근에 분포하는 경우는 모두 자신경 얕은가지가 분포하였으므로 자신경 얕은가지는 넷째 손가락 볼래근의 이중신경분포 빈도에 영향을 미치지 않았다.

전기진단에서 셋째 손가락 볼래근은 심한 손목굴증후군의 예후판단에 사용되며
ef{33}, 자신경의 공동활성화가 측정되지 않는 경우는 손목굴증후군 검사에 오차의 원인이 될 수 있다
ef{34}. 둘째와 셋째 손가락 볼래근은 손에서 정중신경을 덮기 위한 근육피판수술에 사용된다
ef{35}. 이러한 경우 볼래근육 신경분포 변이에 대한 자료는 전기진단과 근육피판수술에 도움이 될 것으로 기대된다.
V. 결론

벌레근육의 형태 변이와 정확한 신경분포를 밝히기 위해 한국 성인 시신 손 70쪽을 사용하여 벌레근육의 형태 및 신경분포 유형, 벌레근육 이는 곳에서 굽힘근지지며 아래모서리까지의 거리를 조사하였고 다음과 같은 결과를 얻었다.

1. 벌레근육의 형태는 근육 모양에 따라 크게 3가지로 구분하고 있다. 벌레근육의 형태 변이 중에서 셋째 손가락 벌레근이 깃근육인 경우는 24.3%였고 넷째와 다섯째 손가락 벌레근이 두 가닥으로 나뉘어 닿는 경우는 각각 21.4%와 22.8%였다.

2. 굽힘근지지며 아래모서리에서 둘째, 셋째, 넷째, 다섯째 손가락 벌레근이 이는곳까지의 평균거리는 각각 +1.8mm, -1.4mm, +5.1mm, +11.2mm였다. 둘째와 셋째 손가락 벌레근이 손목굴 속에서 혼하게 잠여있고 넷째 다섯째 손가락 벌레근은 평균적으로 굽힘근지지며 아래모서리의 부위에 닿아 있었다.

3. 벌레근육의 신경분포에서 일반적인 유형은 둘째, 셋째 손가락 벌레근에 정중신경이 분포하고, 넷째 손가락 벌레근에 정중신경과 자신경의 이중신경분포를, 다섯째 손가락 벌레근에 자신경이 분포하는 경우로 60.0%에서 관찰되었다. 많은 교과서에 기술된 신경분포 유형은 26.0%에서만 나타났다.

4. 벌레근육의 이중신경분포는 둘째, 셋째, 넷째 손가락 벌레근에서 관찰되었다. 벌레근육의 이중신경분포 빈도는 68.0%였고 셋째 넷째 손가락 벌레근의 이중신경분포 빈도는 64.0%로 벌레근육 이중신경분포의 대부분을 차지하였다.

5. 손에서 자신경 얕은가지와 정중신경 사이 교통가지 이후에 정중신경에서 나온 가지가 넷째 손가락 벌레근에 분포한 경우는 19곳(38.0%)이었다.
다. 이 교통가지의 신경다발을 분리한 결과, 교통가지에서 유래한 자신경 다발이 정중신경과 함께 넷째 손가락 볼레근 앞면에 분포하는 경우는 9쪽 (18.0%)이었고, 교통가지의 자신경 다발이 모두 고유바닥쪽손가락신경이 되고 정중신경이 넷째 손가락 볼레근 앞면에 분포하는 경우는 10쪽(20.0%)이었다. 손에서 자신경 얕은가지와 정중신경 사이의 교통가지는 대개 감각 신경으로 알려져 있으므로 이러한 결과는 이 교통가지에 운동신경이 포함 될 수 있음을 나타낸다. 자신경 얕은가지가 넷째 손가락 볼레근에 분포하는 경우는 모두 자신경 얕은가지가 분포하였으므로 자신경 얕은가지는 넷째 손가락 볼레근의 이중신경분포 빈도에 영향을 미치지 않았다.

6. 이중신경분포를 받는 볼레근육 대부분의 경우 힘살 속에서 정중신경과 자신경 가지가 연결되어 있었다.

7. 볼레근에 자신경 얕은가지와 자신경 깊은가지만 분포하는 경우는 다섯째 손가락 볼레근이 5쪽(10.0%), 넷째 손가락 볼레근이 1쪽(2.0%)이었다. 이 경우 자신경 얕은가지와 자신경 깊은가지가 힘살 속에서 연결되어 있었다.

위 결과는 손에서 자신경 얕은가지와 정중신경 사이 교통가지의 신경다발 분리하여 볼레근육의 정확한 신경분포를 밝혔다. 이 교통가지에서 유래한 자신경 다발이 넷째 손가락 볼레근에 분포한 경우는 감각신경으로 알려진 이 교통가지가 운동신경을 포함할 수 있음을 나타내었다. 둘째와 셋째 손가락 볼레근은 근육피판수술과 손목골중후군의 예후 판단을 위한 전기진단에 사용되므로 볼레근육의 신경분포 변이에 대한 자료는 전기진단과 근육피판수술에 도움이 될 수 있을 것으로 생각된다.
참고 문헌

2. 양남길, 최월봉. 한국인 충양근의 변이에 관하여. 중합의학 1965;10:463-466.

12. 나영무. 손목굴로 지나가는 구조들의 형태변이 및 형태계측. 연세대학교 대학원 의학과 1998

Abstract

Variations of lumbrical muscle and its nerve innervation in hands of Koreans

Mi Sun Hur

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor In Hyuk Chung)

The first and second lumbricals have been described to be innervated by the median nerve, and the third and fourth lumbricals by the ulnar nerve in the anatomy literatures. However, the 3rd lumbrical muscle was frequently observed to be innervated by a branch arising from the median nerve distal to the joining site of the ulnar nerve branch to median nerve. Thus this study was conducted to clarify the nerve innervations of the lumbrical muscle by identifying the origin of the nerve fascicles innervating the muscles. Seventy hands of Korean adult cadavers were used. In the cases that the ulnar nerve was anastomosed with the median nerve before entering the 3rd lumbricals, the muscles and nerves were removed and immersed in guanidine hydrochloride solution (0.1mol/L) for 1 week. Then the nerve fascicles were separated and traced up under a surgical microscope. The lumbrical muscles were classified into 3 types based on their shapes, and also into 10 types based on their insertion sites. In the cases that the first and second lumbricals were unipenniform, and the third and fourth were bipenniform, all lumbricals inserted on the radial side of the corresponding fingers in 40.0%, the third inserted in split on 3rd and 4th digits in 12.9%, and the fourth inserted in split on 4th and 5th
digits in 14.3%. In the cases that the first lumbral was unipenniform, and the second, third, fourth were bipenniform, all lumbricals inserted on the radial side of the corresponding fingers in 14.3%, the third inserted in split on 3rd and 4th digits in 5.7%, the fourth inserted in split on 4th and 5th digits in 4.3%. The lumbricals were not found in 2.9%. The average distances from the distal border of the flexor retinaculum to the origins of the first, second, third, and fourth lumbricals were +1.8 mm, -1.4 mm, +5.1 mm, and +11.2 mm, respectively. The nerve innervation of the lumbral muscle was classified into seven types. The most common type (60.0%) was that the first and second lumbricals were innervated by the median nerve, and the third by both the median and ulnar nerves, and the fourth by the ulnar nerve. The second most common type (26.0%) was that the first and second lumbricals were innervated by the median nerve, and the third and fourth by the ulnar nerve. The dual innervation of at least one lumbral muscle was observed in 34 out of 50 specimens (68.0%), and the dual innervation of the 3rd lumbral was most frequently observed (64.0%). In 19 specimens (38.0%), the 3rd lumbral muscle was innervated by a branch arising from the median nerve distal to the joining site of the ulnar nerve branch to the median nerve. When separating and tracing up the nerve fascicles from the median nerve, the fascicles contained the components from the median and ulnar nerves in 9 cases, and the median nerve component in 10 cases. In these cases, the 3rd lumbricals were all innervated by the deep branch of the ulnar nerve. The ulnar nerve innervated the lumbricals generally through its deep branch. However, both the superficial and deep branches of the ulnar nerve innervated the fourth lumbral in 5 cases and the third in 10 cases.

Key words: lumbral muscle, median nerve, ulnar nerve, dual innervation, carpal tunnel syndrome, variation