불량한 ferrule 조건의 상악 소구치 수복시 post 여부에 따른 파절 하중 비교

연세대학교 대학원
치의학과
최 혜 영
불량한 ferrule 조건의 상악 소구치 수복시 post 여부에 따른 파절 하중 비교

지도 교수 노 병 덕

이 논문을 석사 학위 논문으로 제출함

2005년 12월 일
연세대학교 대학원
치의학과
최 혜 영
최혜영의 석사 학위 논문을 인준함

심사위원 ____________ 인
심사위원 ____________ 인
심사위원 ____________ 인

연세대학교 대학원

2005년 12월 일
감사의 글

작은 논문을 위해 많은 분들의 도움을 받았습니다.
건강 문제로 힘들어도 용기를 잃지 않고 다시 시작할 수 있게 격려해 주신 모든 분들의 깊이 감사 드리며, 고난을 통해 더 많은 것을 주시는 하나님께 모든 영광을 돌립니다.
조그만 궁금증을 실험과 논문으로 연결할 수 있도록 방향을 잡아주신, 학문적 가르침과 함께 따뜻한 위로로 힘든 과정을 무리 없이 지날 수 있게 도와주신 노병덕 교수님께 깊이 감사 드립니다.
부족한 저를 이 자리에 있게 가르쳐 주신 이찬영 교수님, 이승중 교수님, 금근연 교수님, 박성호 교수님, 정일영 교수님께 진심으로 감사 드리며 존경하는 교수님들의 건강을 항상 기도 드립니다. 논문의 부족한 부분을 자세히 지도해 주신 박성호 교수님과 김광만 교수님께 특히 감사의 말씀을 전하고 싶습니다.

실험 재료 수집에 도움을 주신 박경은, 윤자영 위생사와 보존과 모든 식구들에게 감사의 말씀을 전합니다. 자신의 일처럼 성심껏 도와주신 푸른 기공소 홍지훈 소장님과 바쁜 중에도 친절하게 인스트론 사용을 도와주신 김지연 선생님께도 감사 드립니다.
3년의 수련 기간 동안 저의 옆에 있어준 동기들에게 감사 드립니다. 2년차 시절, 갑작스런 건강 악화로 힘들었던 제가 수련 생활을 포기하지 않도록 잡아주고 감싸주었던 난심언니, 유석오빠, 가영언니, 도연이와 기쁨을 함께 하고 싶습니다.
마지막으로 언제나 저의 뜻을 들른 후원자가 되어 주시는 부모님과 사랑하는 동생에게 고마움을 전합니다.

2005년 12월
저자 씨
차 례

그림 및 표 차례 ... ii
국문요약 ... iii
I. 서 론 ... 1
II. 재료 및 방법 ... 5
 1. 연구재료 ... 5
 2. 연구방법 ... 7
 가. 치아의 선정과 계측 .. 7
 나. 근관치료 ... 7
 다. post-core 축조 ... 9
 라. 치주인대의 재현과 매몰 10
 마. crown 형성과 합착 11
 바. 하중 시험 .. 11
III. 결 과 ... 13
IV. 고 찬 ... 15
V. 결 론 ... 20
참고 문헌 ... 22
영문요약 ... 30
Fig. 1. Occlusal (left) and proximal (right) view of tooth with coronal reduction, access opening and proximal cavity preparation 8

Fig. 2. Schematic drawing of group 1, 3 (left) with resin core only and group 2, 4 (right) with post in palatal canal ... 8

Fig. 3. Compressive load application on sample mounted in jig 11

Table 1. Core resin and bonding system .. 5

Table 2. Chemical and mechanical characters of core resin 5

Table 3. Chemical characters of bonding system 6

Table 4. Experimental groups .. 10

Table 5. Fracture load (N) ... 13

Table 6. Failure mode ... 14
국문 요약

불량한 ferrule 조건의 상악 소구치 수복시 post 여부에 따른 파절 하중 비교

본 연구의 목적은 상악 소구치에서 흔히 접할 수 있는 인접면 우식증으로 인해 근관치료 및 수복치료를 진행하는 경우에 발생하는 한계 내에서 적절한 수복 방법을 모색하는 데 있다. 이를 위해 ferrule이 근, 원심측에서 건전한 상아질 축벽으로 연속 되지 않도록 설정하고, post 및 resin core 시행군과 resin core 시행군으로 나누어 주로 crown을 통해 전달되는 압축력에 대한 각 군의 파절 저항과 파절 양상을 비교해 보고자 하였다.

건전한 상악 소구치를 선정하여 각 실험군당 10개씩 분배하여 통법의 근관치료를 진행하고 인접면에 폭 3.5 mm-4 mm의 와동을 교합면 삭제 부위에서 CEJ까지 형성하였다. 근관치료나 인접면 와동을 형성하지 않은 건전한 자연치 7개를 대조군으로 설정하였다. 1군은 post를 시행하지 않고 LuxaCore Automix Dual(DMG, Germany)을 이용하여 resin core만을 시행하고, 2군은 post(Parapost XP) 시행 후, LuxaCore Automix Dual을 측조하였다. 3군은 Clearfil Photo Core(Kuraray, Japan)를 이용하여 1군과 같은 방법으로 코어를 시행하고, 4군은 post 시행 후, Clearfil Photo Core를 측조하였다. 단, 4군의 post는 Panavia F 2.0(Kuraray, Japan)을 사용하여 합착하였다. 실험군과 대조군 모든 치아는 주요 crown을 시행하였다. 만능시험기를 이용하여 30°의 각도로 설측
에서 협측을 향해 2 mm/min의 속도의 압축하중을 가하여 파절 하중을 기록하고, 실패 양상을 분석하였다. One-way ANOVA와 Duncan’s test로 통계 처리하여 다음과 같은 결과를 얻었다.

1. 1, 2군의 파절 하중은 대조군과 유의한 차이가 없었고 (p>0.05), 3, 4군의 파절 하중은 대조군보다 더 높았다 (p<0.05).
2. Core만 시행한 1군과 3군의 파절 하중과 실패 양상에서 재료에 따른 유의한 차이를 보이지 않았다 (p>0.05).
3. Post와 core를 시행한 2군과 4군의 파절 하중과 실패 양상에서, 4군이 2군보다 더 높은 파절 하중을 보였으며 (p<0.05), 2군은 1, 3군과 비교할 때에도 파절 하중에 유의한 차이가 없었다 (p>0.05).

본 실험의 제한적 상황에서 얻은 위와 같은 결론을 통해, 인접면 결함으로 온전한 ferrule를 부여할 수 없는 경우의 상악 소구치에서 resin core와 crown 수복만으로도 건전한 치아에 크라운 수복을 한 것 이상의 파절 강도를 보임을 알 수 있으며, Panavia F 2.0으로 post를 합착하고 Photo Core로 core를 축조한 경우는 파절 강도가 가장 높음을 알 수 있었다.
불량한 ferrule 조건의 상악 소구치 수복시 post
여부에 따른 파절 하중 비교

지도 교수 : 노병덕

연세대학교 대학원 치의학과
최혜영

I. 서론

Crown의 필요 여부에 대해서는, access cavity를 충전하는 것만으로 충분하다는 연구 결과가 있는 반면(Lovdahl 등, 1977; Guzy 등, 1979; Barkmeier 등,

근관치료 한 치아의 수복에서 crown의 역할이 중요한 것은, cement seal의 유지를 위해서뿐만 아니라, ferrule을 통한 잔존 치질의 파절 저항을 증가시키기 위해서이다(Shillingburg 등, 1982). Ferrule 유무가 파절 저항과 관련이 없다는 연구도 있지만(Saupe 등, 1996), 대부분의 연구에서는 1.5 mm-2 mm (혹은 1 mm) 이상의 건전한 상아질이 삭제된 치아 shoulder 상방에 360°로 존재하는 것이 파절 저항을 증가시킴을 제시하고 있다(Libman과 Nicholls, 1995; Morgano 등, 1999; Barkhordar 등, 1989; Sorensen 등, 1990; Milot 등, 1992; Isidor 등, 1999).

있다고 하였다. 이와 같이, post에 대하여 많은 연구가 이루어졌음에도, 근단부 누출을 막기 위해 근단부 gutta percha를 최소 4~5 mm 남겨야 한다는 조건 외에는 모든 상황에 적용 가능한 기준이 없는 현실이다. 이것은 치질 손상 형태가 각 치아에서 특징적으로 나타나고, 전치, 소구치, 대구치에서 access cavity의 교합면에 대한 크기 비나 위치도 각기 다르며, 악궁 내 치아의 위치에 따라 가해지는 힘의 크기 및 방향이 다르기 때문이다.

지금까지 이루어진 post 및 core에 관한 많은 연구는 post 자체의 형태와 재질(Standlee 등, 1978; Johnson 등, 1978; Burgess 등, 1992; Cohen 등, 1993) 혹은 cement의 결합강도(Millstein 등, 1987; Duncan 등, 1998; Nissan 등, 2001; Bolhuis 등, 2004; Balbosh 등, 2005)에 초점을 두고 있어 임상적 상황에 직접 적용기에 어려움이 있었다. 또한 post 연구의 대부분은 균일한 1.5 mm 혹은 2 mm의 건전한 치질에 둘러싸인 치아를 실험조건으로 설정하고 있으나, 실제로는 훨씬 더 불규칙하고 다양한 잔존치질 구조를 접하게 되는 것이 현실이다.

Post에 관한 연구에서 실험 대상으로 흔히 선택되는 상악 전치는 외상으로 치관부 손상이 흔히 일어나며 과절 양상이 수평적이다. 이런 치아에서는 1~2 mm의 균일한 삭제라는 실험 조건은 매우 의의가 있다. 그러나 상악 소구치의 경우 외상으로 치관부 치열이 손상되는 경우는 많지 않다. 대부분의 상악 소구치는 처음 근관치료와 수복치료를 시행하는 경우라면- 인접면 우식중이 치료의 주요 원인이 된다. 치수 가까이 진행된 중등도 이상의 우식중에서 하방으로는 백악방랑경계(CEJ)까지 우식 범위가 포함되어 있으나, 협, 설측 치열은 건전하게 남아
있음을 흔히 보게 된다. 이런 치아에 1.5 mm 혹은 2 mm의 균일한 360°의 상아질 축벽으로 구성되는 ferrule 조건에서 얻은 연구의 결론을 적용하는 것은 적당하지 않을 것으로 생각된다.

또한 상악 소구치는 근심 치근면에 flute이 존재하고, 근원심 폭경이 특히 치경부에서 좁으며, 웃음 때 치경부가 노출된다는 점에서 인접면의 ferrule 확보를 위해 forced eruption이나 crown lengthening procedure를 시행하기에는 (Libman 과 Nicholls, 1995; Smukler 등, 1997; Kocadereli 등, 1998; Gutmann, 1992) 생물학적, 심미적으로 불리한 조건이다. 이 경우 core의 유지력을 향상하고 잔존 치질에 응력을 균일하게 분산시키기 위해 post가 필요한가에 관한 의문이 생기지만, 아직 이와 같은 구체적인 상황을 재현하여 결론을 제시한 연구는 이루어지지 않고 있다.

따라서 본 연구의 목적은 상악 소구치에서 흔히 접할 수 있는 인접면 우식증으로 인해 근관 치료 및 수복치료를 진행하는 경우, post 및 core의 방법에 따른 파절 저항의 차이를 살펴 보는데 있다. 이를 위해 인접면에서 연속성을 상실하는 ferrule를 실험 조건으로 설정하고, post를 시행하는 군과 resin core를 근관 내로 연장한 군을 대상으로 주요 gold crown을 통해 전달되는 압축력에 대한 각 군의 파절 저항과 파절 양상을 비교해 보고자 한다.
1. 연구재료

이 실험에 사용된 두 가지 수복용 코어 재료는 Table 1과 같다. 수복용 core 재료는 각각의 제조 회사에서 추천하는 bonding system을 사용하였다(Table 1).

Table 1. Core resin and bonding system

<table>
<thead>
<tr>
<th>product</th>
<th>Lot No.</th>
<th>manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuxaCore Automix Dual</td>
<td>546731</td>
<td>DMG (Hamburg, Germany)</td>
</tr>
<tr>
<td>Contax</td>
<td>549572</td>
<td>DMG (Hamburg, Germany)</td>
</tr>
<tr>
<td>Clearfil Photo Core</td>
<td>2098AA</td>
<td>Kuraray Medical Inc. (Okayama, Japan)</td>
</tr>
<tr>
<td>Clearfil SE Bond</td>
<td>51281</td>
<td>Kuraray Medical Inc. (Okayama, Japan)</td>
</tr>
</tbody>
</table>

Table 2. Chemical and mechanical characters of core resin

<table>
<thead>
<tr>
<th>Core material</th>
<th>LuxaCore Automix Dual</th>
<th>Clearfil Photo Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curing type</td>
<td>Dual - cure</td>
<td>Light - cure</td>
</tr>
<tr>
<td>Curing time</td>
<td>Light cure 20 sec.</td>
<td>Light cure 20 sec.(<5.5mm)</td>
</tr>
<tr>
<td></td>
<td>Self cure 5 min.</td>
<td>Light cure 40 sec.(>5.5mm)</td>
</tr>
<tr>
<td>Fraxural strength</td>
<td>119 MPa</td>
<td>134 MPa</td>
</tr>
<tr>
<td>Fracture toughness</td>
<td>2.79 MPa·m$^{\frac{1}{2}}$</td>
<td>3.91 MPa·m$^{\frac{1}{2}}$</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>306 MPa</td>
<td>333 MPa</td>
</tr>
</tbody>
</table>
Table 2에서 실험에 사용된 레진의 물리적, 화학적 특성을 나타내었으며, Table 3에서는 bonding system의 화학적 특성을 정리하였다.

Table 3. Chemical characters of bonding system

<table>
<thead>
<tr>
<th>Bonding system</th>
<th>Contax Clearfil SE Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use with</td>
<td>Light cure,</td>
</tr>
<tr>
<td></td>
<td>Dual cure type</td>
</tr>
<tr>
<td>Primer</td>
<td>Light cure type composite</td>
</tr>
<tr>
<td>Light-curing time</td>
<td>20 sec</td>
</tr>
<tr>
<td></td>
<td>10 sec</td>
</tr>
<tr>
<td>Primer composition</td>
<td>10-MDP, Bis-GMA,</td>
</tr>
<tr>
<td></td>
<td>2-HEMA,</td>
</tr>
<tr>
<td></td>
<td>Hydrophobic DMA,</td>
</tr>
<tr>
<td></td>
<td>dl-Camphorquinone,</td>
</tr>
<tr>
<td></td>
<td>maleic acid, sodium fluoride</td>
</tr>
<tr>
<td>Composition Bond</td>
<td>Hydrophilic and acidic Bis-GMA resin matrix, catalyst</td>
</tr>
<tr>
<td></td>
<td>Silanated colloidal silica</td>
</tr>
</tbody>
</table>

Post는 Parapost XP(Coltene/Whaleadent, NY, USA) #3(직경 0.9 mm)을 사용하였다. Post를 합착하기 위한 cement로서, LuxaCore를 core 재료로 선택한 경우는 제조 회사의 추천에 따라 LuxaCore를 이용하였으며, Photo Core를 core 재료로 선택한 경우 Panavia F 2.0(Kurary, Okayama, Japan)을 사용하였다.
2. 연구 방법

가. 치아의 선정과 계측

발치된 인간의 상악 소구치를 실험수에 수집하였다. 표면의 치근막은 NaOCl 2.5%에 5분간 담근 뒤 거즈를 이용하여 제거하였다. 부식, 균열, 치경부 결함이 없는 건전한 치아를 선정하였으며 치아의 길이가 11 mm 이하인 치아 역시 제외하였다.

해부학적 치관과 치근의 길이, 치근단 상부 5 mm에서의 근원심 치근 폭경, crown 형성 margin(인접측 백악법랑경계) 선상에서의 근원심 및 협설측 폭경을 각 치아에서 측정한 뒤, 각 실험군에 균등하게 분배하여 실험군 당 10개, 대조군 7개의 치아를 설정하였다.

나. 근관치료

각 실험군의 모든 치아는 백악법랑경계(CEJ) 상방 6 mm 높이에서 치아 장축에 수직이 되게 coronal reduction을 시행하고, 근관 치료를 모두 1 명의 술자가 진행하였다. 근관은 NiTi Profile 06taper를 사용하여 협, 설측 두 근관 모두 #35 까지 확대하였으며 이 과정 동안 2.5% NaOCl로 세척하였다. 근관 입구는 Gates-glideen drill (Mani, Japan) #4(ISO 110) 크기까지 확대하였다. 형성된 근관은 Obtura-II(Obtura Spartan, USA)를 이용하여 백악법랑경계 하방 2 mm까지 충전하였다. 대조군의 치아는 근관치료를 시행하지 않았다. 모든 실험군 치아 인접면에 협측 선각에서부터 설측 선각에 이르는 폭 3.5-4 mm의 와동을, 아래로는 CEJ까지 형성하였다 (Fig. 1.).
Fig. 1. Occlusal (left) and proximal (right) view of tooth with coronal reduction, access opening and proximal cavity preparation.

Fig. 2. Schematic drawing of group 1, 3 (left) with resin core only and group 2, 4 (right) with post in palatal canal. Arrow means load direction: 30 degree to tooth long axis.
다. post-core 축조

1군은 post를 시행하지 않고 험, 설측 근관의 gutta percha를 각각 CEJ 하방 4 mm까지 제거하였다. Contax로 근관 내벽과 치관부 치질을 치취한 후 halogen lamp로 광조사를 한 뒤, LuxaCore를 치근부와 치관부로 나누어 2회에 가쳐 축조하였다.

3군은 1군과 같이 근관의 치관부 4 mm의 gutta percha를 제거한 뒤, SE Bond 처치 후 Photo Core를 2회에 나누어 축조하였다.

4군은 2군과 같은 방법으로 설측 근관에 post space를 형성한 뒤, Panavia F 2.0을 post cement로 사용하고, Photo Core로 core 축조를 시행한 군이다.

Panavia F 2.0 kit 내의 ED Primer(Kurary, Japan)를 근관 내에 30초간 적용한 뒤 PanaviaF2.0의 A, B paste를 동량으로 혼합하여 준비된 11 mm의 post에 묻혀 post 공간에 위치 시켰다. 이때 Panavia F 2.0 cement가 근관 이외의 부분에 묻지 않도록 주의하였다. 20초간 광조사 하였다. 치관부는 SE Bond를 제조사의 지시에 따라 처치하고, Photo Core를 축조하였다. 광조사 방법은 모든 군에서 교합면은 20초, 인접면은 각각 10초씩 시행하였다.

Core 축조가 끝난 치아는 상온의 물에 담가 보관하였다.
Table 4. Experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Core material</th>
<th>Post cement</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>LuxaCore Automix Dual</td>
<td>No post</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td>LuxaCore Automix Dual</td>
<td>LuxaCore Automix Dual</td>
<td>Parapost XP</td>
</tr>
<tr>
<td>Group 3</td>
<td>Clearfil Photo Core</td>
<td>No post</td>
<td></td>
</tr>
<tr>
<td>Group 4</td>
<td>Clearfil Photo Core</td>
<td>Panavia F 2.0</td>
<td>Parapost XP</td>
</tr>
<tr>
<td>control</td>
<td>Natural tooth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Group</th>
<th>Core material</th>
<th>Post cement</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>LuxaCore Automix Dual</td>
<td>No post</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td>LuxaCore Automix Dual</td>
<td>LuxaCore Automix Dual</td>
<td>Parapost XP</td>
</tr>
<tr>
<td>Group 3</td>
<td>Clearfil Photo Core</td>
<td>No post</td>
<td></td>
</tr>
<tr>
<td>Group 4</td>
<td>Clearfil Photo Core</td>
<td>Panavia F 2.0</td>
<td>Parapost XP</td>
</tr>
<tr>
<td>control</td>
<td>Natural tooth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

拉. 치주인대의 재현과 배모

Core 축조가 끝난 치아의 치근은 wax dipping pot에 2회 담갔다 뒤, needle 연결부위를 제거한 10 mL 일회용주사기(Kovax syringe, 내경 15 mm)의 plunger 끝에 wax를 이용해 치아 장축을 유지하며 고정시켰다. CEJ 하방 3 mm 선이 syringe margin의 높이와 일치하게 한 다음 unsaturated polyester resin (Polycoat®, Aekyung, Korea)를 주입하였다. 초기 경화 후 치아를 제거한 치근 표면의 wax를 제거하고 배모 됨 부위에 설리콘 러버 인상재인 Twinz VPS heavy body(BiscoAsia, Korea)를 주입한 뒤 치아를 재위치 시켰다. 인상재로 재현한 PDL 두께는 약 0.3 mm였다. 대조군 치아도 같은 방법으로 치주인대를 재현하였다.
마. crown 형성과 합착

다이아몬드 버(Komet®, Brasseler, Germany)를 이용해 상악 소구치 도체소부 전장관 삭제 원칙에 따라 모든 치아에서 협면은 1.5 mm shoulder, 설면은 0.3~0.5 mm의 chamfer margin을 형성하며 최소한의 taper가 될 수 있도록 삭제하였다. Crown 주조에 의한 오차를 최소화하기 위하여 buccal cusp inclination을 60°로 설정하여, 만능시험기의 하중 축과 수직이 되도록 하였다. 제작된 crown은 Panavia F 2.0으로 합착하였으며 파괴시험 전까지 상온의 물에 24시간 보관하였다.

바. 하중 시험

Custom made jig는 sample을 치아 장축에 대하여 30°로 유지할 수 있게 제작하였다. 만능 시험기(Instron3366, Instron Inc., Massachusetts, USA)를 통해 압축하중이 2 mm/min의 crosshead speed로 크기 1×2 mm인 타원형 단면의 둥근 rod tip을 통해 가해졌다(Fig. 3).

Fig. 3. Compressive load application on sample mounted in jig.
시편의 과절이 일어나기까지 최대의 값(N)을 기록하고, 결과는 one-way ANOVA와 Duncan’s test로 시험군 간의 차이를 조사하였다.
III. 결과

각 실험군의 파절 하중(Table 5)과 파절 양상(Table 6)은 다음과 같다.

Table 5. Fracture load (N)

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean value</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1459</td>
<td>1066~1965</td>
<td>300</td>
</tr>
<tr>
<td>Group1</td>
<td>1875</td>
<td>961~2760</td>
<td>730</td>
</tr>
<tr>
<td>Group2</td>
<td>1582</td>
<td>1198~2234</td>
<td>330</td>
</tr>
<tr>
<td>Group3</td>
<td>2075</td>
<td>1408~2936</td>
<td>570</td>
</tr>
<tr>
<td>Group4</td>
<td>2664</td>
<td>2076~4169</td>
<td>660</td>
</tr>
</tbody>
</table>

각 a, b, c는 통계적 유의성을 나타내는 그룹으로, a, b, c 각각은 각 그룹간의 유의성(p<0.05)을 나타냅니다.

Duncan’s test(α=0.05) 결과, Parapost-Photo Core를 시행한 4군은 다른 모든 군과 비교해 통계적으로 유의성이 있게 큰 파절 하중값을 보이지만(p<0.05), 1, 2, 3군 사이에는 서로 유의한 차이가 없었다(p>0.05). 대조군과 비교하여 1, 2군은 파절 하중 크기에 유의성이 있는 차를 보이지 않았으나(p>0.05). Photo Core를 사용한 3, 4군은 유의성 있게 높은 결과를 나타내었다(p<0.05).
Table 6. Failure mode (%)

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Group1</th>
<th>Group2</th>
<th>Group3</th>
<th>Group4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique root fracture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with post cement failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical root fracture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with post cement failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root fracture with resin core failure</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root fracture only</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Resin core의 분리나 파절과 같은 실패와 치근 파절이 함께 나타난 양상은 1군에서 8개, 3군에서 6개였고, 치근 파절만 나타난 것은 1군에서 2개, 3군에서 3개로 실패 양상은 유사한 양상을 보였다. Post를 시행한 2군과 4군은 실패 양상에 차이를 보였다. 2군의 경우 post 결합의 실패와 함께 치경부 파절이 발생한 것이 대부분 이었으나(8/9), 4군에서는 post 결합의 실패와 함께 발생한 치근 파절은 post 주변으로 oblique pattern을 보였고(5개), post 결합을 유지한 채 치근 파절만이 일어난 경우가 4개 관찰되었다. 2, 3, 4 군에서 하중 시험도중 실리콘에서 치아가 분리되어 나온 각 1개씩의 표본은 제외 되었다.
IV. 고찰

근관치료 후 단일 금관 수복을 시행한 치아를 대상으로 한 retrospective study에 의하면 post를 시행한 경우와 그렇지 않은 경우 성공률은 상악 소구치에서 각각 93.2%와 87%로 유의성 있는 차이를 보이지 않았다. 반면, crown 유무에 따라서는 93.9%와 56%로 crown을 시행한 쪽의 성공률이 유의하게 높았다. 근관 치료한 치아의 수복에 있어 crown이 post의 시행 여부보다 중요한 요소임을 보여주는 연구이다(Sorensen과 Martinoff, 1984). Gelfand 등(1984) 역시 근관치료한 치아를 전장관 수복하는 경우, post나 core의 재료 및 기술 차이에 의한 압축 강도 차이는 제한적인 정도라고 하였다. 이번 실험에서 모든 실험군은 상당한 양의 치질 손상이 있었음에도, access cavity 나 인접면 와동의 형성과 같은 손상이 전혀 없었던 대조군과 비교하여 파절 하중이 낮지 않다는 결과를 보였다.

반면, 실험군과 같은 조건이나 crown 수복을 하지 않고 시행한 예비 실험에서 파절 하중은 약 400N으로 나타나, 근관치료한 치아의 수복에서 crown이 잔존 치질을 강화하는 데 중요한 요소임을 알 수 있었다.

근, 원심 cavity는 box형태로, 폭 3.5 mm-4.0 mm, 높이 6 mm(삭제된 교합면에서 CEJ까지)이며, 내부로 access opening에 연결되게 형성하였다(Fig. 1). 이것은 상악 소구치 인접면 우식증 제거 후의 임상 상황을 재현하기 위한 설정으로, 기존의 연구 결과를 통해 제시된 과정에 저항하기 위한 ferrule의 조건에 어긋난다. 그러나, 실험 결과 crown 삭제한 margin 주위로 2 mm 이상의 건전한 상아질 축벽이 360°를 이룬는 이상적인 ferrule을 형성한 대조군에 비해 파절

15
저항이 낮지 않았던 것으로 보아, 인접면에서 ferrule의 연속성 상실이 과절 지향에 큰 영향을 미치지 않을 것으로 짐작된다. 단, 구강 내 실제 발생하는 기능적 교합력과 달리 본 실험에서 하중은 과절이 일어날 때까지 설측에서 협측의 한 방향으로 1회만 가해지는 제한적인 상황이어서 이 결과를 그대로 임상 상황과 연결시키기는 무리가 있다. 그러나 상악 소구치 인접면 우식으로 인해 근관치료와 crown 수복을 시행하는 경우라는 가정은 인접치가 존재하는 즉, single crown을 시행하게 되는 경우로, 기능적 교합력은 수직 방향으로 작용하고 측방운동시 교합력이 비기능력은 실험 조건처럼 설측에서 협측으로 일어난다는 점을 고려한다면 충분히 의의가 있는 결과이다. 한편, 인접면 우식증은 협측 전각을 넘어서는 경우도 흔히 존재하므로 폭 4 mm 이상의 인접면 외동을 형성할 경우에 대한 고려가 필요하며, load의 적용 방식을 달리 하였을 때의 결과에 대한 연구 역시 필요할 것으로 생각된다.

Post를 시행한 치아의 실패는 주로 치근 수직 파절과 같은 회복 불가능한 유형으로 나타나는데(Sirimai 등, 1999; Guzy와 Nicholls, 1979), 이것은 구강 내 교합압에 의해 post cement의 실패가 micro-failure로 먼저 발생하면 post 끝 부위에 응력이 집중되게(Cohen 등, 1996), 이를 지대 축으로 하는 힘이 발생되기 때문이다. 본 실험에서 나타난 실패 양상을 살펴보면, 이전의 연구(Fokkinga 등, 2005; Fan 등, 1995)와 달리 치근 파절이 post를 시행한 군에서만 두드러지지 않았음을 알 수 있다. 이것은 본 실험에 사용된 post의 직경(0.9 mm)이 이들 연구(1.25mm)보다 작았기 때문으로 생각된다. Post의 직경을 0.9 mm으로 선택한 것은 Tilk 등(1979)의 연구를 근거로 하였다. 설계로 이 실험에서 수집한 치아를 대상으로 치근단 상방 5 mm에서 측정한 설측 치근의 폭은 평균 2.94 mm
로, 직경이 0.9 mm보다 큰 post를 사용할 경우 주변 상아질을 약화할 수 있다 (Caputo 등, 1976). 따라서 상악 소구치를 대상으로 직경 1.25 mm의 post를 사용한 연구는 force의 적용 시 post와 관련하여 더욱 좋지 못한 결과를 유도했을 가능성이 있을 것으로 생각된다. 한편, 본 실험에서는 post 길이는 일정하고 CEJ에서 7 mm 아래에 post 하단이 위치하도록 설정하여 치근이 11 mm인 경우에 이 위치가 치근단 상방 5 mm level과 일치되지만, 모든 표본에서 치근은 최소 11 mm 이상이었으므로, 실제로 치근단에서 5 mm 이상 상방에 post 하단이 위치하게 되었다. 따라서 post 공간 주변의 상아질의 폭은 1 mm 이상으로, post로 인한 치근 약화 효과가 이전의 연구들에 비해 적었을 것으로 생각된다.

각 제조 회사에서 제시한 자료를 비교해 볼 때, core로 사용된 LuxaCore와 Photo Core는 유사한 물리적 강도를 보이는 재료이다(Table 2). 1군과 3군은 파절 하중의 유의한 차이가 없었고 파절 양상 역시 유사하였다. 그러나 4군에서 2군 및 다른 모든 군과 비교하여 큰 파절 하중을 보이는 것은 post cement로 사용된 Panavia F 2.0의 우수한 결합 강도 때문인 것으로 생각된다. 2군(1582 N)은 4군(2664 N)에 비해 매우 낮은 파절 하중을 보이며 실패 양상도 post cement의 실패가 대부분이었으나, 4군은 post와 cement의 결합을 유지한 채 post 주변 치근의 사선 파절이 많이 나타났기 때문이다. 즉, LuxaCore를 Contax와 함께 post 함착제로 사용하는 것은 post의 유지에 도움이 되지 못하고, 레진 코어만 시행한 군과 유사한 정도의 파절 강도를 보임을 알 수 있다.

1, 3 군의 실패 양상을 보면, 여러 시편에서 core resin이 canal 내부까지 충분히 채워지지 않은 것이 관찰되었다. 이것은 bonding agent가 좁은 근관 내에서 약간 균일하게 도포되지 못하고 고여서 레진이 제대로 충전되지 못했기 때문으로.
로 짐작된다. 레진이 gutta percha보다 물성이 좋지만, 부적절하게 사용되어 bonding 실패 혹은 빈 공간을 남기는 등의 결함을 초래한다면 오히려 gutta percha로 채워두는 것보다 못한 결과를 가져올 수 있으므로 상아질 접착 시스템의 사용에 주의가 필요하다. 본 실험에서 사용된 치아에서 측정한 바로, 상악 소구치 치수실에서 각각의 근관이 분지되는 곳은 CEJ 하방 4-5 mm에 존재하였다. 이 좁고 긴 trunk는 접근이 어렵지만, 충분한 상아질로 둘러싸인 곳으로 gutta percha보다는 core material로 채추하는 것이 유리할 것으로 생각된다. 그러나 치관부 상아질과 근관 상아질은 구조가 다르며 (Pashley, 1991) 앞에서 언급한 접근 불량의 문제가 있어, gutta percha와 core의 경계를 어디로 설정하는 것이 이상적일 것인가에 관하여 더 많은 연구가 필요하다.

치아를 매몰하는 과정에서 치주인대 공간을 재현하기 위해 실리콘 러버 인상재를 사용하였는데, 이전의 연구에서도 방법의 차이는 있으나 wax나 실리콘 러버 인상재가 사용되어 왔다 (Trabert 등, 1978; Tjan 등, 1984; Mosen 등, 1984 Mitchel 등, 1992). 일부 연구에서는 실리콘이 치주인대의 탄성과 일치하지 않으므로 무의미하다고 하였다 (Al-Hazaimeh 등, 2001). 실제로 본 실험에서도 실리콘과 치근막의 성질이 다르고 실리콘은 치면에 치주인대와 같이 유기적으로 결합된 것이 아니어서 하중이 가해졌을 때 인장 부위에서 치근면과 접촉을 유지하지 않음을 관찰할 수 있었다. 그러나, 실리콘을 배제하지 않고 매몰재에 바로 매몰하여 실험한 예비 실험에서, 메몰재 최상단을 축으로 하는 지렛대 작용으로 인해 모두 유사한 힘의 값에서 동일한 파절 양상이 나타나는 것을 관찰할 수 있었다. 이는 실리콘의 두께나 성상이 치주인대와 일치하지는 않더라도 필요한 과정임을 시사한다. 그러나 이러한 방법 역시 치조골의 탄성이나 치주인대의 생리적 특성을
재현해 낼 수는 없으므로 파절 하증의 절대값이나 매몰재 상단의 위치에 대한 파절선의 상대적인 위치는 임상 상황과 거리가 있으리라 생각된다.

본 실험이는 상악 소구치에서 혼히 접할 수 있는 임상적 제한 하에서 post를 시행하는 것이 파절 강도 향상에 유리한지 여부를 평가하기 위한 목적으로, 인접면의 ferrule 연속성이 없도록 설정하였다. 금속 post와 두 가지 코어용 레진을 이용하여 제조한 뒤 주조 crown으로 수복한 표본에 압축 하중으로 파절을 유발하여 결과를 관찰하였다. 모든 실험군의 파절 하중은 대조군 이상으로 나타나, 인접면의 결함이 있는 불량한 ferrule 조건에서도 근관치료 후 crown 수복이 전제된다면, post 여부나 core의 재료 및 방법과 상관없이 협측으로 가해지는 구강내 힘에 저항할 수 있고, post를 Panavia F 2.0으로 합착하고 Photo Core를 축조한 경우 파절 저항이 더 증가됨을 이 실험의 제한된 조건 내에서 얻을 수 있었다.
V. 결론

이번 연구에서는 깊은 인접면 우식으로 360°의 건전한 상아질 축벽으로 구성되는 ferrule을 형성할 수 없는 상악 소구치에서, post 및 core의 방법에 따른 파절 저항의 차이를 알아보고자 하였다. 이를 위해 인접면에서 연속성을 상실하는 ferrule를 실험 조건으로 설정하고, post를 시행하는 군과 resin core를 근관 내로 연장한 군을 대상으로 주조 gold crown을 통해 전달되는 압축하중에 대한 각 군의 파절 저항과 파절 양상을 비교 하였으며, 그 결과 다음과 같은 결론을 얻었다.

1. 1, 2군의 파절 하중은 대조군과 유의한 차이가 없었고 (p>0.05), 3, 4군의 파절 하중은 대조군 보다 더 높았다 (p<0.05).

2. Core만 시행한 1군과 3군의 파절 하중과 실패 양상에서 재료에 따른 유의한 차이를 보이지 않았다 (p>0.05).

3. Post와 core를 시행한 2군과 4군의 파절 하중과 실패 양상에서, 4군이 2군보다 더 높은 파절 하중을 보였으며 (p<0.05), 2군은 1, 3군과 비교할 때에도 파절 하중에 유의한 차이가 없었다 (p>0.05).

본 실험의 제한적 상황을 통해 얻은 위와 같은 결론을 통해, 인접면 ferrule을 완전하게 부여할 수 없는 경우의 상악 소구치에서 resin core와 crown

20
수복만으로도 건전한 치아에 크라운 수복을 한 것 이상의 파절 강도를 보임을 알 수 있으며, Panavia F 2.0으로 post를 합착하고 Photo Core를 측조한 경우는 파절 강도가 가장 높았음을 알 수 있다.

Cathro PR, Chandler NP, Hood JA. : Impact resistance of crowned

Fokkinga WA, Le Bell AM, Kreulen CM, Lassila LV, Vallittu PK, Creugers NH. :

McDonald AV, King PA, Setchell DJ : In vitro study to compare impact fracture

Robbins JW. : Guidelines for the restoration of endodontically treated teeth. *J

Sorensen JA, Martinoff JT: Intracoronal reinforcement and coronal coverage:

Abstract

Fracture strength of maxillary premolar with or without post under incomplete ferrule condition.

Hye-Young Choi

Department of Dentistry

The Graduate School, Yonsei University

(Directed by Professor Byoung-Duck Roh DDS, MSD, PhD)

The aim of this study was to find a proper way within limited condition of restoring maxillary premolars with deep approximal caries. So, the fracture load and the failure mode of maxillary premolars with an incomplete ferrule which were endodontically treated and crowned, were evaluated between metal post-resin core group and resin core group.

40 sound human maxillary premolars were divided into four groups, endodontically treated and prepared MOD cavity with 3.5–4 mm in width down to CEJ. Group 1 was restored with LuxaCore Automix Dual, group 2 received Parapost XP and LuxaCore Automix Dual. Group 3 was restored with Photo Core and group 4 received Parapost XP followed by Photo Core. In group 4, the post was set with Panavia F 2.0. Control group consisted of 7 natural sound teeth with no endodontic treatment or approximal cavity preparation.
All experimental and control group teeth were prepared and restored with cast gold crown. Compressive load was applied on the crown at an angle of 30 degree to buccal direction with 2 mm/min. cross head speed. The fracture load was statistically analyzed by one-way ANOVA and Duncan’s multiple test.

1. Fracture load of group 1 and group 2 were similar to that of control group(p>0.05) and group 3 and group 4 showed higher fracture load than that of control group(p<0.05).

2. Between group 1 and 3, there was no significant difference of fracture load and failure mode.

3. Between group 2 and 4, the post-and-core group, group 4 showed higher fracture load than group 2(p<0.05), and group 2 showed no significant difference of fracture load compared with group 1 and group 3(p>0.05), even though it was restored with post.

So, within the limits of this laboratory investment, it is concluded that maxillary premolars with incomplete ferrule due to approximal caries, restored with only resin core can exhibit fracture resistance similar to sound tooth, as long as complete coverage crown may be given. And the group of which post set with Panavia F 2.0 followed by Photo Core, showed the highest fracture load.

Key Word: incomplete ferrule, post, crown, fracture load