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ABSTRACT

Dental mesenchyme determines the crown size of tooth in

embryogenesis

Yoon-Geun Cha

Department of Dentistry
7he Graduate School, Yonsei University

(Directed by Professor Hee-Jin Kim)

Tooth is one of the ectodermal organs regulated ejpjthelial-mesenchymal
interactions, and its morphogenesis conserved $igmapathways during the
developmental process. The crown size of tooth ise oof the most
important factors for the determination of dentiticand occlusion. In this
study, to investigate what determines the tooth wero size,

cross-recombination was carried out between mousé eat tooth germs at
cap stage. Crown size of cross-recombinant teettwd®n mouse epithelium
and rat mesenchyme was larger than cross-recombineeth between rat
epithelium and mouse mesenchyme. Furthermore, tlssereaggregated teeth
between mouse epithelium and rat reaggregated nceyeme (6.0 x 10

cells) were larger than the cross-reaggregated htolsétween rat epithelium
and the mouse reaggregated mesenchyme (6.0 % cBlls). These results
suggested that the crown size of tooth is contbllaot by the dental
epithelium and the number of mesenchymal cells, tyt the genetic
information in mesenchymal cells. Inverification dhe intracellular genetic
information between mouse and rat mesenchymal ceNstSa and Bmp4

showed different amount of transcript between mowsa rat by RT-PCR.
The exogenous WNT5A protein induced bone formatiand the apoptosis
of dental mesenchymal cells rather than dental hepi@l cells, and
subsequently resulted in shrunken tooth germ andrded development and
formation of small tooth. It is suggested th¥{ntsa may be one of the

-1 -



genes determining the tooth size.

Key words :tooth crown size, dental mesenchyme, seouand rat,
cross-recombination, cross-reaggregatidntsa



Dental mesenchyme determines the crown size of tooth in

embryogenesis

Yoon-Geun Cha

Department of Dentistry
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(Directed by Professor Hee-Jin Kim)

I. INTRODUCTION

The mammalian tooth is one of the ectodermal orgaos which the
development is controlled by reciprocal interacobetween the epithelium
and the mesenchyme. All ectodermal organs share ilsimsignaling
molecules during early morphogenesis, but each rorgadergoes its own
specific pattern formation later in developmeht

The teeth develop from pharyngeal epithelium ane thnderlying neural
crest-derived mesenchymal céllsThese neural crest cells derive from the
midbrain region, and their final position in the xillary and mandibular
processes is associated with the original positmfnthe cells in the neural
crest as well as with the time when the cells leake crest®

In the mouse tooth development, the first signal tovern tooth
morphogenesis appears in a thickening (at Embryotay 11, E11) of the
oral epithelium. The thickening invaginates intoethunderlying mesenchyme
and the mesenchymal cells condense around the ldE(Q3) and during
the following cap (at E14) and bell (at E16) stag®gith cytodifferentiation,

enamel and dentin are formed by the epithelial ahbklsts and



mesenchymal odontoblasts, respectively (Fig. 1).

Differentistion  Root formati

Figure 1. Tooth development in mouse

Interestingly, the development of rat tooth germs gimilar to that of
mouse, but the timing of development in rat tooth dbout two days later

than that of mouse (Fig. 2).

'
AL

Figure 2. Molar tooth germs at cap stage taken out from the mouse E14

Mouse
E14
tooth germ
control

Rat E16
tooth germ
control

mandible and rat E16 mandible. The size of rat tooth germ is larger than

that of mouse tooth germ.



In the later development, mouse and rat showed laimpatterning of
dentition and the individual molar was found almotte same patterning,

but the size of each molar showed totally differdfig. 3 and 4).

Figure 3. First molar tooth size difference between adult mouse and adult
rat. The mesiodistal length of mouse first molar (A) is equal to the half of
the rat first molar mesiodistal length (C). The buccolingual length of mouse
first molar (B) is equal to the half of the rat first molar buccolingual
length (D). However, the cusp patterning is similar between mouse first

moar and rat first molar.



Figure 4. The same proportion of first molar both in adult mouse
mandible and in adult rat mandible. The anterior-posterior length of mouse
mandible corresponds to the half of rat mandible length. The mesiodistal
length of first molar in mouse mandible is similar to the half of rat first
molar length. Mouse and rat shows the same proportional length of first

molar to the mandible.

Tooth crown size is considered as one of the masportant factors for

the determination of dentition and occlusion. Edpkg, a discrepancy



between tooth size and arch length causes orthadoatd subsequent oral
functional problem% Most tooth crown size studies focused on demiitiof
human in clini¢®. Thus, the study of tooth size is of great intéré&s both
dentists and developmental biologists in these yedn order to understand
the proper factors to determine the size of tooth genetical morphology,
we introduced the recombination and reaggregatioethmds which were
widely used in the epithelial-mesenchymal interaocti researches from
1960's°*  Tissue recombination studies in which epitheliunand
mesenchyme from different organs were cultured toge indicated that in
many organs the pattern of epithelial branching iegulated by
mesenchymal tissd&' During the tooth development, it has been rembrte
that the budding of the lamina marks the shifting inductive potential of
tooth formation from mandibular-arch epithelium tthe mesenchynté
Reaggregation system has been performed to makeoth tsuccessfuIIV'ls.
All mesenchymal cells are reset to an equivalerdtestand have the same
probability to become primordia, so it is possib® examine if the
mesenchymal cell number could determine the tootbwa size with this
system which has been performed to the cell numbeunld alter the size
and number of feather primordfdl Specially, it starts to form the transient
signaling centers called primary enamel knot (EKY) aud stage and later
secondary EK at the bell stage in the epitheliumhicl contribute to the
shape of the future crown and its cuSps Signaling molecules such as
Fgf4, 9, Shh, Wntl0a, b, and Bmp2, 4, 7, and transcription factors such as
Msx1l, 2 and Lefl are expressed in the dental epithelium, especiafly

primary enamel kndt® In dental mesenchyme of the cap stage tooth



germs, Fgfl0, Fgf3, FgfrlC, Bmp4, Msxl, Lefl, WntSa and G-catenin are
detected” 2> 24 2628

It has been reported that the inductive potentidlteoth formation shifts
from the first pharyngeal arch epithelium to the seechyme at the early
bud stagel6 and that mesenchymal signals are regedsr the epithelial
patterning and for the formation and maintenance tfe epithelial
compartments. However, it is not evident if the dental mesencies,

which were isolated from the tooth germs at theeldiud, cap and bell
stage, possess potential controlling the tooth crosize.

In  this study, we applied the heterospecific recémakion

(cross-recombination) and the heterospecific reaggtion

(cross-reaggregation) between the mouse and rattabenissues, and
compared the size of tooth crown developing fronesth recombinant tooth
germs and reaggregated tooth germs. Furthermorenetge differences

between the mouse and rat dental tissues were tigagsd by RT-PCR and

clarified by the implantation of exogenous protein.



Il. MATERIALS AND METHODS

Animals
ICR mouse embryos at E14 and Sprague- Dawley rab (ft) embryos at
E16 were used in this study. Nude mice were usedh@sts for tooth germ

transplantation into kidney.

Tissue dissection
The lower molar tooth germs were carefully dissdcteom the mandibles

of mouse embryos at E14 and rat embryos at E16.t&deapithelilum was
removed from dental mesenchyme by means of Dispdke (Roche,
Germany, 295 825) in PBS at 1.2 units/ml. E14 mouseth germs were
incubated for 20 minutes and E16 rat tooth germs 80 minutes in
Dispase Il at Room temperature RT respectively. eAftincubation, tooth
germs were washed in a solution of Dulbecco's Miedif Eagle Medium
(D-MEM, Bio Whittaker, USA, 12-640F) supplementeditv 10% fetal
bovine serum (FBS, GIBCO, USA, 16000-044). Under dissection
microscope, the dental epithelium and dental melgme were separated

from each other.

Cross-recombination
Tissue recombinations between dental epithelium afghtal mesenchyme

were done as previously descrif®d The tooth germ composed of dental
epithelium and dental mesenchyme from differentcép®e was simplified as
the cross-recombinant tooth germ. Two kinds of sroescombinations were

carried out with E14 mouse tooth germs and E16 tmith germs after



separation epithelium from mesenchyme respectively follows: mouse
dental epithelium was overlaid on the rat dental serehyme (mouse
epithelium/ rat mesenchyme, M-epi / R-mes); mousentdl mesenchyme
was recombined with rat dental epithelium (rat Bpitum/ mouse

mesenchyme, R-epi / M-mes) (Fig. 5).

Mouse E14
Rat E16 tooth germ — @
tooth germ [CN)

ol | -
= :

Figure 5. Cross-recombination between mouse tooth germ at E14 and rat

tooth germs at E16. Cross-recombinant between rat epithelium and mouse
mesenchyme corresponds to R-epi / M-mes. Cross-recombinant between

mouse epithelium and rat mesenchyme corresponds to M-epi / R-mes.

Cross-reaggregation
Reaggregation of mesenchymal cell in tooth germ wapplied as

previously described. The mesenchymal cell number of one rat molar Hoot
germ at E16 was standardized as 6.0 x* 1Uhe dissociated cells were
repelleted by mild centrifugation with appropriateell number (6,500

revs/minute for 4 minutes) and allowed to reaggtegéor 1 hour at 3T
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on culture insert dishes (Falcon). The requiredadnt dental epithelium of
mouse or rat was then placed on top of the relevamfuired reaggregated

mesenchyme and the recombinant explants were adtwat 37C for 1 day.

(Fig. 6 and 7)
Incubation
eaggregate
" Epithelium
p
Dispase
% Single cell | —)
Mesenchyme % o "oo%
0

Mesenchyme o

6500rpm 4min

Reaggregated

Trans
Recombination — -plantation
—
3 weeks

Figure 6. Reaggregation method to control the cell number of dental

mesenchyme.

Kidney Capsule Transplants
Cross-recombinant explants and cross-reaggregateulamts were cultured

for 1 day and transplanted beneath the renal capsil young adult nude
male mice. After 3 weeks, animals were sacrificedd akidneys were

dissected for gaining the calcified teeth.
Histology

The calcified teeth obtained from the kidney capsulwere fixed in 4%

paraformaldehyde in PBS (PFA) overnight and ded@diin the solution of
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formic acid and sodium formate (1:1) for 5 days, bedded in paraffin
wax, serially sectioned at a thickness ofmy and stained with Hematoxylin

and Eosin.

Mouse E14
RatEl6 tooth bud @
tooth bud
| 6.0 x10 *cells I

R-epi / M-mes (R)

3

Rat

Qo)

M-epi / R-mes (R)

[FN)
b

6.0 x10 4 cells

Figure 7. Cross-reaggregation between dental epithelium and reaggregated
mesenchyme. Cross-reaggregated tooth germ between rat epithelium and
mouse  reaggregated  mesenchyme  corresponds to  R-epi/M-mes(R).
Cross-recombinant  between mouse epithelium and rat mesenchyme

corresponds to the M-epi/R-mes(R).

Reverse transcriptase-polymerase chain reaction (RT-PCR)
Total RNA was extracted by the dental mesenchymeraf and mouse

respectively in TRIZOL reagent (Invitrogen, USA) tii an Ultra-Turrax
homogenizer (IKA, Staufen, Germany). The samples RNA underwent
reverse transcription (RT) according to the mantifeer's protocol containing

MMLV reverse transcriptase enzyme (MBI fermentas.)Cdhe synthesis of

_12_



cDNA was carried out for 90 min at 42

Primer pairs (sense and antisense) were synthedize®igma as follows:

for Bmp4 (300 bp): 5-AGGTAACGATCGGCTAATCCT-3' and
5-CTATTTCGGGAGCAGGTGGA-3'

for  FgfrlC (110 bp): 5-GGTATTTGGTCAGCAAAGCA-3' and
5-AAGCCGTGAGGTTTCTGTTT-3'

for Msx1 (184 bp): 5-TCCTGGGAAAGTCTCTTCAACC-3' and
5-GGCAGGACTTGCACAGAGAAAT-3'

for Wntba (238 Dbp): 5-CCATGTCTTCCAAGTTCTTCCTA-3' and
5-TGTACTGCATGTGGTCCTGATAC-3'

for Gcatenin (199 bp): 5-ACAAAAACAAGATGATGGTGTGC-3' and
5-GTGCAGGAGTTTAACCACAACAG-3'

for Lefl (180 bp): 5-TGGCAAGGTCAGCCTGTTTAT-3' and
5-GGTGCTCCTGTTTGACCTGAG-3'

for Fgf3 (196 bp): 5-AGGCGGGAAGCATATGTATTGTA-3' and
5-CTTGAGAACAGCGCCTATAGCAT-3'

for GAPDH (427 bp): 5-GTCATCATCTCCGCCCCTTCTG-3' dn
5-ATGCCTGCTTCACCACCTTCTTG-3".

The PCR reaction mixture was incubated at3Jor 10min and 30 cycles
were performed at 98 for 1 min, (Tan) for 1 min, 72C for 1 min, and a
final cycle with a prolonged elongation time of Ifin at 72C. The primer
specific annealing temperature ) was as follows: Z.(Bmp4) = 58T,
Tan(FOf1IC) = 54T, Tan(Msx1l) = 58T, Tan(Wnt5a) = 56T, Tan(S-catenin)
= 56C, Tan(Lefl) = 58C, Tan(Fgf3) = 58C, Ta(GAPDH) = 62C. The

PCR products were analyzed by standard electrogi®ren 1% agarose gels

_13_



at 100V, stained with ethidiumbromide and photodweg under UV
ilumination. The size of each PCR product was msted by using a 100

bp DNA ladder standard (Invitrogen).

Bead implantation
Affigel-blue beads were incubated in BMP4 (1@0ml), WNT5A (1mg/ml)

and phosphate buffered saline (PBS). All beads wareubated at room
temperature for at least 1 hour and then carefyllpced into the buccal
part of E14 mouse tooth germs using fine forcepse Texplants were
cultured at 37 in a Trowell-type culture containing D-MEM with 10%
FBS for 48 hours. The tooth germs implanted beadsrewfixed with 4%
PFA after incubation for 48 hours and cryo-sectwnat a thickness of 9
(m, and stained with Hematoxylin and Eosin. The erpda of beads
implantation were transplanted into the renal cé@sufor three weeks as

well,

Bone formation detection, apoptosis and cell proliferation assays
For the detection of the cell differentiation intmsteoblasts and the bone

formation, the tooth germs implanted soaked beadgewfixed after culture
for 48 hours in 4% PFA overnight at‘@ embedded in Optimal Cutting
Temperature (O.C.T) (Tissue-Tek, Cat. NO 4583, USé9mpound using
conventional methods and then cut to a thickness 9af. In order to
reduce nonspecific background staining due to eedogs peroxidase, slides
were incubated in 3% hydrogen peroxide for 15 mésut Sections were
incubated with the rabbit polyclonal antibody agdinBone Sialoprotein

(BSP) (Chemicon, Cat No AB1854, USA) and mouse nobmmal antibody
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against Proliferating Cell Nuclear Antigen (PCNANdo Markers, Cat. NO
MS-10b-R, USA) at 4C overnight. After washing for 10 mins with
phosphate buffered saline (PBS), the specimens wereubated with
biotinylated goat anti-mouse immunoglobulin secorydaantibody and
biotinylated goat anti-rabbit immunoglobulin secamg antibody for 10
minutes, followed by 10 minutes PBS wash, followdy incubation in
streptavidin-peroxidase at room temperature for rithutes each. Finally, the
antibody binding to the sections was visualizedngsia Diaminobenzodine
tetrahydrochloride (DAB) reagent kit (Zymed, Cat N®-2014, USA).
Terminal deoxynucleotidyl transferase-mediated dUiiek end labelling (In
situ Cell Death Detection Kit, POD) was used foropfosis detection in
individual cells of the histological sections of dik implanted explants. The
TUNEL proceduce was carried out following the maantfirer's directions
(Trevigen, USA). Engdogenous peroxidase was blockgdincubation in 3%
hydrogen peroxide in PBS for 10 mintues at RT bef@nzymatic labelling.
During the TUNEL procedure samples were washed BSP(PH: 7.4) in
distilled water. The signal conversion using Stt¢RP solution and substrate
color reaction applying chromogen DAB were perfotmafter enzymatic

labelling.

_15_



lll. RESULTS

Size of first molar in adult mouse and rat
Both adult mouse and rat share the same dentitiocluding three molars

and one incisor in the jaw quadrant. The mandibufast molars in both
mouse and rat show seven cusps, of which the pattgris also similar in
mouse and rat (Fig. 3A-D). The most distinct diffece in the first molar
between mouse and rat is the size of crown. The fr#t molar has the
larger crown than the mouse first molar. The meistad length in the rat
first molar is about two times of that in the moufiest molar (Fig. 3A, C),
and the buccolingual length in the rat first molar about two times of that

in the mouse first molar (Fig. 3B, D).

Tooth size after transplantation into kidney
The tooth germs, which were transplanted into kidneapsule, can form

calcified teeth after three weeks. However, it hast been reported if the
kidney capsule, a highly dense connective tissuan @ffect the size of the
calcified tooth during its development. In this @y the mouse tooth germs
at E14 and the rat tooth germs at E16 were tramg¢pth into subcapsular
layer of the kidney of nude mice for three weekss A result, the mouse
tooth germs formed calcified teeth (N = 9/9), amowdich first molars was
slightly smaller than the adult mouse first moldfig. 8A, B). Each rat tooth
germ formed calcified teeth in kidney (N = 4/4), dahe first molar among
them was slightly smaller than the adult rat firstolar (Fig. 8D, E).
Consequently, the calcified first molar of rat deng in the kidney was
about two times bigger than the mouse first molarbioth mesiodistal length

and buccolingual length (Fig. 8B, E). Thereforeansplantation of tooth germs
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into kidney capsule can be used as a culture systemodontogenesis. The
biggest tooth developing from a mouse tooth germsweonsidered as the
mouse control tooth (Fig. 8A-C). The biggest toottarvested from a rat
presumptive E16 tooth germ was considered as thte cantrol tooth (Fig.

8D-F).

Cross-recombinant teeth and their size
The first molars of mouse and rat share many sintiés except tooth size.

To investigate the key tissue determining the tostke developing from the
cap-stage tooth germ, the mouse dental epitheliuas wross-recombined with
the rat dental mesenchyme, and the rat dental elptm was

cross-recombined with the mouse dental mesenchyfhe calcified teeth were
formed from the cross-recombinants between mouse @t dental tissues. The
crown size of the cross-recombinant tooth betwebe touse epithelium and
the rat mesenchyme (M-epi / R-mes) (N = 10/10) wsawilar to that of the

rat control tooth (Fig. 8G-I). At the same time,ethcross-recombinant tooth
between the rat epithelium and the mouse mesench¢frepi / M-mes) (N =

8/10) showed similar crown size to that of the m@usontrol tooth (Fig.

8J-L). These results showed that the mesenchymberathan the epithelium
determined the tooth size in the cap-stage toothrmgeand that the rat
mesenchyme contributed to form the bigger toothntthe mouse mesenchyme
did. However, the rat E16 mesenchyme was biggerntithe mouse E14
mesenchyme at the moment of cross-recombinationis Theans that the cell
number of the rat E16 mesenchyme is larger thant thfa the mouse E14

mesenchyme, because the cell size is almost thee shetween mouse and rat

_17_



observed under the microscope.

Mesenchymal cell number and crown size
To clarify the relationship between the mesenchyntall number and the

tooth size, the mouse and rat mesenchymal cell rarmlivas equally
adjusted as a number of '6.0 x “lOwhich was regarded as the cell number
in a rat mesenchyme at E16. The calcified teeth ettjped from the
cross-recombinant tooth germs between the mouseha@pim and the rat
reaggregated mesenchyme (N = 7/11) (M-epi / R-mBy {n Fig. 8M-0).
The size of M-epi / R-mes (R) was smaller than tta control tooth (Fig.
8D), but bigger than the mouse control tooth (FBA) and R-epi / M-mes
(Fig. 8J). The cross-recombinant tooth germs betwglee rat epithelium and
the mouse reaggregated mesenchyme formed calcifieeth (N = 8/12)
(R-epi / M-mes (R) in Fig. 8P-R), of which the crowsize was similar to
mouse control tooth but smaller than M-epi / R-méR). These results
showed the mesenchymal cell number was not clogehlated with the size
of tooth crown. The fact that the rat mesenchymallisc rather than the
mouse mesenchymal cells can induce the big toothgssts that the genetic
information relating with the tooth crown size migtbe different between

the rat mesenchymal cells and the mouse mesenchymil.
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Mouse control

A . |

Rat control

M-epi / R-mes

Figure 8. Diverse crown size of molar by cross-recombination and
cross-reaggregation between mouse tooth germs and rat tooth germs at cap
stage. (A-F) Control teeth obtained from E14 mouse tooth germs and E16

rat tooth germs that were cultured for 1 day in vitro and implanted under
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kidney capsules for 3 weeks. (G-L) Cross-recombinant teeth. (M-R)
Cross-reaggregated teeth. (A)Mouse control tooth showed 6 cusps. (B) An
occulusal view. A section of (A) is shown in (C). (D) Control tooth with 7
cusps was detected from a presumptive rat tooth germ at E16. (E) The
occlusal area showing roughly 2 times as large as mouse control tooth in
both mesiodistal length and buccolingual length. A section of (D) is shown
in (F). (G, H, 1) The occlusal area of the M-epi / R-mes tooth was similar
size to rat control tooth, which was detected to have many cusps in the
occulusal view (H) and more than 3 cusps in a wax section shown in (I).
(J, K, L) The R-epi / M-mes tooth showed similar size to mouse control
tooth. (M, N) The M-epi / R-mes (R) reaggregated teeth was larger than of
mouse control tooth. (P, Q) The R-epi / M-mes (R) was similar to the
mouse control tooth. A section of (M, P) are shown in (O, R) respectively.
Sale bar : 1 mm in A, B, D, E, G, H, J K, M, N, P and Q; 500 gm in
C,F I, L, OandR.
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Gene expression in the dental mesenchyme of mouse and rat
To investigate the different genetic informationtween the mouse and rat

dental mesenchyme, gene expression in both mousel aat dental
mesenchyme was examined and compared by RT-PCRgugatal RNA
isolated from the mouse and rat dental mesenchyiMeny genes such as
Fgf3, Fgfl0, Fgfrlc, Bmp4, Msxl, Wnt5a, (-catenin and Lefl, which have
been known to be expressed in the mouse dental mehgee at cap stage,
were selected as candidate genes. Transcripts of ahbve genes except
Fgfl0 were detected in both mouse and rat mesenchymenstripts for
Bmp4 and Wntba showed different quantity in the dental mesenchyme
between mouse and rat, while other transcripts s@tbveimilar quantity. The
transcript for Bmp4 in the rat dental mesenchyme was larger in quantity
than that in mouse dental mesenchyme. On the contrahe mouse
mesenchyme showed a larger amount of the transcopt Wntba than the
rat mesenchyme did (Fig. 9). These results showkdt Bmp4 and Wnt5a

were different genetic information between mousd aat.

GAPDH Fgf3 Fgfric Bmp4 Msx1 Wnt5a B- catenin Left
R M R M R 1] R M R M R M R M R M

—m

500bp s—

400bp —
300bp

200bp -

100bp —

* Bmp4 mRNA intensity: Rat > Mouse , ** Wnt5a mRNA intensity: Mouse > Rat

Figure 9. Different intensity of Wnt5a and Bmp4 in the dental mesenchyme
between mouse and rat
RT-PCR analysis: Bmp4 transcription showed stronger intensity in the rat

dental mesenchyme (asterisk), whereas Wntba transcription showed stronger
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intensity in mouse dental mesenchyme than that of rat (two asterisks); Fgf3,
Fgfrlc, Msxl, Bcatenin and lefl were found the same intensities between

mouse and rat. GAPDH expression level was used as a control.

Effect of BMP4 and WNT5A on the size of developing tooth germs
To investigate the effect of BMP4 and WNT5A on tlseze of tooth germ

at cap stage, BMP4-, WNT5A- and PBS-soaked beadseweplanted into
the mouse E14 tooth germs respectively (Fig. 10A),. @fter 48 hours in
culture, no difference can be found between the BMiRated tooth germs (N
= 16/16 data not shown) and the PBS-treated too¢hmg (N= 10/10, data
not shown). In contrast, the WNT5A-treated toothrmge (N = 20/22) were
smaller than PBS-treated tooth germs (N = 15/15)ig.(F10B, D). The
WNT5A-treated tooth germs showed clear bone-likeudure in upper view
(Fig. 10D). In the section (through the line fromta a' in Fig. 10B), the
PBS-treated tooth germs was at cap stage showingeladental epithelium
(Black dotted line in Fig. 10I), and the WNT5A-tted tooth germs showed
small dental epithelium (Black dotted line in Figl0J) and bone-like
eosinophilic structures (arrow in Fig. 10J) in tteection (through the line
from b to b' in Fig. 10D). These results showedtthle size of the tooth

germ was decrease by the WNTS5A protein.

Effect of WNTS5A on the size of calcified tooth
To investigate if the WNT5A protein can affect theze of calcified tooth

or not, tooth germs cultured for 48 hours with egogus WNT5A were
transplanted into kidney for tooth formation and lctfication. After three

weeks, WNT5A-treated tooth germs formed calcifiegeth (N= 10/10). Most
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of these tooth germs formed two teeth respectivéMg= 8/10), of which the
larger tooth was compared in crown size with the SPBeated tooth. Two
tooth germs formed the calcified teeth as big as tBS-treated tooth (N=
11/11), while eight WNT5A-treated tooth germs fomndhe calcified teeth
corresponding to the two thirds of PBS-treated He&t both mesiodistal and
buccolingual length (Fig. 10E, G). This result shemvthat not only the size
of tooth germ but also the size of calcified toothn be reduced by WNT5A

protein.

Roles of Wnt5a in tooth development
To investigate how the WNT5A protein can reduce thiee of tooth germ,

the cell activities such as differentiation, apog$o and proliferation were
inquired in the cultured tooth germs with the sodkéeads. Firstly, the
WNT5A-treated tooth germ showed the big BSP-positigpots (arrowheads
in Fig. 10L), while the PBS-treated tooth germ fgreshowed the
BSP-positive spots (Fig. 10K). These spots togetheith the bone-like
structure (arrow in Fig. 10D) indicate that the Icedifferentiation into
osteoblast was induced by the WNT5A protein. Sedpndthe apoptosis
were generally detected in both epithelium and mebgme of the
PBS-treated tooth germ (Fig. 10M), while the WNT35kated tooth germ
showed stronger positive reaction in the mesenchy(®éy. 10N). Thirdly,
the cell proliferation was not different between ithe PBS-treated tooth
germ and the WNT5A-treated tooth germ (Fig. 100-PJhese results
indicated thatWnt5a might induce the differentiation into osteoblashdathe

apoptosis of mesenchymal cells in tooth germ, amdbsequently caused the
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reduction of tooth germ and calcified tooth.

+ 48hrs

TUNEL O

+ 48hrs

Figure 10. Tooth development from mouse tooth germ at cap stage treated
with exogenous WNT5A protein
(A, B, E, F, I, K, M, O) E14 tooth germs cultured with PBS control
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protein were used as a control. (C, D, G, H, J, L, N, P) E14 tooth germs
incubated with WNT5A soaked beads. (A, C) Upper view of the tooth
germs implanted affigel-blue beads soaked in PBS (A) and WNT5A (C)
before culture. (B, D) Tooth germs with soaked beads cultured for 48
hours. (E) Teeth formed from the tooth germs cultured with PBS beads in
the kidney capsule after three weeks. (G) Smaller teeth detected from the
explants treated with WNT5A protein after three weeks. (F, H) Section of
(E, G). (I, J) Hematoxylin and Eosin staining of frontal sections of (B, D).
(I) Dental epithelium at cap stage was detected in the control after 48
hours. (J) Shrunken dental epithelium at cap stage and bone-like
eosinophilic  structure indicated by arrows were formed in the
WNT5A-treated explants. (K, L) Bone siolaprotein (BSP) expression of
frontal sections of (B, D) (L) Big BSP-positive spots were shown in the
WNT5A-treated dental mesenchyme indicated by arrows. (M, N) Terminal
deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling
(TUNEL) studies on frontal sections of (B, D), which indicated the
apoptosis locate in the place as visualized by dark brown. (M) TUNEL
positive spots generally located in the epithelium and mesenchyme of
control explants. (N) Increased labeled mesenchymal cells were observed in
the WNT5A-treated groups. Black dotted line in (B, D): Section line of
(I-N). Black dotted line in (I-N): Dental epithelium. Scale bar : 250 m in
A-E, G; 300 gm in F, H; 100 gm in I-N.
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Table 1. Calcified teeth from various kinds of tooth germs

Tooth germ type Teeth/transplants
Mouse control 9/9

Rat control 4/4

Mouse epithelium/ Rat mesenchyme recombination  10/10

Rat epithelium/ Mouse mesenchyme recombination  10/10
Mouse epithelium/ Rat mesenchyme (6.0 x 10%) 711

Rat epithelium/ Mouse mesenchyme (6.0 x 104) 8/12

Table 2. Calcified teeth after implantation of exogenous proteins and their

size relative to control tooth size

TOOTH GERM TYPE TOOTH FORMATION TOOTH SIZE
PBS (control) 8/8 1
14/18 : about 1
BMP4 beads 18/18 1/18 :>1
3/18 : about 4/5
10/11 : tooth 2/10 : about 1
WNT5A beads
1/11 : no tooth formed 8 /10 : about 2/3
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IV. DISCUSSION
It has been well known that the development of detmal organs

including tooth is characterized by coordinated eractions between
epithelium and mesenchyme. A number of tissue rduoation experiments
were performed to analyze the nature of epithah@&lsenchymal interactions
in many different orga’$® Furthermore, it has been reported that the
epithelial-mesenchymal  interactions  occur even in etehospecific
recombination between different species such asckémouse, quail/lizard,
quailrabbit and mouse/vol&*. However, these previous studies have
concentrated on the epithelial mesenchymal intésactand tooth formation,
not on the tooth size.

In this study, we concentrated on the size of teefthich can be formed
by the heterospecific recombination between mousel aat dental tissues.
Mouse and rat, two species of muroid rodents, sthbuwtee similar dentition
patterning in mandible and the similar cusp paftegnin the individual
lower first molar containing seven cusps. The mdsdtinct difference in the
first molar between mouse and rat is the size ajwer. The rat first molar
is two times larger than the mouse first molar badth the mesiodistal and

buccolingual length.

Dental mesenchyme determines the tooth crown size
To investigate the key tissue determining the tosthe in the tooth germ

at cap stage, when the dental mesenchyme has tbactine potential of
tooth formatior®, the mouse dental epithelium at E14 was crossféxnned
with the rat dental mesenchyme at E16, and the dental epithelium at

E16 was cross-recombined with the mouse dental m#sene at E14. As a
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result, the M-epi / R-mes formed the bigger teettant the R-epi / M-mes
did. This result indicates that the mesenchyme eatthan the epithelium
determined the tooth size in the cap-stage toothmgeand that the rat
mesenchyme contributed to form the bigger tooth nthahe mouse
mesenchyme did. Furthermore, the R-mes (R), of Wwhibe cell number is
the same with that of the M-mes (R), contributed foom the bigger tooth
than the M-mes (R) did. The size of the rat dentadsenchymal cells was
the same size of the mouse dental mesenchymal.c&hess results show
that the size of tooth crown was determined not thg mesenchymal cell

number, but by the genetic information in the medgmal cells.

Mouse and rat show the different amount of Bmp4 and Wnt5a expression
in dental mesenchyme
The different genetic information between the moused rat dental

mesenchyme was examined and compared by RT-PCR.nfmmine genes
that were examined, the transcript féigfl0 could only be detected in the
mouse dental mesenchyme. This result may be cadsedhe difficulty in
designing the primer pair both for the mouse ant Fgfl0. Transcripts for
Fgf3, Fgfrlc, Bmp4, Msxl, G-catenin and Lefl showed similar quantity
between mouse and rat, while transcripts Bmp4 and Wntba showed
different quantity. These results evoke the podigybithat Bmp4 and Wnt5a
might be two genes of the genetic information, whics related with the
tooth size. Furthermore, the fact that the transcfior Bmp4 was larger in
the rat mesenchyme than in mouse mesenchyme migad [to the
possibility, of which Bmp4 related with increasing the tooth size. On the

other hand, the fact that the transcript f&¥nt5a was less in the rat
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mesenchyme than in the mouse mesenchyme might eehamat Wnt5a is

related with the decreasing the tooth size.

Exogenous BMP4 protein could not change the size of tooth
It has been widely confirmed that exogenous BMP4ufates the tissue

shape during morphogenesis by increasing the apeptd>. In the limb
development, BMP4 increases the cartilage growthondrocyte proliferation
and chondrocyte hypertropfi e Endogenous BMPs are required to maintain
cartilage growth, and exogenous BMP4 can enhancélage maturation and
induce ectopic chondrocyte hypertrophy in the cahnbasé’. However,
compared with feather and limb patterning, whichnche manipulated by
BMPs™*****? normal tooth patterning was relatively robust iaga excess
BMP&®

In this study, after the implantation of the BMP4ofein-soaked beads into
the dental mesenchyme of the mouse E14 tooth geom 48 hours, the
tooth germs and the calcified teeth are not changedsize. It is suggested
that exogenous BMP4 might not directly related withooth size

determination.

Exogenous WNT5A can change the size of tooth.
It is well known that Wnts, Frizzled receptors afdizzled-related proteins

(FRP) antagonists were expressed in early toothetb@ment®®’ Previously,
it has been suggested that teeth can be changed thrg smaller teeth by
treating with exogenous Mfrzbl protein, one of th&RPs, in the mouse
molar of mandibular arch at E16°% Even though Mfrzbl is known to

block many kinds of Wnt family genes, these previous results does not
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indicate the direct relationship betweékints and tooth size. Recently, it has
been reported that th&/ntba is related with the calcium signaling as th#
-catenin independent pathway andVnt5a signal independent ofBcatenin
affect the convergence and extension of the bodis,awhich refers to the
extension of embryos along the anterior-posteritisaand the narrowing
along the medial-lateral axis

In this study, not only the size of tooth germ batso the size of

calcified tooth can be reduced by exogenous WNTSitein.

Wntba is related with the determination of tooth crown size at cap stage.
It has been reported thatWnt5a is expressed in proliferative and

prehypertrophic chondrocytes and is required foe thirst transitional event,

as chondrocyte differentiation was significantly laleed in the developing

long boné&". Furthermore, the Wn@-catenin pathway has been shown to
regulate multiple cell properties controlling livemorphogenesis, such as
growth, axial polarity determination, and apoptdsis

In this study, the immunohistochemical staining f&SP after WNT5A

bead implantation showed previous bone formationhichh suggests that
WNT5A might induce bone formation and interfere hvitthe growth of

tooth germs at the cap stage. Furthermore, WNTS5Atumor suppressor by
negatively regulating B cell proliferation, inducedhe TUNEL-positive

apoptosis in the mesenchyme. Taken together, WNTHAht be involved

in cell differentiation and apoptosis during the otio morphogenesis,
suggesting that WNT5A might play an important rdte the bone formation

and cell death which lead to the smaller tooth fafimn. Based on these
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information, it was considered that WNT5A may effeon the cell
proliferation. While, the PCNA reaction of WNT5Aeated tooth germs
showed no difference from that of PBS-treated toajBrms. This result
indicated that WNT5A might not block the cell pifeliation in both
epithelium and mesenchyme. Several years ago, & heen reviewed that
inceasing proliferation is not the way to induceogth at the organ levil

Taken together, WNT5A might not be a factor dirgctelated with the cell
proliferation, while WNT5A might be involved in thecell differentiation
and the apoptosis during the tooth developmentditen to the smaller tooth

formation.
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V. CONCLUSION
In conclusion, it is suggested that the crown sipé tooth is not

determined by the dental epithelium and the numbérmesenchymal cells,
but by the genetic information in mesenchymal celfsmong many genes
expressed in dental mesenchyme, the expression mimei Wnt5a and
Bmp4 were different between mouse and rat. Especialyntba might be
one of the genes directly related with determininge tooth size by
inducing bone formation and the apoptosis of mebgmal cells,

subsequently resulting in small tooth germ and hoot
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