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ABSTRACT

               A comparative histologic analysis of tissue‐‐‐‐
                 engineered bone using BMSCs, alveolar 

bone cells, and periosteal cells

Objective: The aim of this study was to evaluate the osteogenic potential of bone 

marrow mesenchymal stem cells (BMSCs), alveolar bone cells and periosteal cells in 

tissue‐engineered bone formation, and to compare the effects of platelet‐rich plasma 

(PRP) and platelet‐enriched fibrin glue on bone formation in tissue engineering. 

Methods: BMSCs, alveolar bone cells and periosteal cells were isolated from 

dogs and expanded in vitro, and platelet‐enriched fibrin glue and platelet rich plasma 

(PRP) were prepared using dog’s blood. 12 nude mice were used for comparing donor 

cell‐related differences in a tissue‐engineered bone. The cultured BMSCs, alveolar 

bone cells and periosteal cells were mixed with BMP‐2 and platelet‐enriched fibrin 

glue, and injected into the subcutaneous space on the dorsum of nude mice. On the 

control group, BMP‐2 and platelet‐enriched fibrin glue without cells were injected; In 

addition, 6 nude mice were used for comparing the effects of PRP and 

platelet‐enriched fibrin glue on bone formation in bone tissue engineering. PRP was 

mixed with periosteal cells and BMP‐2, and then the composites were injected into the 

subcutaneous space on the dorsum of nude mice (PRP sides). On the contralateral side 

of the dorsum, platelet‐enriched fibrin glue/periosteal cells/BMP‐2 composites were 

injected. The bone formation was evaluated after 12 weeks. 

Results: Histomorphometric analysis demonstrated that the subcutaneous 

nodules formed in nude mice contained 29.9% newly formed bone in the BMSCs, 
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42.9% newly formed bone in the alveolar bone cells, and 61.1% newly formed bone 

in the periosteal cells; in addition, it contained 26±3% newly formed bone at the 

PRP/periosteal cells/BMP‐2 sides and 61.1±4.6% newly formed bone at the platelet‐
enriched fibrin glue/periosteal cells/BMP‐2 sides. 

Conclusion: The periosteal cells can form bone the most effectively; the 

osteogenic characteristics of platelet‐enriched fibrin glue are superior to PRP; and the 

periosteal cells combining with platelet‐enriched fibrin glue are indicated to enhance 

bone formation in bone tissue engineering.

               

Key words: Tissue engineering, periosteal cells, stem cell, alveolar bone cells, 

fibrin glue, PRP, injectable bone, bone regeneration  
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I．．．．INTRODUCTION

Tissue engineering approach is one of the most promising techniques of bone 

reconstruction, which is composed of cells, biomaterial scaffold and growth factors. 

In tissue‐engineered bone formation, autogenous osteogenic cells are of paramount 

importance for successful bone formation. Several different types of cell have been 

used in tissue‐engineered bone formation.  Among those cells, bone marrow 

mesenchymal stem cells (BMSCs), alveolar bone cells and periosteal cells have been 

studied the most extensively in the oral maxillofacial region.

BMSCs, which were first identified in the pioneering studies of Friedenstein and 

Petrakova, 1 can be isolated from the marrow cavity as well as from the trabecular 

compartment. BMSCs are believed to be multipotent cells that can replicate as 

undifferentiated cells, and have the potential to produce mesenchymal tissues such as 

bone, cartilage, fat, tendon, muscle, and marrow stroma.2 Some studies demonstrated 

BMSCs have capacity of forming new bone when transplanted,3 or cultured in 

scaffolds and implanted into the subcutaneous space in mice and rats.4,5,6 Yamada et 
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al6 investigated the effect of mandibular defect repair using BMSCs in a canine 

model, which resulted in new bone formation.    

Alveolar bone is one of the most active bones in human body. Osteoblast‐like 

cells, which were isolated from alveolar bone chips via explant culture, display the 

osteoblast phenotype in culture.7,8  Xiao et al9,10  investigated cranial defect repair in 

an immunodeficient mouse model using alveolar bone cells in a three‐dimensional 

collagen scaffold. The results indicated that cells derived from alveolar bone could 

induce new bone formation.  

 

Bone tissue engineering using periosteal cells represents another approach. 

Peiosteum is a fibrous connective tissue on the outer surface of bone，it has been 

macroscopically divided into an inner proliferative or cambial layer and an outer 

fibrous layer.11 The cambium layer contains a high number of osteogenic precursor 

cells, which under physiological conditions contribute to normal bone development 

and repair.12 Fell13 firstly reported on the culturing of periosteum and its cells, and 

showed in vitro that the bilayered membrane can form mineralized extracellular 

matrix under the appropriate conditions. Several studies have reported the osteogenic 

potential of periosteal cells in vivo.14,15 For the repair of critical‐size defects in the 

mandible, periosteal cells have been shown to induce bone formation in minipig 

models.16 In addition,  Vacanti’s group17 have firstly published a clinical case in which 

periosteal cells were applied in bone tissue engineering. 

In order to capitalize on the ability of those cells to induce bone formation in 

vivo, it is necessary to investigate donor cell‐related differences in terms of their 

efficiency and efficacy in bone formation.  This approach would provide more 

comprehensive information for the success of cell‐based strategies in tissue 

engineered bone formation.

In recent years, the use of an injectable scaffold has been believed to be ideal 

approach for tissue‐engineered bone formation. The use of an injectable scaffold may 

offer several advantages over the preformed solid scaffold approach.  A fluid material 
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can fill any defect shape, can incorporate various therapeutic agents (e.g., growth 

factors) by simple mixing, does not contain residual solvents that might be present in 

a preformed scaffold, and finally, does not require a complex surgical procedure for 

placement. It has been reported that successful bone formation in vivo in experimental 

animals using injectable biomaterials such as collagen gel,18  polyethylene oxide,19 

fibrin glue,20 and chitosan‐alginate gel 4 etc. Yamada et al.21,22 reported that a bone 

formation could be achieved using platelet‐rich plasma (PRP) gel as a scaffold.21,22,23 

Specifically, PRP has been reported to enhance bone formation, 21,22,23 as it contains a 

large number of platelets that release significant quantities of growth factors known to 

promote wound healing.24,25 However, the use of platelet‐enriched fibrin glue as a 

scaffold for injectable tissue‐engineered bone seems attractive because it contains 

high concentrations of fibrinogen, which can produce a dense fibrin clot with 

sufficient adhesive strength to maintain a required configuration. For these reasons, 

we used platelet‐enriched fibrin glue in injectable tissue‐engineered bone, and 

compared the osteogenic potential of PRP and platelet‐enriched fibrin glue in tissue‐
engineered bone in this study.  
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II．．．．MATERIALS AND METHODS

1. Animals 

    Six mongrel dogs (each weighing more than 15 kg) and eighteen athymic nude 

mice at 6 weeks of age were used in this experiment. All surgical procedures were 

performed under systemic (ketamine, 5 mg/kg and xylazine, 2 mg/kg i.m.) anesthesia. 

2. The isolation and culture of BMSCs, alveolar bone cells and          

    periosteal cells

1) BMSCs isolation and culture 

    Bone marrow samples were collected from the iliums of each dog by aspiration 

using a syringe with a No. 18 G spinal needle. The BMSCs were isolated and cultured 

using a slight modification of a previously reported method.26 Briefly, approximately 

3 ml of the bone marrow samples transferred to a sterile tube containing an equal 

volume of the growth medium, mixed well and centrifuged for 30 min at 1000×g. The 

supernatant fat was removed, and the remanent supernate and interface were collected 

and suspended in 10 ml of growth medium and plated in a 75cm2 flask (NUNC, 

Roskilde, Denmark). (Fig. 1)  These cells were incubated in a humidified atmosphere 

of 95% air and 5% CO2 at 37ºC for 3 days, and the non‐adherent cells were removed 

by replacing the medium. The growth medium consisted of Dulbecco’s Modified 

Eagles Medium (Gibco, Grand island, U.S.A) supplemented with 20% fetal bovine 

serum, 1% nonessential amino acid (Gibco, Grand island, U.S.A), sodium pyruvate 

(100 ng/ml, Gibco), and antibiotics (100 U penicillin and 100 µg/ml streptomycin, 

Gibco).  Once confluence reached 80% of substrate, the cells were dissociated with 

0.05% trypsin–EDTA, divided in two, and transferred into two 75cm2 flask to 

subculture. The BMSCs at passage 3 were used in our studies.

2) Alveolar bone cells isolation and culture 

    Alveolar bone cells used for this study were isolated from alveolar bone according 

to procedure described previously.7,8 Briefly, under disinfected condition, alveolar 
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bone specimens were obtained from the lateral cortex of the mandible of each dog 

using Handpiece drill and pint‐sized osteotome. The specimens were broken into 

small pieces and then used as explants for establishment of cell culture. The bone 

fragments were placed in 25cm2 tissue culture flasks (FALCON, Franklin lakes, 

USA), (Fig.2) and just submerged with culture medium, and incubated at 37 ºC in a 

humidified atmosphere of 95% air and 5% CO2. The culture medium was the same 

medium described above. Culture medium was first changed after 1 week of 

incubation, subsequently changed 2 times a week. Once cells confluence reached 80% 

of substrate, the cells were detached by trypsin treatment and transferred into a 75cm2 

flasks. The cultured alveolar bone cells at passage 3 were used in our studies.

    3) Periosteal cells isolation and culture

    Periosteal cells were isolated from the periosteum as described previously.27 

Briefly, under disinfected condition，Approximately 5 × 20 mm rectangular 

periosteal tissue was separated from the lateral cortex of the mandible of each dog. 

Care was taken to ensure the harvesting of the cambium layer. The periosteum was 

immediately placed in Ringer's buffer and under sterile conditions diced into 2‐mm2 

pieces. Explants were transferred into a sterile tube and washed 3 times with serum‐
free medium. After the final washing, these explants were transferred into 25cm2 

tissue culture flasks with the osteogenic layer facing down and the growth medium 

described above was added moderately. (Fig.3)  The explants were incubated at 37ºC 

in a humidified atmosphere of 95% air and 5% CO2. Culture medium was first 

changed after 1 week of incubation, subsequently changed 2 times a week until cell 

outgrowth created a confluent monolayer. Once cells confluence reached 80% of 

substrate, the cells were detached by trypsin treatment and transferred into 75cm2 

tissue culture flasks. Third passage periosteal cells were used in this study.   

3. Preparation of platelet‐‐‐‐enriched fibrin glue, PRP and thrombin

Platelet‐enriched fibrin glue, PRP and thrombin were prepared using a slight 

modification of a previously described methods.28,29 (Fig. 4) Prior to surgery, 45 ml of 

blood of each dog was drawn using a syringe containing 5ml of 10% sodium citrate as 

an anticoagulant and immediately transferred into a sterile tube. The blood was 
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centrifuged at 327 ×g for 15 min at ambient temperature to remove blood cells. 

Approximately 22.5ml of plasma was obtained from the 45ml of whole blood. the 

22.5ml of plasme was divided into 2.5ml to produce autologous thrombin and 20 ml 

to produce platelet‐enriched fibrinogen solution) and PRP .

     1) Preparation of thrombin 

    To 2.5 ml of the plasma, 22.5 ml of citric acid was added, and then the mixture was 

centrifuged for 5 min at 3000 ×g and at 4 ºC. After discarding the supernate, the 

precipitate was dissolved in 200 µl of 0.1M CaCl2.  The pH was adjusted to pH 7 by 

adding 80 to 100 µl of NaHCO3.  After clot formation, the thrombin solution was 

collected, and was diluted to 10% with a 0.05 M CaCl2.   

2) Preparation of platelet‐‐‐‐enriched fibrinogen

The fibrinogen solution was prepared using by cold ethanol precipitation. To 10 ml 

of the plasma, 300 µl of tranexamic acid and 1000 µl of ethanol were added, and the 

mixture was then placed in an ice‐water bath for 20‐30 min to a temperature of 

approximately 0 ºC. The precipitated fibrinogen was separated by centrifugation at 

3000 ×g for 8 min at 0-4 ºC.  After discarding the supernate, the fibrinogen precipitate 

was redissolved by incubation at 37 ºC, and was diluted to 50% with 0.9% NaCl. 

3) Preparation of PRP 

The remained 10 ml of plasma was centrifuged at 3000 × g for 8 min to separate 

the PRP from the supernatant platelet‐poor plasma (PPP) portions. Platelet counts 

were then conducted for each dog, yielding a mean PRP platelet count of 1,490,000 

(with a range of 1,020,000 to 2,140,000).

4) Gels formation 

Just before application, platelet‐enriched fibrinogen and PRP were activated with 

thrombin solution in ratio 3:1(Vol./Vol.) to form a gel.(Fig. 5) 

4. Surgical procedure  

In order to investigate donor cell‐related differences in a tissue‐engineered bone, 12 

nude mice were assigned to 4 different groups and used for a surgical protocol as 

follows. 

Group 1 (n = 3): Approximately 1×107 of periosteal cells were mixed with 300 µl 
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of the platelet‐enriched fibrinogen solution and 2 µg of rhBMP‐2 (R&D System, 

Minneapolis, USA). The platelet‐enriched fibrinogen/BMSCs/rhBMP‐2 mixture was 

loaded in a 1ml syringe, and then mixed with 100 µl of thrombin solution by 

aspiration to activate fibrinogen to coagulate. An approximately 400 µl of composite, 

viz. the platelet‐enriched fibrin gel containing periosteal cells and rhBMP‐2 was 

formed in the syringe. This composite was injected through an 18‐gauge needle 

subcutaneously into the backs of the nude mice. A total of 6 injections were 

performed (i.e., two injections per mouse). (Fig. 6)

Group 2 (n = 3): This group of nude mice was injected with 400 µl of the 

platelet‐enriched fibrin gel containing 1×107 of the alveolar bone cells and 2 µg of 

rhBMP‐2.  

Group 3 (n = 3): This group of nude mice was injected with 400 µl of the 

platelet‐enriched fibrin gel containing 1×107 of the periosteal cells and 2 µg of 

rhBMP‐2. 

Group 4 (n = 3): As a controls, this group of nude mice was injected with 400 µl of 

the platelet‐enriched fibrin gel containing 2 µg of rhBMP‐2 alone.

In addition, to compare the effects of PRP and platelet‐enriched fibrin glue on 

bone formation in bone tissue engineering, 6 nude mice were used for a surgical 

protocol as follows. 

Approximately 1×107 of periosteal cells were mixed with 300 µl of PRP and 2 µg 

of rhBMP‐2. The PRP/BMSCs/rhBMP‐2 admixture was loaded in a 1ml syringe, and 

mixed with 100 µl of thrombin solution by aspiration to activate fibrinogen to 

coagulate. An approximately 400 µl of composite, viz. the PRP gel containing 

periosteal cells and rhBMP‐2 formed in the syringe. The composites were injected 

through an 18‐gauge needle subcutaneously into the backs of the nude mice (PRP 

side). On the contralateral side of the dorsum, 400 µl of the platelet‐enriched fibrin gel 

containing 1× 107 of periosteal cells and 2 µg of rhBMP‐2 were injected (fibrin side).  

A total of 12 injections (n = 6) were performed (two injections per mouse). 

5. Sample preparation  

All of the animals were sacrificed at 12 weeks after the injections to harvest the 



- 8 -

specimens. The specimens were fixed in 10% buffered formalin, decalcified, and then 

cut through their middle plane. Histological sections were stained with haematoxylin 

and eosin, and the sections were examined under a light microscope.  

6. Histomorphometry

Computer‐assisted histomorphometric measurements of the newly formed bone 

were obtained using an image analysis system (IBAS, Contron, Erching, Germany). 

The regenerated bone was distinguished by the morphology of the trabecular bone.  

The perimeter around the newly formed bone was traced, and the enclosed area was 

determined in mm2 using image analysis software.  The percentages of the newly 

formed bone within the specimen outline were then calculated. 

7. Statistical analysis

For the histomorphometric analysis, significant differences in the amount of new 

bone formed in response to the different cells were identified by ANOVA (analysis of 

variance), and Wilcoxon’s signed rank test for paired samples was used to calculate 

statistical differences between PRP/periosteal cells/BMP‐2 sides and platelet‐enriched 

fibrin glue/periosteal cells/BMP‐2 sides. Data were considered significant with a p 

value < 0.05, and statistical analysis was performed using a statistical software 

package (SPSS for Windows).
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III.  RESULTS

After injecting platelet‐enriched fibrin glue/BMSCs/BMP‐2 composites into first 

group of nude mice, platelet‐enriched fibrin glue/alveolar bone cells/BMP‐2 

composites into the second group of nude mice, platelet‐enriched fibrin 

glue/periosteal cells/BMP‐2 composites into the third group of nude mice, 

subcutaneous nodules were noted to have formed by 12 weeks. Those formed nodules 

were hard and resisted compression. Upon dissection from the subcutaneous tissue, 

the composite nodules also had well‐defined margins. Their volume was 150±25 µl at 

the platelet‐enriched fibrin glue/MSCs/BMP‐2 groups, 70±18 µl at the platelet‐
enriched fibrin glue/alveolar bone cells/BMP‐2 groups, and 185±15 µl at the platelet‐
enriched fibrin glue/periosteal cells/BMP‐2 groups, (Fig. 7) demonstrating that there 

were significant differences in the volume of the nodules formed in response to the 

different cells. However, after injecting platelet‐enriched fibrin glue/BMP‐2 

composites into the fourth group of nude mice, the composites failed to form nodules, 

all of the composites were gradually absorbed and completely vanished within 2 

month.

A histological examination of the nodules from different donor cell groups revealed 

that they were encapsulated with a fibrous capsule and there was trabecular bone as 

well as an amorphous calcified matrix in the nodules of all samples. The trabeculae 

contained many osteocytes and were regularly lined with many osteoblasts, indicating 

bone‐forming activity. (Fig. 9)  In the periphery of new‐formed bone, a laminar 

pattern can be observed to be similar to normal bone. (Fig. 10)  There was no 

evidence of inflammation or foreignbody reaction in the host tissue adjacent to the 

new bone, and there was no evidence of cartilage generation. The percentages of 

newly formed bone in response to different cells, were 29.9±5.2% in the platelet‐
enriched fibrin glue/MSCs/BMP‐2 implants, 42.9±4.3% in the platelet‐enriched fibrin 

glue/alveolar bone cells/BMP‐2 implants, 61.1±4.6% in the platelet‐enriched fibrin 

glue/periosteal cells/BMP‐2 implants, (Fig. 8) demonstrating that there were 

significant differences in the amount of new bone formed in response to different cells 

(p<0.05). (Fig. 11)
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After injecting the PRP/periosteal cells/BMP‐2 composites into one side of each 

mouse’s dorsum and injecting platelet‐enriched fibrin glue /periosteal cells/BMP‐2 

into the contralateral side, subcutaneous nodules were noted to have formed by 12 

weeks, and these nodules were hard and resisted compression. Upon dissection from 

the subcutaneous tissue, the composite nodules also had well‐defined margins. The 

nodules’ volumes were 55±18 µl at the PRP/periosteal cells/BMP‐2 sides and 

175±17µl at the platelet‐enriched fibrin glue/periosteal cells/BMP‐2 sides 

respectively. This finding demonstrated that there were significant differences in the 

volume of the nodules formed in response to the different gels. 

A histological examination of the nodules from both PRP and fibrin sides 

revealed that they were encapsulated with a fibrous capsule, and there was trabecular 

bone in the nodules of all the samples. The trabeculae contained many osteocytes and 

were regularly lined with many osteoblasts, indicating bone‐forming activity.  At the 

periphery of the nodules, the bone had a laminar pattern similar to normal bone. There 

was no evidence of inflammation or foreign‐body reaction in the host tissue adjacent 

to the new bone, and there was no evidence of cartilage generation.  The percentages 

of trabecular bone were: 36±3% at the PRP/periosteal cells/BMP‐2 sides and 60±5.3% 

at the platelet‐enriched fibrin glue/periosteal cells/BMP‐2 sides. (Fig.12) This 

difference was statistically significant (p<0.05).  
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IV.  DISCUSSION

Different types of cell have been used in tissue‐engineered bone formation, 

including bone marrow stem cells,30,31 periosteal cells,32,33 skeletal muscle cells34 and 

cells derived directly from bone.9,35,36  Kasperk et al37 reported that there are 

differences between bone cells from different skeletal sites with respect to phenotype 

and cellular proliferation.  One might expect that there would be donor cell‐related 

differences in terms of their efficiency and efficacy in bone formation.  To our 

knowledge, no study has yet directly addressed this issue.  This study evaluated bone 

marrow mesenchymal stem cells, alveolar bone cells and periosteal cells for their in 

vivo potential to form bone.  There were significant differences in the amount of new 

bone formed in response to different cells, suggesting that there are donor cell‐related 

differences in a tissue‐engineered bone formation.  An interesting finding in this study 

was that periosteal cells formed bone the most effectively. An explanation of this 

observation might be that periosteal cells possess the highest osteogenic potential.  

Vacanti et al17 were the first to publish a clinical case in which periosteal cells 

were applied in bone tissue engineering for replacement of an avulsed phalanx.  

Schmelzeisen et al38 reported clinical cases in which these cells were applied for 

augmentation in the posterior maxilla prior to implant insertions, and reported that the 

harvesting procedure of the periosteum at the mandibular angle via an intraoral 

mucosal incision under local anesthesia was tolerated well by all patients.  When we 

consider that periosteal cells possess high osteogenic potential and are easy to obtain, 

one might expect that bone engineering using periosteal cells will offer great potential 

for craniomaxillofacial surgery and bone reconstruction procedures in other parts of 

the skeleton

The use of BMSCs for bone regeneration is in vogue.39,40  Their multilineage 

differentiation potential, their relative availability in terms of cell harvesting, and their 

capacity to undergo extensive replication without a loss of that multipotential capacity 

make them an attractive cell source for cell‐based therapeutic approaches.2,41  Several 
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experiments have demonstrated that BMSCs can be induced into osteoblasts.2,39  

However, directing these cells into osteogenic differentiation is still a major obstacle.9  

When specifically comparing the bone formation of BMSCs with periosteal cells, this 

study found that BMSCs formed significant less bone quantitatively and qualitatively 

as compared to periosteal cells.

Bone cells derived from intraoral osseous tissue proved to be an important source 

of the osteoprogenitor cells required for alveolar bone healing.7 Alveolar bone is an 

easily accessible site for harvesting bone cells in the oral cavity.  In particular, sites 

affected by periodontitis, alveolar cysts, atrophic maxilla and sites around 

osseointegrated implants are believed to be prime areas where alveolar bone cells 

with the same origin and physiology as the damaged alveolar bone could be used.7,8,9  

However, the volume of newly formed tissue was much smaller than the original size 

of the implants (only 18%).  This is believed to have been caused by the faster 

degradation of the fibrin glue as compared to the capacity of the alveolar bone cells to 

form new bone.

In recent years, the use of an injectable scaffold has been believed to be ideal 

approach for tissue‐engineered bone formation. There have been reports of successful 

in vivo bone formation in experimental animals using several injectable biomaterials 

as scaffold.4,18,19,20,21,22,23,42  Yamada et al.21,22 reported that a bone formation could be 

achieved using platelet‐rich plasma (PRP) gel as a scaffold,21,22,23 and PRP has been 

reported to enhance bone formation. However, the use of platelet‐enriched fibrin glue 

as a scaffold for injectable tissue‐engineered bone seems attractive because it contains 

high concentrations of fibrinogen, which can produce a dense fibrin clot with 

sufficient adhesive strength to maintain a required configuration. This study 

determined whether the combination of platelet‐enriched fibrin glue and periosteal 

cells results in better bone formation than does the combination of PRP and periosteal 

cells. The present study showed that when a combination of platelet‐enriched fibrin 

glue and periosteal cells was used in bone tissue engineering, the volume of the new 

bone formation was significantly higher than in the group treated with a combination 

of PRP and periosteal cells. In addition, it showed significantly higher percentages of 
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the newly formed bone within the specimen outline of the platelet‐enriched fibrin glue 

and periosteal cells composites as compared to those of PRP and periosteal cells 

composites.  This suggests that periosteal cells exhibit a more positive effect when 

combined with platelet‐enriched fibrin glue, and this is probably due to the properties 

of the platelet‐enriched fibrin glue. Thorn et al.28 reported that the concentration of 

fibrinogen in platelet‐enriched fibrin glue was approximately 12 times that found in 

PRP. The fibrin matrices might encourage periosteal cells adhesion, proliferation, and 

differentiation, thus eliciting bone formation. In addition, when we consider that 

fibrinogen concentrations have an effect on the degradation of the glue,43 platelet‐
enriched fibrin glue had a slower degradability rate than PRP.  This property will 

allow the retention of growth factors and cells for a longer period of time and thus 

will produce more bone in the platelet‐enriched fibrin glue than in the PRP.  Today, 

bone morphogenetic proteins are recognized as being key factors in the field of bone 

tissue engineering.44 However, the practical application of these proteins will depend 

on the carrier system used for delivery to the site of the hard tissue repair or 

restoration.44,45   This proteins need to be released continuously over a sufficiently 

long period of time to induce bone formation.46  Based on the present animal 

experiment, the platelet‐enriched fibrin glue appeared to act as an effective delivery 

system for BMP‐2.

Fibrin glues were first used to establish hemostasis at the beginning of the last 

century.  In 1940, Young and Medawar47 mixed bovine thrombin with plasma 

fibrinogen to produce the first biologic adhesive.  Several commercial fibrin glues are 

presently available. If these products are compared to the fibrin glue prepared using 

the technique described in this study, the major incentive for using the fibrin glue is 

that it contains high concentrations of platelets, whereas the platelets are not present 

in the commercial products.  Therefore, platelet‐enriched fibrin glue offers a 

significant additional benefit in accelerating wound healing, which is aided by the 

presence of high concentrations of growth factors in the platelets.48,49,50   Growth 

factors released from the platelets have been shown to include platelet‐derived growth 

factor, transforming growth factor ß, platelet‐derived epidermal growth factor, platelet

‐derived angiogenesis factor, insulin‐like growth factor 1, and platelet factor 4.24,25  
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These growth factors are known to promote cell proliferation, cell differentiation, 

motility, and matrix synthesis, either alone or together, by binding to the specific cell 

surface receptors.51  It was assumed that growth factors, including BMP‐2 and others 

released from the platelets, might interact with the neighboring periosteal cells to 

induce them to proliferate and differentiate into osteoblasts, and to subsequently form 

new bone.  More basic research investigating the mechanism by which this occurs is 

clearly necessary in order to capitalize on the ability of growth factors to enhance 

bone formation in vivo.
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V．．．．CONCLUSION

Comparing the osteogenic potential of BMSCs versus alveolar bone cells versus 

periosteal cells in the field of bone engineering, our results indicated that periosteal 

cells can form bone the most effectively. Comparing the osteogenic potentials of PRP 

and platelet‐enriched fibrin glue in bone tissue engineering, the osteogenic 

characteristics of platelet‐enriched fibrin glue show being superior to PRP. Finally, 

periosteal cells combining with platelet‐enriched fibrin glue are indicated to enhance 

bone formation in bone tissue engineering.
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                        Figure 1. The harvest of bone marrow (A) and the 

                                        primaryculture of BMSCs (B).

Figure 2. The preparation of alveolar bone chip (A) and the 

primary culture of alveolar bone cells (B). 

 

 

Figure 3. Excised periosteum (A) and primary culture of 

periosteal cell (B).
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Figure 4. Illustration of preparation of thrombin，platelet‐enriched  

fibrinogen and PRP.
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Figure 5. Comparison of the gels formed from the platelet‐enriched                 

            fibrin glue (A) or the PRP (B).

                    Figure 6. The subcutaneous injection of implants. 

A: Subcutaneous injection. B: Immediate status after injection.
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Figure 7.  Macroscopic comparison of specimens.

The specimen was developed from the platelet‐enriched fibrin glue/MSCs/BMP‐2 

admixture (A), platelet‐enriched fibrin glue/alveolar bone cells/BMP‐2 admixture (B) 

and platelet‐enriched fibrin glue/periosteal cells/BMP‐2 admixture (C). 

  

Figure 8.  Histological comparison of specimens. (HE, ×40)

The specimen was developed from the platelet‐enriched fibrin glue/MSCs/BMP‐2 

admixture (A), platelet‐enriched fibrin glue/alveolar bone cells/BMP‐2 admixture (B) 

and platelet‐enriched fibrin glue/periosteal cells/BMP‐2 admixture (C).
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    Figure 9. The specimen showing the trabeculae containing 

  many osteocytes. 

   Figure 10.  The specimen showing a laminar pattern.
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Figure 11. Histomorphometric data for the percents of the newly 

formed bone within the specimens. 

(1) Fibrin glue/MSCs/BMP‐2,  (2) Fibrin glue/alveolar bone cells/BMP‐2,  

(3) Fibrin glue/periosteal cells/BMP‐2.  Data are presented as means±SD, 

N= 6;  * : P < 0.05.

 

A 
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Figure 12.  Histological comparison of specimens. (HE, ×4) 

 The specimen was developed from the PRP/periosteal cells/BMP‐2 mixture (A)      

and the platelet‐enriched fibrin glue/periosteal cells/BMP‐2 mixture (B).
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국문요약국문요약국문요약국문요약

연구목적연구목적연구목적연구목적:::: 조직공학을 이용한 골 형성 방법에서 골세포의 종류에 따라 골 

형성에 차이가 있는지를 평가하기 위하여 골수줄기세포, 치조골세포, 

골막세포의 골형성 능력을 비교하고자 하였고 또한 세포운반체의 종류에 

따른 차이가 있는지 평가하기 위하여 platelet‐rich plasma (PRP)와 

platelet‐enriched fibrin glue의 골 형성효과를 비교하고자 하였다.

방법방법방법방법:::: 성견에서 골수줄기세포, 치조골세포, 골막세포를 분리 배양하고 

동일 성견의 혈액을 채취하여 platelet‐enriched fibrin glue 와 PRP를 

제조하였다. 배양한 골수줄기세포, 치조골세포, 골막세포를 각각 BMP‐2 와 

platelet‐enriched fibrin glue과 혼합하여 9마리의 누드마우스를 3그룹으로 

나누어 누드마우스의 등에 피하 주사하였고 대조군(3마리)에서는 세포 없이 

BMP‐2와 platelet‐enriched fibrin glue를 혼합하여 주사하였다. 그리고 

PRP와 platelet‐enriched fibrin glue의 골 형성 효과를 비교하기 위하여 

PRP에 골막세포와 BMP‐2를 혼합하여 6마리의 누드마우스 등의 한쪽에 피하 

주사하였고 등의 다른 쪽에는 platelet‐enriched fibrin glue에 골막세포와 

BMP‐2를 혼합하여 피하 주사하였다. 주입 12주후 골 형성을 평가하였다. 

결과결과결과결과:::: 누드마우스 피하에 형성된 결절을 조직형태 계측학적 분석을 

시행한 결과 골수줄기세포에서 29.9±5.2%, 치조골세포에서 42.9±4.3%, 

골막세포에서 61.1±4.6%의 신생골이 형성되였고 PRP/골막세포/BMP‐2 

복합체를 주입한 군에서는 36±3%, platelet‐enriched fibrin 

glue/골막세포/BMP‐2 복합체를 주입한 군에서는 60±5.3%의 신생골이 

형성되였다. 

결론결론결론결론:::: 골수줄기세포, 치조골세포 및 골막세포를 이용하여 조직공학 

방법으로 골형성 능력을 비교해 볼 때 골막세포가 가장 효과적이였고, 

platelet‐enriched fibrin glue 가 PRP 보다 더 우수하였다. 그러므로 본 

연구에서는 조직공학을 이용하여 골형성을 높이기 위하여 골막세포의 이용과 

platelet‐enriched fibrin glue의 이용을 제안한다.
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