4종 전자근관찰측정기의 정확성과 일관성에

관한 in vitro 연구

연세대학교 대학원

치의학과

조 재 현
4종 전자근관장측정기의 정확성과 일관성에
관한 in vitro 연구

지도교수 이 승 종

이 논문을 석사 학위논문으로 제출함

2005년 12월 일

연세대학교 대학원

치의학과

조 재 현
조재현의 석사 학위논문을 인준함

심사위원 ____________인
심사위원 ____________인
심사위원 ____________인

연세대학교 대학원

2005년 12월 일
감사의 글

인턴으로 보존과를 처음 들어온 때가 엇갈리게 떨어지면서 보존과를 떠날 때가 되니 새삼 시간이 빠르다는 것을 느낍니다. 3년 동안 보존과에서 배웠던 많은 지식과 임상 경험과 더불어 마지막 결실로 이 논문이 완성되었습니다.

먼저 3년 동안 부족한 저를 이끌어 주시고 처음부터 끝까지 실험과 논문을 지도해 주신 이승종 교수님께 깊은 감사를 드립니다. 바쁘신 와중에도 논문을 세세하게 고쳐주신 금기연 교수님, 논문의 부족한 면을 정확하게 짚어주신 김덕원 교수님께도 감사드립니다.

아울러 수련기간 동안 따뜻한 격려와 가르침을 주신 이찬영 교수님, 노병덕 교수님, 박성호 교수님께 감사드립니다. 또 수련의들 가까이에서 항상 힘이 되어주셨던 김의성 교수님, 정일영 교수님께도 감사드립니다. 함께 의료생활을 했던 1년차 선생님들, 특히 3년 동안 동고동락하며 힘든 수련생활을 잘 해낼 수 있게 도와준 보존과 동기들에게 정말 고맙다는 말씀을 전합니다.

마지막으로 항상 저를 걱정해 주시고 힘이 되어 주시는 부모님과 언니, 동생께 진심어린 감사를 드립니다.

2005년 12월

저자 쓴
차 례

그림 차례 ... ii
표 차례 ... iii
국문 요약 ... iv
I. 서론 ... 1
II. 재료 및 방법 ... 6
 가. 연구대상 ... 6
 나. 연구방법 ... 6
 1) 4개의 전자근관장측정기를 이용한 0.5지점과 Apex지점에서 길이 측정................ 7
 2) File 고정 후 주근단공과 file tip 사이의 실제거리 측정............................... 8
III. 결과 ... 10
IV. 고찰 ... 14
V. 결론 ... 20
VI. 참고문헌 ... 21
영문 요약 ... 26
부록 ... 28
그림 차례

Fig 1. Alginate model ... 7
Fig 2. Digital caliper를 사용한 길이 측정 7
Fig 3. Image Proplus를 사용한 file tip과 주근단공 사이의 거리 측정 9
Fig 4. Box plots: 0.5지점과 Apex지점에서 file tip과 주근단공 사이의 거리 ... 13
표 차례

Table 1. 근관장 측정 지점에서 주근단공부터 file tip까지의 실제거리 ... 11
Table 2. file tip이 주근단공의 ±0.5mm(임상적 허용범위)내에 있는 백분율... 11
Table 3. 각 0.5지점과 Apex지점에서 주근단공과 file tip사이의 거리 .. 12
국문 요약

4종 전자근관장측정기의 정확성과 일관성에 관한 in vitro 연구

이번 연구의 목적은 서로 다른 4개의 전자근관장측정기의 정확성을 측정하고 각각 0.5지점과 Apex지점에서의 일관성을 비교하고자 한 것이다.

40개의 발치된 상하악 소구치를 대상으로 치수강 개방 후 alginate model에 고정시키고 근관을 측정하였다. 사용된 전자근관장측정기는 Root ZX (Morita, Japan), SmarPex (META, Korea), Elements Diagnostic Unit (SybronEndo, USA), E-Magic Finder Deluxe ((주)에스덴티, Korea)이다. 먼저 모든 치아에서 4개의 전자근관장측정기를 사용하여 0.5지점과 Apex지점에서 근관을 측정하여 한 치아 당 8개의 측정값을 얻었다. 다음으로 치아를 각 전자근관장측정기당 10개씩 4개의 그룹으로 나누어, 각각 제조사의 지시대로 Root ZX, Elements Diagnostic Unit 및 E-Magic Finder Deluxe는 “0.5”지점에서, SmarPex는 “Apex”지점에서 filetip 치아에 cement로 고정시켰다. 이후 근관0.4mm를 삭제하여 100배율의 Image ProPlus로 관찰하여 file tip에서 근관주변의 외연까지의 실제거리를 측정한 후, 4개의 전자근관장측정기의 0.5지점 및 Apex지점에서 file tip과 근관주변 사이의 거리를 계산하여 비교하였다.

그 결과 Root ZX와 E-Magic Finder는 실험군 100%, SmarPex는 90%, Diagnostic Unit는 70%에서 근관주변과의 거리가 임상적 허용범위인 ±0.5mm내에 있었다. 또한 Root ZX, E-Magic Finder는 0.5지점과 Apex지점에서 비슷한 일관성을 보였으며 SmarPex와 Diagnostic units는 Apex지점에서 0.5지점보다 더 높은 일관성을 보였다.

전자근관장측정기는 근관내의 조건에 관계없이 근점형착부에서 항상 일정한 거리를 제한해 낼 수 있는 일관성이 중요하므로, 이렇게 0.5지점 또는 Apex지점에서의 일관성이 증명된다면 실제 임상에서 사용할 때 전자근관장에서 일정한 거리를 가감하여 사용할 수 있다.

핵심되는 말: 전자근관장측정기, 근관장, 일관성, 정확성

- iv -
4종 전자근관장측정기의 정확성과 일관성에

관한 in vitro 연구

<지도 교수: 이승종>

연세대학교 대학원 치의학과

조 재현

I. 서론

성공적인 근관치료를 위해서는 근관내의 곰사된 치수잔사 및 세균을 제거하고 근관을 삼차원적으로 밀폐하는 것이 중요하며 이를 위해 무엇보다 정확한 근관장의 설정이 우선되어야 한다. 일찍이 Grove (1930)는 근관이 충전되어 하는 적절한 지점으로 상아백악질경계점을 언급하였으며, Ricucci (1998)는 근관내의 가장 좁은 부위인 근관협착부에서 가장 적절한 창상위치가 일어날 수 있다고 보고 이
부위를 근관세정 및 충전의 종결점으로 해야 한다고 말하였다.

이러한 정확한 근관장 설정을 위한 한 방법으로 Suzuki (1942)는 구강점막과 근관내에 삽입된 기구 사이의 전기저항이 일정한 값을 가지므로 이를 통해 근관장을 측정할 수 있다는 이론을 제시하였다. 이러한 이론을 바탕으로 Sunada (1962)는 구강점막과 치주조직 사이의 전기저항이 사람의 연령, 치아의 모양이나 근관의 직경과 상관없이 6.0kΩ로 일정한 것을 밝혀내어 이를 근간으로 전자근관장측정기를 개발하였다. 하지만 저항값을 이용한 전자근관장측정기는 출혈이나 근관내의 전해질 용액에 의해 불계 측정되는 단점이 있었다.

다음으로 5kHz와 1kHz의 두 개의 주파수간의 impedance의 차이를 이용하여 근관장 측정하는 기기인 Endex (Osada Electric Co., Japan)가 개발되었다. 이
는 근절협착부에서 가장 큰 impedance 차이를 보인다는 원리를 이용한 것으로서, Frank (1993)에 의하면 Endex는 습한 근관내에서 사용하였을 때 89.64%에서 근관협착부의 ±0.5mm 범위내에 존재하는 정확성을 보였다. 하지만 Endex는 사용시에 근관마다 매번 근관내 용액의 impedance에 따른 보정을 해야 하는 번거로움이 있었다.

Kobayashi (1991)는 두 개의 서로 다른 주파수로 근관내의 impedance를 동시에 측정했을 때 두 개의 impedance간의 비율은 근관내의 전해질 용액에 관계없이 항상 일정한 값으로 가지게 되므로, impedance간의 비율을 이용하여 여러 전해질 용액 하에서도 정확한 측정이 가능하다는 것을 실험적으로 증명하여 발표하였다. 이에 따르면 근관벽의 정전용량(electronic capacitance)은 근단공보다 매우 낮으므로 file tip이 근절협착부에 가까워질수록 두 개의 impedance의 비율이 크게 감소하여 근관내 file의 위치를 나타내는데 사용할 수 있다. 이러한 원리에 0.4kHz와 8kHz의 두 개의 주파수의 impedance의 비율에 의해 근관내의 file 위치를 표현하는 Root ZX (J. Morita Corp., Japan)가 개발되었다. Root ZX에 관한 연구들을 살펴보면, Shabahang (1996)은 96.2%, Dunlap (1998)은 82.3%, Baumgartner (2003)는 90.7%에서 전자근관장이 근절협착부의 ±0.5mm범위내에 있었다고 보고하여 Root ZX의 높은 정확성이 증명된 바 있다. 또한 근관내 용액의 차이에 따른 Root ZX의 정확성을 평가하는 연구에서, Meares (2001)는 2.125%와 5.25%의 sodium hypochlorite하에서 측정한 근관장을 실제 근관의 길

또다른 전자근관장측정기인 Elements Diagnostic Unit (SybronEndo, USA)는 0.5kHz와 4kHz의 두 개의 주파수를 사용하였으며, impedance가 아닌 저항값과 정전용량을 측정하여 별도의 수학적 계산없이 근관내 file tip의 위치를 알아낼 수 있도록 하였다. 따라서 다른 기기들이 impedance를 측정하여 복잡한 수학적 계산을 거치면서 측정값 오류가 발생하게 되는 단점을 보완하였으며, 근관내 용액에 관계없이 보다 정확하고 일관성 있는 측정이 가능하도록 하였다.

국내에서 개발된 SmarPex (META Corp., Korea)는 용액의 전도성에 따라 달라지는 두 신호의 전압 차이를 자동 보정하여 정확성의 향상을 기한 기기이다. Lee 등 (2002)에 의하면 SmarPex를 사용하여 근관장 측정 후 file을 고정하여 상아백 악질경계와의 거리를 관찰한 결과 92%에서 ±0.5mm이내의 범위에 있는 임상결과를 보였다. 또한 이번 연구에 사용된 다른 국산제품인 E-Magic Finder Deluxe (S-Denti, Korea)는 0.5kHz와 5kHz의 주파수를 이용한 주파수 의존형 전자근관장 측정기이다.

그동안 대부분 전자근관장측정기의 in vivo 및 in vitro 실험은 측정치가 임상적 허용치인 근절협착부의 ±0.5mm이내의 범위에 들어가는 백분율을 구하여 정
확성을 평가하는 방법을 사용하였다. 하지만 전자근관장측정기는 이러한 정확성
뿐만 아니라 근관내의 조건에 관계없이 근침협착부에서 항상 일정한 거리를 재
현해 낼 수 있는 일관성(consistency)이 중요하다. 이러한 일관성이 증명된다면
실제 임상에서 전자근관장측정기를 사용하여 얻은 근관장에서 일정한 거리를 가
감하여 사용할 수 있게 된다. 또한 대부분의 전자근관장측정기가 0.5지점을 가리
킬 때를 기준으로 근관장을 측정하도록 되어 있지만, 실제로 기기가 주근단공 부
위인 Apex지점이 아닌 근침협착부인 0.5지점을 더 일관성 있게 찾아내는지 평가
해 볼 필요가 있다. 이번 연구에 사용한 4가지 기기 중 Root ZX, Elements
Diagnostic Unit 및 E-Magic Finder Deluxe는 0.5지점을, SmarPex는 Apex지점을
제조사에서 근관장 측정의 기준점으로 제시하고 있다.
따라서 본 연구는 alginate model상에서 서로 다른 4개의 전자근관장측정기를
사용하여 얻은 측정치의 정확성(accuracy)을 평가하고 각각 0.5지점과 Apex지점
중 어느 지점에서 더 일관성(consistency)을 보이는지를 비교하고자 하였다.
Ⅱ. 재료 및 방법

가. 연구대상

40개의 발치된 전천한 상악 또는 하악 제1, 2소구치를 대상으로 하였다. 발치된 치아는 실험기간동안 생리식염수에 보관하였다.

나. 연구방법

먼저 치아의 치수강을 개방한 후 교합면을 치아의 장축에 직각으로 작각하고 근관에 #10 K-file을 삽입하여 근단공 개방을 확인한 후, Gates-Glidden drill 2, 3번을 사용하여 coronal flaring을 시행하였으며 saline으로 근관을 세척하였다.

Kaufman 등 (2002)이 제시한 alginate model (alginate와 saline을 9g/20ml의 혼수비로 혼합, Fig. 1)에 치아를 고정시키고 치수강 내 수분만을 air syringe로 제거하고 다이아 근관을 건조시키지는 않았다.

전자근관장측정기는 다음의 4가지를 사용하였다.

- Root ZX (Morita, Tokyo, Japan)
- SmarPex (META, Seoul, Korea)
- Elements Diagnostic Unit (SybronEndo, CA, USA)
- E-Magic Finder Deluxe ((주)에스덴티, Seoul, Korea)
1) 4개의 전자근관장측정기를 이용한 0.5지점과 Apex지점에서의 길이 측정

40개의 치아를 10개씩 각각의 전자근관장측정기를 고정시킬 4개의 그룹으로 나누었다. 먼저 모든 치아에서 4개의 전자근관장측정기를 "0.5"지점 및 "Apex"지점에서의 길이를 측정하여 한 치아당 8개의 측정치를 얻었다. 이는 전자근관장측정기를 alginate model에 연결하고 file을 근관내로 전진하여 0.5지점 및 Apex지점에서 각각 file의 rubber stop을 교합면에 고정한 후 file을 제거하고 현미경하에서 digital caliper (Mitutoyo Corp., Japan)를 사용하여 rubber stop까지의 길이를 2번씩 측정하는 방법으로 하였다 (Fig. 2). 이때 file은 근관장만큼 들어가기 가장 큰 직경의 file을 선택하였으며 대부분이 #15과 #25사이 크기였다.
2) File 고정 후 주근단공과 file tip 사이의 실제거리 측정

각각의 그룹에 해당하는 전자근관장측정기를 사용하여 file을 Light curing glass ionomer cement로 치아에 고정시켰다. 고정시키는 위치는 각각의 제조사에서 지시한 근관장 측정 방법대로 Root ZX, Elements Diagnostic Unit 및 E-Magic Finder Deluxe는 “0.5”지점으로, SmarPex는 “Apex”지점으로 하였다. 이 때 cement가 광중합되는 동안 전자근관장측정기가 원하는 지점을 가리키는지 재 확인하였다.

이후 치아의 주근단공과 고정시킨 file 사이의 거리를 측정하기 위해 치아의 근단공 부위를 Methylene blue로 염색한 후, 치근단부 4mm를 10배율의 현미경(Carl Zeiss OPMI Pico)하에서 치근의 장축 방향으로 diamond bur를 사용하여 file tip이 어느 정도 노출될 때까지 삭제하였다. 그리고 15번 scalpel blade로 남아있는 치질을 조심스럽게 제거하여 file tip을 완전히 노출시켰다. 이를 100배율의 Image ProPlus (Media Cybernetics Inc., Silver Spring, MD, USA)를 사용하여 file tip에서 주근단공의 외연까지의 실제거리를 측정하였다 (Fig. 3).
Fig. 3. Image ProPlus를 사용한 file tip과 주근단공 사이의 거리 측정

이렇게 file 고정 후 주근단공까지의 실제거리를 측정한 값과 0.5지점과 Apex 지점에서 전자근관장을 측정한 값을 서로 비교하여, 4개의 전자근관장측정기의 0.5지점 및 Apex지점에서 file tip과 주근단공 사이의 거리를 계산하였다.
III. 결과

Table 1은 각 전자근관측정기를 사용하여 제조사에서 지시한 근관측 측정 기준점에서 file을 고정시킨 후 Image ProPlus를 이용하여 주근단공에서 file tip까지의 실제거리를 관찰하여 측정한 값이다. (-)값은 주근단공보다 file의 tip이 더 짧은 경우를 의미하며, (+)값은 주근단공보다 file의 tip이 더 긴 경우를 의미한다. 40개 치아 모두에서 file tip이 주근단공보다 짧게 위치하는 것으로 관찰되었다. 각 기기의 평균은 Root ZX는 -0.24mm, SmarPex는 -0.28mm, Diagnostic Unit는 -0.65mm, E-Magic Finder는 -0.28mm를 나타내었다. Root ZX와 E-Magic Finder는 실험군 100%, SmarPex는 90%, Diagnostic Unit는 70%에서 file tip과 주근단공 사이의 거리가 임상적 허용범위인 ±0.5mm내에 있었다 (Table 2).
Table 1. 근관장 측정 지점에서 주근단공에서 file tip까지의 실제거리 (mm)

<table>
<thead>
<tr>
<th>치아번호</th>
<th>Root ZX</th>
<th>SmarPex</th>
<th>Diagnostic Unit</th>
<th>E-Magic Finder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.17</td>
<td>-0.27</td>
<td>-0.23</td>
<td>-0.21</td>
</tr>
<tr>
<td>2</td>
<td>-0.10</td>
<td>-0.21</td>
<td>-0.22</td>
<td>-0.52</td>
</tr>
<tr>
<td>3</td>
<td>-0.23</td>
<td>-0.31</td>
<td>-0.32</td>
<td>-0.24</td>
</tr>
<tr>
<td>4</td>
<td>-0.19</td>
<td>-0.12</td>
<td>-1.27</td>
<td>-0.42</td>
</tr>
<tr>
<td>5</td>
<td>-0.47</td>
<td>-0.18</td>
<td>-1.25</td>
<td>-0.18</td>
</tr>
<tr>
<td>6</td>
<td>-0.20</td>
<td>-0.38</td>
<td>-0.26</td>
<td>-0.27</td>
</tr>
<tr>
<td>7</td>
<td>-0.33</td>
<td>-0.41</td>
<td>-0.37</td>
<td>-0.30</td>
</tr>
<tr>
<td>8</td>
<td>-0.22</td>
<td>-0.16</td>
<td>-1.16</td>
<td>-0.13</td>
</tr>
<tr>
<td>9</td>
<td>-0.24</td>
<td>-0.78</td>
<td>-0.42</td>
<td>-0.40</td>
</tr>
<tr>
<td>10</td>
<td>-0.28</td>
<td>0</td>
<td>-0.78</td>
<td>-0.43</td>
</tr>
<tr>
<td>평균</td>
<td>-0.24</td>
<td>-0.28</td>
<td>-0.65</td>
<td>-0.28</td>
</tr>
<tr>
<td>표준편차</td>
<td>0.10</td>
<td>0.21</td>
<td>0.49</td>
<td>0.12</td>
</tr>
<tr>
<td>범위</td>
<td>0.37</td>
<td>0.78</td>
<td>1.31</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Table 2. file tip이 주근단공의 ±0.5mm(임상적 허용범위) 내에 있는 백분율 (%)

<table>
<thead>
<tr>
<th>주근단공과의 거리</th>
<th>Root ZX</th>
<th>SmarPex</th>
<th>Diagnostic Unit</th>
<th>E-Magic Finder</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.5mm</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 3은 4개 전자근관측정기의 0.5지점 및 Apex지점에서 주근단공과 file tip 사이의 거리를 계산하여 평균 및 표준편차를 구한 것이다. 이를 Box plots으로 나타낸 결과가 Fig. 4이며, box의 상단은 측정치의 25%값, 하단은 75%값을 나타내며 사분위 범위는 두 값의 차이와 같다. 표준편차와 사분위 범위가 작을수록 측정치의 일관성(consistency)이 더 있다고 할 수 있다.

<table>
<thead>
<tr>
<th></th>
<th>평균</th>
<th>중간값</th>
<th>표준편차</th>
<th>범위</th>
<th>사분위 범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root ZX (0.5 mark)</td>
<td>-0.33</td>
<td>-0.27</td>
<td>0.34</td>
<td>1.66</td>
<td>0.37</td>
</tr>
<tr>
<td>Root ZX (Apex mark)</td>
<td>-0.06</td>
<td>-0.09</td>
<td>0.34</td>
<td>1.82</td>
<td>0.38</td>
</tr>
<tr>
<td>SmarPex (0.5 mark)</td>
<td>-0.64</td>
<td>-0.45</td>
<td>0.52</td>
<td>1.92</td>
<td>0.59</td>
</tr>
<tr>
<td>SmarPex (Apex mark)</td>
<td>-0.31</td>
<td>-0.25</td>
<td>0.42</td>
<td>2.15</td>
<td>0.39</td>
</tr>
<tr>
<td>Diagnostic Unit (0.5 mark)</td>
<td>-0.62</td>
<td>-0.56</td>
<td>0.36</td>
<td>1.71</td>
<td>0.49</td>
</tr>
<tr>
<td>Diagnostic Unit (Apex mark)</td>
<td>-0.22</td>
<td>-0.23</td>
<td>0.29</td>
<td>1.45</td>
<td>0.29</td>
</tr>
<tr>
<td>E-Magic Finder (0.5 mark)</td>
<td>-0.27</td>
<td>-0.24</td>
<td>0.28</td>
<td>1.31</td>
<td>0.32</td>
</tr>
<tr>
<td>E-Magic Finder (Apex mark)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.27</td>
<td>1.42</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Fig. 4. Box plots: 0.5지점 및 Apex지점에서 file tip과 주근단공 사이의 거리
(사분위 범위가 작은 지점이 더 일관성(consistency) 있음)
Ⅳ. 고찰

이번 연구는 두 가지 방향으로 진행되었는데, 먼저 4개의 전자근관장측정기를 각각 제조사의 지침에 따라 사용 후 주근단공에서 file tip까지의 실제거리를 측정한 값을 토대로 정확성(accuracy)을 평가하였다. 다음으로 각 기기마다 0.5지점과 Apex지점에서 file tip과 주근단공과 거리 차이를 계산한 값의 표준편차 및 사분위 범위를 구하여 어느 지점에서 더 일관성(consistency)을 보이는지를 비교하고자 하였다.

먼저 주근단공에서 file tip까지의 실제거리를 측정한 실험에서 각 기기의 평균은 Root ZX는 -0.24mm, SmarPex는 -0.28mm, Diagnostic Unit는 -0.65mm, E-Magic Finder는 -0.28mm를 나타내었다. 주근단공과 근첨협착부 사이에 거리에 대해 Kuttler (1955)는 평균 0.59mm, Dummer (1984)는 평균 0.51mm를 보인다고 보고한 바 있다. 따라서 주근단공과 근첨협착부 사이의 거리를 대략 0.5mm로 보았을 때, Root ZX의 0.5지점에서 산출된 근관장이 주근단공에서 평균 0.24mm 짧게 나왔으므로 근첨협착부에서 평균 0.26mm정도 긴 값을 나타낸다고 할 수 있다. 마찬가지로 SmarPex, Diagnostic Unit 및 E-Magic Finder를 제조사의 지침대로 사용한 후 근관협착부에서 file tip까지의 평균거리를 계산하였을 때 각각 +0.22mm, -0.15mm, +0.22mm를 보여 모두 임상적 허용치인 ±0.5mm내에 있었
다. 하지만 Root ZX와 E-Magic Finder는 각각 10개씩의 실험군 100%에서, SmarPex는 90%에서 근관협착부의 거리가 ±0.5mm의 임상적 하용범위 안에 있었던 반면, Diagnostic Unit는 30%에서 ±0.5mm의 범위에서 빗어난 결과를 보였으며 표준편차도 0.49로 다소 높은 값을 보였다. 이렇게 제조사의 지침대로 사용하였을 때 Root ZX, SmarPex 및 E-Magic Finder는 근관협착부에서 0.2mm~0.3mm정도의 길이가 짧게 나왔으므로, 실제 임상에서 사용할 때 측정된 근관장에서 이 정도 길이를 감해서 사용할 것을 추천할 수 있다. 반면 Elements Diagnostic Unit의 근관장은 근관협착부에서 0.2mm정도 길게 나왔으므로 이 정도 길이를 더해서 실제 근관장으로 사용할 수 있다.

다음으로 각 전자근관장측정기에서 0.5지점과 Apex지점의 일관성을 비교하기 위해 각 지점에서의 표준편차와 사분위 범위를 구하였다.

먼저 Root ZX는 0.5지점 및 Apex지점에서 표준편차가 0.34로 같은 값을 보였고 사분위 범위 역시 각각 0.37mm과 0.38mm으로 비슷한 값을 보였으므로, 0.5지점과 Apex지점에서의 일관성은 비슷하다고 할 수 있다. 또한 E-Magic Finder도 0.5지점과 Apex지점에서 표준편차와 사분위 범위가 비슷한 값을 보였으므로 두 지점의 일관성은 비슷하다고 할 수 있다. SmarPex는 Apex지점에서 표준편차와 사분위 범위가 0.5지점보다 적은 값이 나왔으므로 제조사의 지침대로 Apex지점 근관장 측정의 기준점으로 삼는 것은 타당하다고 할 수 있다.

이와 달리 Diagnostic Unit는 제조사에서 0.5지점을 근관장 측정의 기준점으로
할 것을 권장하였지만, 이번 결과에서 0.5지점보다 Apex지점에서의 표준편차 및 사분위 범위가 더 작은 값을 보였으므로 Apex지점을 기준점으로 삼는 것이 바람직하다고 판단된다. 실제로 실험상에서 Diagnostic Unit를 사용하여 근관장을 측정시에 file의 미세한 움직임에도 indicator bar가 민감하게 움직여 0.5지점에서는 안정된 신호를 얻기 힘들었다. 이렇게 Diagnostic Unit에서 이번 연구 결과에서 더 높은 일관성을 보인 Apex지점을 기준점으로 했을 때, 주근단공까지의 평균거리가 -0.22mm를 보였으므로 근첨협착부에서는 대략 0.28mm 정도 길게 측정된다고 할 수 있다.

다음으로 각 전자근관장측정기에서 0.5지점과 Apex지점에서 측정치의 차이를 계산해 보면, Root ZX, SmarPex Diagnostic Unit, E-Magic Finder가 각각 평균 0.27mm, 0.33mm, 0.4mm, 0.3mm를 보여 두 지점간의 거리 차이가 0.5mm가 아닌 0.3mm내외임을 알 수 있다. 또한 각 기기마다 두 지점간의 거리 차이의 분포 정도를 나타낸 그래프를 살펴보면 (부록 3), Root ZX는 0.1~0.2mm에서 가장 높은 분포를 보였고 0.7mm이상의 차이를 나타내지 않았으며, E-Magic Finder 역시 0~0.3mm내에서 높은 분포를 보였고 0.8mm이상의 차이를 거의 나타내지 않았다. SmarPex도 0.1~0.3mm내에서 높은 분포를 보였으나 15%정도에서는 0.7~1.2mm의 큰 차이를 보였으며, 제조사의 지침대로 0.5지점이 아닌 Apex지점을 기준으로 하는 것이 중요하다고 할 수 있다. Elements Diagnostic Unit는 0.1~0.6mm에 걸쳐 넓게 퍼져있는 분포를 보였으며 20%정도에서는 0.7~1.0mm의 거리 차이를
보여 0.5지점과 Apex지점의 거리 차이가 다소 크게 나타났다.

이렇게 0.5지점과 Apex지점에서의 근관장을 측정한 다른 연구를 살펴보면, Ounsi (1999)는 Root ZX를 사용하여 0.5지점과 Apex지점에서 근관장을 측정한 후 측정값이 실제 근관장에 대해 임상적 허용치인 ±0.5mm내에 존재하는 비율을 구하여 0.5지점과 Apex지점의 정확성을 비교하였다. Weiger (1999)는 Root ZX를 사용해 0.5지점과 Apex지점에서 근관장을 측정하여 실제 근관장(주근단공까지의 길이)과 비교한 후, 치근단부를 노출시켜 근관협착부가 주근단공에서 변이된 정도를 관찰하여 전자근관장이 근관협착부에서 거리가 ±0.5mm범위 내에 드는 비율을 구하였다. 하지만 0.5지점과 Apex지점의 일관성을 비교하기 위해서는 이렇게 측정치가 근관협착부의 ±0.5mm범위 안에 드는 비율을 비교한 종래의 방법보다는 측정치의 표준편차를 구하여 비교한 이번 연구 방법이 더 바람직하다고 생각된다.

또한 전자근관장측정기의 정확성을 평가하는 종래의 다른 방법으로 방사선 사진상의 길이와 측정값을 비교하는 방법, 방사선 사진상에서 file tip과 방사선적 근첨 사이의 거리를 측정하는 방법 등이 있다. 하지만, 방사선적 근첨과 해부학적 근첨이 서로 다르므로 치근단 부위를 색제하여 주근단공에서 file tip까지의 실제거리를 직접 측정한 이번 연구 방법이 좀 더 신뢰할 만하다고 할 수 있다. 특히 여기서 사용한 Image ProPlus는 100배율의 현미경 하에서 관찰한 디지털 이미지상에서 바로 거리 측정이 가능하므로 더욱 정확성을 기할 수 있었다. 하지

2002년 Kaufman은 전자근관장측정기를 위해 특별히 고안된 alginate model을 사용하여 in vitro 상에서 만족할 만한 측정 결과를 얻었다고 보고한 바 있다. 이 alginate model은 먼저 혼합된 alginate가 들어있는 plastic box에 plastic frame을 넣고 여기에 alginate를 이용하여 치아를 고정시킨 후, model을 식은 종이로 감싸서 습윤한 환경이 유지되도록 해서 실험기간(45일) 동안 냉장 보관하여 사용하였다. 본 실험에서도 alginate와 saline을 9g/20ml의 혼수비로 혼합한 후 치아를 고정시켜서 만든 alginate model을 사용하였다. 특히 예비실험에서 alginate를 혼합한 후 5분 이내에 전자근관장측정기의 신호가 안정되게 측정되는 것을 확인할 수 있었으므로, 한번 혼합한 alginate model에서의 근관장 측정을 5분 이내로 제한하여 습윤한 환경이 유지되지 못할 경우에 생길 수 있는 오차를 줄이고자 하였다.

Kuttler (1955)에 의하면 해부학적 근첨과 주근단공 사이의 거리는 저연령층에서 평균 0.48mm, 고연령층에서 0.6mm의 차이를 보였다. 이에 대해 Kuttler는 노
화로 인해 근첨부위에 새로운 백악질이 침착됨에 따라 근단공의 중심이 치근장축에서 양으로 이동하고 직경도 증가하여 칼패기형의 근관을 보이게 된다고 말하였다. 실제로 이번 연구에서 근단부를 치근장축방향으로 삭제하여 현미경으로 관찰한 결과, 해부학적 근첨과 근첨협착부 사이가 일자형을 보이는 경우와 칼패기형을 보이는 경우를 모두 확인할 수 있었다(Fig. 3).

본 연구는 다른 종래의 연구에서 주로 평가한 전자근관측정기의 정확성뿐만 아니라 근첨협착부에서 일정한 거리를 재현해 낼 수 있는 일관성을 같이 평가하고자 했다. 하지만 실험 과정에서 한 치아당 4개의 전자근관측정기를 사용하여 0.5지점과 Apex지점에서 file의 reference point를 설정할 때나 digital caliper를 사용하여 rubber stop까지 길이를 측정할 때 조금씩의 오차가 발생하였다. 따라서 0.5지점과 Apex지점에서 얻은 주근단공과 file tip사이의 거리는 기기의 정확성을 분보다는 두 지점간의 일관성을 비교하기 위한 적도로만 사용하였다. 이러한 오차를 줄이기 위해서는 근관측정 후 file을 치아에 고정시키기 근단부를 관찰하여 길이를 재는 것이 가장 이상적이지만, 한 치아에서 0.5지점과 Apex지점을 모두 측정하기 위해서는 치아 밖에서 근관만의 file 길이를 재는 방법이 불가피하였다. 따라서 이러한 한계 내에서 이번 연구를 통해 각 전자근관측정기의 0.5지점과 Apex지점의 일관성을 서로 비교하고 실제 임상에서 사용시 근첨협착부에서 일정한 거리를 가감하여 사용할 수 있도록 제시했다는 데서 의의를 찾을 수 있다.
V. 결론

본 연구는 alginate model상에서 서로 다른 4개의 전자근관측정기를 사용하여 얻은 측정치의 정확성(accuracy)을 평가하고 각각 0.5지점과 Apex지점 중 어느 지점에서 더 일관성(consistency)을 보이는지를 비교한 것으로 다음과 같은 결론을 얻었다.

1. 각 전자근관측정기의 제조사의 지침대로 사용하였을 때 Root ZX와 E-Magic Finder는 실험군 100%, SmarPex는 90%, Diagnostic Unit는 70%에서 근단공과 file tip간의 거리가 임상적 허용범위인 ±0.5mm내에 있었다.

2. Root ZX, E-Magic Finder는 0.5지점과 Apex지점에서 비슷한 일관성을 보였으며 SmarPex와 Diagnostic unit는 0.5지점보다 Apex지점에서 더 높은 일관성을 보였다.

3. Root ZX, SmarPex, Diagnostic Unit 및 E-Magic Finder에서 근관협착부와 file tip사이의 거리가 각각 +0.26mm, +0.22mm, -0.15mm, +0.22mm를 나타내었으므로 실제 임상에서 이 정도 길이를 가감하여 사용할 수 있다.

따라서 각각의 전자근관측정기에서 이번 연구를 통해 0.5지점과 Apex지점 중 일관성이 높게 나온 지점에서 전자근관을 측정하고, 실제 임상에서 사용시 이러한 전자근관에서 일정한 거리를 가감하여 적용할 수 있다.
VI. 참고문헌

Grove C: Why canals should be filled to the dentinocemental junction. *Journal of the American Dental Association* 17: 293~6, 1930.

Abstract

In Vitro Evaluation of Accuracy and consistency of four different electronic apex locators

Jae-Hyun, Cho

Department of Dentistry
The Graduate School, Yonsei University

(Directed by Seung-Jong Lee D.D.S, M.S.D, Ph.D.)

I. Objectives

The purpose of this study is to evaluate the accuracy and the consistency of four different electronic apex locators in an in vitro model.

II. Materials and Methods

Fourty extracted premolar were used for the study. Four electronic apex locators (EAL) were Root ZX, SmarPex, Elements Diagnostic Unit (EDU), E-Magic Finder Deluxe (EMF). After access preparation, the tooth were embedded in an alginate model and the length measurements were carried out at "0.5" and "Apex" mark using four EAL. The file was cemented at the location of the manufacturers’ instruction (Root ZX, EDU, EMF : 0.5 mark,
SmarPex : Apex mark). The apical 4mm of apex was exposed and the distance from the file tip to major foramen was measured by Image ProPlus (×100). To compare the consistency of 0.5 and Apex mark, the distance from the file tip at 0.5 and Apex mark to the major foramen was calculated.

III. Results

In this study, Root ZX and E-Magic Finder located the apical constriction accurately within ±0.5mm in 100%, SmarPex in 90%, Elements Diagnostic Unit in 70%. For Root ZX and EMF, there was no significant difference between the consistency of 0.5 and Apex mark. But for the EDU and SmarPex, Apex mark was more consistent than 0.5 mark.

IV. Conclusion

From the evaluation of the consistency in this study, for Root ZX and E-Magic Finder, both 0.5 and Apex mark can be used as a standard mark. And for Elements Diagnostic Unit and SmarPex, the Apex mark can be recommended to use as a standard mark.

Key word : Electronic apex locator, consistency, accuracy, alginate model
<부록 : Raw Data>

1. 4개의 전자관질점측정기를 사용한 0.5지점과 Apex지점의 근관장

(0.5지점에서 2번, Apex지점에서 2번씩 측정하여 평균값 구함. 단위:mm)

(1) ZX : Root ZX

(2) SM : Smarpepx

(3) EDU : Elements Diagnostic Unit

(4) EMF : E-Magic Finder

<table>
<thead>
<tr>
<th></th>
<th>0.5지점(1)</th>
<th>0.5지점(2)</th>
<th>0.5지점 (평균)</th>
<th>Apex지점(1)</th>
<th>Apex지점(2)</th>
<th>Apex지점 (평균)</th>
<th>Apex지점값</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZX 20.42</td>
<td>SM 20.64</td>
<td>EDU 20.71</td>
<td>EMF 20.77</td>
<td>20.525</td>
<td>20.81</td>
<td>20.85</td>
</tr>
<tr>
<td></td>
<td>20.63</td>
<td>20.54</td>
<td>20.55</td>
<td>20.84</td>
<td></td>
<td></td>
<td>20.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.85</td>
<td></td>
<td>0.305</td>
</tr>
<tr>
<td>2</td>
<td>ZX 16.38</td>
<td>SM 16.05</td>
<td>EDU 16.09</td>
<td>EMF 16.27</td>
<td>16.45</td>
<td>16.59</td>
<td>16.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>ZX 18.72</td>
<td>SM 18.70</td>
<td>EDU 18.62</td>
<td>EMF 18.54</td>
<td>18.74</td>
<td>18.80</td>
<td>18.80</td>
</tr>
<tr>
<td></td>
<td>18.76</td>
<td>18.74</td>
<td>18.62</td>
<td>18.58</td>
<td></td>
<td></td>
<td>18.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.84</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>ZX 16.02</td>
<td>SM 16.05</td>
<td>EDU 15.91</td>
<td>EMF 16.12</td>
<td>16.02</td>
<td>16.30</td>
<td>16.50</td>
</tr>
<tr>
<td></td>
<td>16.02</td>
<td>16.07</td>
<td>15.99</td>
<td>15.92</td>
<td></td>
<td></td>
<td>16.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>19.45</td>
<td>19.94</td>
<td>19.93</td>
<td>19.61</td>
<td></td>
<td></td>
<td>19.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>19.79</td>
<td>19.49</td>
<td>19.54</td>
<td>19.52</td>
<td></td>
<td></td>
<td>19.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.86</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>7</td>
<td>ZX 18.25</td>
<td>SM 17.23</td>
<td>EDU 17.48</td>
<td>EMF 18.21</td>
<td>18.27</td>
<td>18.35</td>
<td>18.41</td>
</tr>
<tr>
<td></td>
<td>18.29</td>
<td>17.31</td>
<td>17.50</td>
<td>18.33</td>
<td></td>
<td></td>
<td>18.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.35</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>ZX 18.97</td>
<td>SM 17.51</td>
<td>EDU 18.61</td>
<td>EMF 18.91</td>
<td>18.99</td>
<td>19.15</td>
<td>19.03</td>
</tr>
<tr>
<td></td>
<td>19.01</td>
<td>17.59</td>
<td>18.45</td>
<td>18.97</td>
<td></td>
<td></td>
<td>19.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.15</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>지점</td>
<td>지점값</td>
<td>지점값</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>17.55</td>
<td>17.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>17.43</td>
<td>17.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>17.31</td>
<td>17.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>17.46</td>
<td>17.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>19.28</td>
<td>19.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>19.20</td>
<td>19.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>18.83</td>
<td>18.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>18.89</td>
<td>19.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>18.42</td>
<td>18.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>17.68</td>
<td>17.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>17.61</td>
<td>17.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>18.34</td>
<td>18.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>16.31</td>
<td>16.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>16.61</td>
<td>16.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>16.50</td>
<td>16.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>16.64</td>
<td>16.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>19.15</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>19.39</td>
<td>19.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>18.88</td>
<td>18.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>19.12</td>
<td>19.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>20.57</td>
<td>20.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>20.02</td>
<td>20.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>19.32</td>
<td>19.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>19.81</td>
<td>19.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>17.96</td>
<td>18.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>17.97</td>
<td>17.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>17.88</td>
<td>17.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>17.83</td>
<td>17.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>16.26</td>
<td>16.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>14.53</td>
<td>14.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>15.74</td>
<td>15.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>16.30</td>
<td>16.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>17.13</td>
<td>17.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>17.3</td>
<td>17.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>17.16</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>17.22</td>
<td>17.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX</td>
<td>17.1</td>
<td>17.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>17.28</td>
<td>17.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU</td>
<td>17.16</td>
<td>17.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>17.56</td>
<td>17.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5지점(1)</td>
<td>0.5지점(2)</td>
<td>0.5지점(평균)</td>
<td>Apex지점(1)</td>
<td>Apex지점(2)</td>
<td>Apex지점(평균)</td>
<td>Apex지점값</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>29</td>
<td>ZX 20.18</td>
<td>20.17</td>
<td>20.175</td>
<td>20.39</td>
<td>20.41</td>
<td>20.40</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td>SM 19.95</td>
<td>20.03</td>
<td>19.99</td>
<td>20.11</td>
<td>20.18</td>
<td>20.145</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>EDU 20.02</td>
<td>19.96</td>
<td>19.99</td>
<td>20.37</td>
<td>20.29</td>
<td>20.44</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>EMF 19.95</td>
<td>19.83</td>
<td>19.89</td>
<td>20.25</td>
<td>20.22</td>
<td>20.235</td>
<td>0.29</td>
</tr>
<tr>
<td>30</td>
<td>ZX 19.08</td>
<td>19.15</td>
<td>19.115</td>
<td>19.80</td>
<td>19.31</td>
<td>19.555</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>SM 17.76</td>
<td>17.79</td>
<td>17.775</td>
<td>17.98</td>
<td>18.04</td>
<td>18.01</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>EDU 18.93</td>
<td>19.00</td>
<td>18.965</td>
<td>19.14</td>
<td>19.23</td>
<td>19.185</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>EMF 19.01</td>
<td>19.04</td>
<td>19.025</td>
<td>19.19</td>
<td>19.17</td>
<td>19.18</td>
<td>0.155</td>
</tr>
<tr>
<td>31</td>
<td>ZX 17.94</td>
<td>17.90</td>
<td>17.92</td>
<td>18.11</td>
<td>18.19</td>
<td>18.15</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>SM 17.84</td>
<td>17.89</td>
<td>17.865</td>
<td>18.06</td>
<td>18.09</td>
<td>18.075</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>EDU 17.61</td>
<td>17.61</td>
<td>17.61</td>
<td>17.67</td>
<td>17.63</td>
<td>17.65</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>EMF 18.14</td>
<td>18.16</td>
<td>18.16</td>
<td>18.47</td>
<td>18.43</td>
<td>18.45</td>
<td>0.29</td>
</tr>
<tr>
<td>32</td>
<td>ZX 18.84</td>
<td>18.98</td>
<td>18.91</td>
<td>19.07</td>
<td>19.11</td>
<td>19.09</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>SM 18.81</td>
<td>18.98</td>
<td>18.895</td>
<td>19.09</td>
<td>19.14</td>
<td>19.115</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>EDU 18.46</td>
<td>18.62</td>
<td>18.54</td>
<td>19.03</td>
<td>18.94</td>
<td>18.985</td>
<td>0.445</td>
</tr>
<tr>
<td></td>
<td>EMF 18.82</td>
<td>18.90</td>
<td>18.86</td>
<td>19.10</td>
<td>19.20</td>
<td>19.15</td>
<td>0.29</td>
</tr>
<tr>
<td>33</td>
<td>ZX 14.62</td>
<td>14.74</td>
<td>14.68</td>
<td>15.39</td>
<td>15.33</td>
<td>15.36</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>SM 15.19</td>
<td>15.21</td>
<td>15.20</td>
<td>15.36</td>
<td>15.32</td>
<td>15.34</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>EDU 14.64</td>
<td>14.73</td>
<td>14.685</td>
<td>15.48</td>
<td>15.50</td>
<td>15.49</td>
<td>0.805</td>
</tr>
<tr>
<td></td>
<td>EMF 15.40</td>
<td>15.53</td>
<td>15.465</td>
<td>15.64</td>
<td>15.61</td>
<td>15.625</td>
<td>0.16</td>
</tr>
<tr>
<td>34</td>
<td>ZX 17.09</td>
<td>17.18</td>
<td>17.135</td>
<td>17.37</td>
<td>17.27</td>
<td>17.32</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>SM 16.96</td>
<td>16.95</td>
<td>16.955</td>
<td>17.24</td>
<td>17.22</td>
<td>17.23</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>EDU 16.89</td>
<td>16.97</td>
<td>16.93</td>
<td>17.01</td>
<td>17.15</td>
<td>17.08</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>EMF 16.96</td>
<td>16.98</td>
<td>16.97</td>
<td>17.61</td>
<td>17.53</td>
<td>17.57</td>
<td>0.60</td>
</tr>
<tr>
<td>35</td>
<td>ZX 18.53</td>
<td>18.58</td>
<td>18.555</td>
<td>18.94</td>
<td>19.00</td>
<td>18.97</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>SM 18.53</td>
<td>18.58</td>
<td>18.555</td>
<td>18.76</td>
<td>18.73</td>
<td>18.745</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>EDU 18.43</td>
<td>18.41</td>
<td>18.42</td>
<td>18.53</td>
<td>18.62</td>
<td>18.575</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>EMF 18.59</td>
<td>18.69</td>
<td>18.64</td>
<td>18.78</td>
<td>18.82</td>
<td>18.80</td>
<td>0.16</td>
</tr>
<tr>
<td>36</td>
<td>ZX 20.11</td>
<td>20.05</td>
<td>20.08</td>
<td>20.26</td>
<td>20.24</td>
<td>20.25</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>SM 19.56</td>
<td>19.65</td>
<td>19.605</td>
<td>20.03</td>
<td>20.07</td>
<td>20.05</td>
<td>0.445</td>
</tr>
<tr>
<td></td>
<td>EDU 20.07</td>
<td>20.13</td>
<td>20.10</td>
<td>20.45</td>
<td>20.36</td>
<td>20.405</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>EMF 20.33</td>
<td>20.40</td>
<td>20.365</td>
<td>20.60</td>
<td>20.56</td>
<td>20.58</td>
<td>0.215</td>
</tr>
<tr>
<td>37</td>
<td>ZX 19.98</td>
<td>20.08</td>
<td>20.03</td>
<td>20.36</td>
<td>20.29</td>
<td>20.325</td>
<td>0.295</td>
</tr>
<tr>
<td></td>
<td>SM 19.86</td>
<td>19.92</td>
<td>19.89</td>
<td>20.15</td>
<td>20.10</td>
<td>20.125</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>EDU 19.50</td>
<td>19.57</td>
<td>19.535</td>
<td>20.30</td>
<td>20.39</td>
<td>20.345</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>EMF 20.37</td>
<td>20.34</td>
<td>20.355</td>
<td>20.70</td>
<td>20.66</td>
<td>20.68</td>
<td>0.325</td>
</tr>
<tr>
<td>38</td>
<td>ZX 16.74</td>
<td>16.87</td>
<td>16.805</td>
<td>17.02</td>
<td>17.08</td>
<td>17.05</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>SM 16.95</td>
<td>16.86</td>
<td>16.905</td>
<td>17.00</td>
<td>17.03</td>
<td>17.015</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>EDU 16.28</td>
<td>16.30</td>
<td>16.29</td>
<td>17.04</td>
<td>16.82</td>
<td>16.93</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>EMF 17.05</td>
<td>16.98</td>
<td>17.015</td>
<td>17.33</td>
<td>17.43</td>
<td>17.38</td>
<td>0.365</td>
</tr>
</tbody>
</table>
각각의 전자근관측정기의 0.5지점과 Apex지점에서 file tip과 주근단공 사자위의 거리를 계산한 값 ((-)값은 주근단공보다 file의 tip이 더 짧은 경우를 의미하며 (+)값은 주근단공보다 file의 tip이 더 긴 경우를 의미함. 단위 : mm)

1) 1~10 : Root ZX로 고정
2) 11~20 : SmarPex로 고정
3) 21~30 : Elements Diagnostic Unit로 고정
4) 31~40 : E-Magic Finder로 고정

<table>
<thead>
<tr>
<th></th>
<th>0.5지점(1)</th>
<th>0.5지점(2)</th>
<th>Apex지점(평균)</th>
<th>Apex지점(1)</th>
<th>Apex지점(2)</th>
<th>Apex지점값</th>
<th>-0.5지점값</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>ZX</td>
<td>19.12</td>
<td>19.24</td>
<td>19.18</td>
<td>19.35</td>
<td>19.37</td>
<td>19.36</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>18.62</td>
<td>18.71</td>
<td>18.665</td>
<td>19.00</td>
<td>18.98</td>
<td>18.99</td>
</tr>
<tr>
<td></td>
<td>EDU</td>
<td>18.60</td>
<td>18.70</td>
<td>18.65</td>
<td>19.19</td>
<td>19.23</td>
<td>19.21</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>19.21</td>
<td>19.26</td>
<td>19.235</td>
<td>19.46</td>
<td>19.38</td>
<td>19.42</td>
</tr>
<tr>
<td>40</td>
<td>ZX</td>
<td>21.32</td>
<td>21.28</td>
<td>21.30</td>
<td>21.89</td>
<td>21.84</td>
<td>21.865</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>20.30</td>
<td>20.40</td>
<td>20.35</td>
<td>21.31</td>
<td>21.19</td>
<td>21.25</td>
</tr>
<tr>
<td></td>
<td>ZX</td>
<td></td>
<td>SM</td>
<td></td>
<td>EDU</td>
<td></td>
<td>EMF</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>0.5지점</td>
<td>Apex지점</td>
<td>0.5지점</td>
<td>Apex지점</td>
<td>0.5지점</td>
<td>Apex지점</td>
<td>0.5지점</td>
</tr>
<tr>
<td>14</td>
<td>+0.11</td>
<td>+0.71</td>
<td>-0.46</td>
<td>-0.12</td>
<td>-1.07</td>
<td>-0.47</td>
<td>-0.61</td>
</tr>
<tr>
<td>15</td>
<td>-0.25</td>
<td>-0.06</td>
<td>-0.30</td>
<td>-0.18</td>
<td>-0.3</td>
<td>-0.27</td>
<td>-0.40</td>
</tr>
<tr>
<td>16</td>
<td>+0.11</td>
<td>+0.32</td>
<td>-1.57</td>
<td>-0.38</td>
<td>-0.32</td>
<td>-0.13</td>
<td>+0.15</td>
</tr>
<tr>
<td>17</td>
<td>-0.74</td>
<td>-0.64</td>
<td>-0.51</td>
<td>-0.41</td>
<td>-0.72</td>
<td>-0.65</td>
<td>-0.68</td>
</tr>
<tr>
<td>18</td>
<td>-0.59</td>
<td>-0.43</td>
<td>-0.40</td>
<td>-0.16</td>
<td>-0.59</td>
<td>-0.36</td>
<td>-0.23</td>
</tr>
<tr>
<td>19</td>
<td>-0.56</td>
<td>-0.22</td>
<td>-1.09</td>
<td>-0.78</td>
<td>-1.03</td>
<td>-0.27</td>
<td>-0.24</td>
</tr>
<tr>
<td>20</td>
<td>+0.04</td>
<td>-0.10</td>
<td>-0.20</td>
<td>0</td>
<td>-0.37</td>
<td>-0.05</td>
<td>-0.12</td>
</tr>
<tr>
<td>21</td>
<td>+0.23</td>
<td>+0.23</td>
<td>-0.18</td>
<td>0</td>
<td>-0.23</td>
<td>+0.08</td>
<td>-0.01</td>
</tr>
<tr>
<td>22</td>
<td>+0.23</td>
<td>+0.40</td>
<td>-0.26</td>
<td>+0.1</td>
<td>-0.22</td>
<td>+0.21</td>
<td>+0.27</td>
</tr>
<tr>
<td>23</td>
<td>+0.18</td>
<td>+0.32</td>
<td>-0.09</td>
<td>+0.14</td>
<td>-0.3</td>
<td>+0.11</td>
<td>+0.06</td>
</tr>
<tr>
<td>24</td>
<td>-0.62</td>
<td>-0.43</td>
<td>-1.01</td>
<td>-0.73</td>
<td>-1.27</td>
<td>-0.48</td>
<td>-0.88</td>
</tr>
<tr>
<td>25</td>
<td>-1.28</td>
<td>-0.88</td>
<td>-2.01</td>
<td>-1.43</td>
<td>-1.53</td>
<td>-0.91</td>
<td>-0.59</td>
</tr>
<tr>
<td>26</td>
<td>-0.26</td>
<td>-0.04</td>
<td>-0.28</td>
<td>-0.09</td>
<td>-0.26</td>
<td>-0.11</td>
<td>-0.12</td>
</tr>
<tr>
<td>27</td>
<td>+0.04</td>
<td>+0.19</td>
<td>-0.14</td>
<td>+0.16</td>
<td>-0.37</td>
<td>+0.22</td>
<td>+0.04</td>
</tr>
<tr>
<td>28</td>
<td>-0.91</td>
<td>-0.35</td>
<td>-1.68</td>
<td>-0.81</td>
<td>-1.16</td>
<td>-0.65</td>
<td>-0.71</td>
</tr>
<tr>
<td>29</td>
<td>-0.24</td>
<td>-0.01</td>
<td>-0.42</td>
<td>-0.27</td>
<td>-0.42</td>
<td>-0.08</td>
<td>-0.52</td>
</tr>
<tr>
<td>30</td>
<td>-0.63</td>
<td>-0.19</td>
<td>-1.97</td>
<td>-1.73</td>
<td>-0.78</td>
<td>-0.56</td>
<td>-0.72</td>
</tr>
<tr>
<td>31</td>
<td>-0.43</td>
<td>-0.22</td>
<td>-0.51</td>
<td>-0.30</td>
<td>-0.76</td>
<td>-0.72</td>
<td>-0.21</td>
</tr>
<tr>
<td>32</td>
<td>-0.47</td>
<td>-0.29</td>
<td>-0.49</td>
<td>-0.27</td>
<td>-0.84</td>
<td>-0.40</td>
<td>-0.52</td>
</tr>
<tr>
<td>33</td>
<td>-1.02</td>
<td>-0.34</td>
<td>-0.50</td>
<td>-0.36</td>
<td>-1.02</td>
<td>-0.21</td>
<td>-0.24</td>
</tr>
<tr>
<td>34</td>
<td>-0.26</td>
<td>-0.07</td>
<td>-0.44</td>
<td>-0.16</td>
<td>-0.46</td>
<td>-0.31</td>
<td>-0.42</td>
</tr>
<tr>
<td>35</td>
<td>-0.27</td>
<td>+0.15</td>
<td>-0.27</td>
<td>-0.08</td>
<td>-0.40</td>
<td>-0.25</td>
<td>-0.18</td>
</tr>
<tr>
<td>36</td>
<td>-0.55</td>
<td>-0.38</td>
<td>-1.03</td>
<td>-0.58</td>
<td>-0.53</td>
<td>-0.23</td>
<td>-0.27</td>
</tr>
<tr>
<td>37</td>
<td>-0.55</td>
<td>-0.26</td>
<td>-0.69</td>
<td>-0.46</td>
<td>-1.03</td>
<td>-0.24</td>
<td>-0.23</td>
</tr>
<tr>
<td>38</td>
<td>-0.34</td>
<td>-0.09</td>
<td>-0.24</td>
<td>-0.13</td>
<td>-0.85</td>
<td>-0.21</td>
<td>-0.13</td>
</tr>
<tr>
<td>39</td>
<td>-0.29</td>
<td>-0.11</td>
<td>-0.81</td>
<td>-0.48</td>
<td>-0.82</td>
<td>-0.26</td>
<td>-0.24</td>
</tr>
<tr>
<td>40</td>
<td>+0.38</td>
<td>+0.94</td>
<td>-0.57</td>
<td>+0.33</td>
<td>+0.18</td>
<td>+0.54</td>
<td>+0.43</td>
</tr>
</tbody>
</table>
3. 각 전자근관장측정기에서 0.5지점과 Apex지점 측정값의 차이

(Apex지점값 - 0.5지점값)