수종의 지각 과민 처치제가
레진 접착제의 접착력에 미치는 영향

연세대학교 대학원
치의학과
허 중 보

- 1 -
수종의 지각 과민 처치제가
레진 접착제의 접착력에 미치는 영향

지도 정 문 규 교수

이 논문을 석사 학위논문으로 제출함

2005년 7월 일

연세대학교 대학원
치의학과
허 중 보
허중보의 석사 학위 논문을 인준함

심사위원_________________인

심사위원_________________인

심사위원_________________인

심사위원_________________인

연세대학교 대학원
2005년 7월 일
감사의 글

이 논문이 완성되는데 있어 부족한 저에게 끝임없는 지도와 격려를 보내주신 정문규 교수님께 진심으로 감사 드리며, 귀중한 조언과 부족한 논문의 심사에 도움을 주신 이호용 교수님, 삼준성 교수님께도 진심으로 감사를 드립니다.

또한 부족한 저의 논문의 통계처리를 도와주시고 많은 조언을 아끼지 않은 최용근 선생님께 감사의 마음을 전하고 싶습니다.

바쁜 외래시간을 비우고 학교를 다닐 수 있게 배려해주신 고인도 SHOULD은의 이정민 선생님, 김명은 선생님, 배정운 선생님, 김지홍 선생님, 아주대학교 병원 고석민 교수님, 이정근 교수님, 송승일 교수님께도 진심으로 감사의 마음을 전하고 싶습니다.

같이 논문을 준비하는 동안 힘들 때 서로 격려해주고 많은 힘이 되어 준 이수형, 오승현 형님들께도 감사를 드립니다.

끝으로 제가 여기에 있게 해주신 사랑하는 아버지, 어머니, 항상 격려해 주시고 성원해 주시는 장인어른과 장모님, 결에서 제가 살아가는 힘이 되어주는 사랑하는 아내 현주에게 이 논문을 드립니다.

2005년 7월
허중보 드림
차 례

그림 및 표 차례 ... ii

국문 요약 .. iii

I. 서론 .. 1
II. 실험재료 및 방법 .. 4
 1. 치아 시편의 제작 ... 4
 2. 치아 시편에 상아질 지각 과민제 도포 5
 3. 레진 접착 시멘트와의 결합 ... 6
 4. 전단 결합 강도의 측정 .. 9
 5. 주사 전자 현미경적 관찰 ... 10
 6. 통계 분석 ... 10
III. 연구 결과 ... 11
 1. 전단 결합 강도 ... 11
 2. 주사 전자 현미경적 관찰 ... 13
IV. 총괄 및 고찰 ... 17
V. 결론 ... 22

참고 문헌 .. 24

영문 요약 .. 30
Fig 1. Tooth embedded in acrylic resin
Fig 2. Ultradent plastic hole (Ultradent Product, Inc., Utah, USA) for bonding resin cement to dentin.
Fig 3. Diagram illustrating specimen preparation.
Fig 4. Sample set in universal testing machine for shear bond strength.
Fig 5. Means and Comparisons for all pairs using Tukey–Kramer HSD
Fig 6. Scanning electron microscopic view of dentin surface after treatment desensitizing agents.
Fig 7. Scanning electron microscopic view of dentin surface after treatment desensitizing agents and fracture resin cement (Panavia F).
Fig 8. Schematic diagram after treatment with each desensitizer.

Table I. Composition & manufacturer of desensitizing agents used in this study.
Table II. Components and composition of test luting resin used in the study.
Table III. Tests of equal variances.
Table IV. Welch ANOVA testing.
국문 요약

수종의 지각 과민 처치제가 레진 접착제의 접착력에 미치는 영향

수복을 위한 치아 삭제나 와동 형성 시에 발생할 수 있는 상아질 지각 과민을 최소화하고 수복 후 최소한의 동통을 유발 하도록 하기 위하여 다양한 성분의 상아질 지각 과민처치제를 도포할 수 있다. 그런데 이때 지각 과민 처치제에 함유되어 있는 성분과 원리는 다양하며 몇몇 성분들은 상아질의 구성 성분과 시멘트간의 화학적 상호 작용을 저해할 가능성이 있고, 그로 인해 접착력이 떨어지고 충분한 밀폐를 방해할 가능성이 있을 것이다. 하지만 레진 접착 시멘트로 접착을 시행하기 전에 지각 과민 처치제를 도포하였을 때 그것이 접착력에 어떤 영향을 주는지에 대한 정보가 거의 없는 실정이다.

이에 본 연구의 목적은 다양한 성분의 상아질 지각 과민 처치제를 도포하고 그 후 레진 접착 시멘트로 수복물을 접착했을 때 상아질과 접착제 간의 전단력에 어떤 영향이 있는지를 알아보고 주사 전자 현미경 사진을 통해 그 원인을 분석해 보고자 한다.

125개의 치아 시편을 무작위로 5개 군으로 배분하여 상아질을 노출시켰다. 표면 처리를 위해 사용한 실험 약제는 SuperSeal®(Phoenix Dental. Inc, USA), MS-Coat®(Sun medical Co. Ltd.,Japan), Gluma®(Heraeus Kulzer, Germany), Copalite varnish™(Cooley & Cooley Ltd., USA)을 사용하였고 그 위에 Panavia F(Kuraray Co., Ltd., Japan)를 UltraTact plastic hole(UltraTact Product, Inc, UTAH, USA)을 이용해 부착하고 3일간 실온에서 증류수에 보관 후 만능 재료 시험기(Universal testing machine Model
6022, Instron Co., Canton, MA, USA)를 이용하여 전단 결합 강도를 측정하였다. 지각 과민 처치제 도포 후, 전단 파절 실험 후 각 시편의 표면 미세 구조와 파절 양상을 알아보기 위해 치아 표면을 주사 전자 현미경(JSM-T2000, JEOL, Tokyo, Japan)을 사용하여 각각의 시편을 다양한 배율로 관찰하였다.

위의 실험을 통해 다음과 같은 결과를 얻었다.

1. 전단 결합 강도는 상아질 표면에 지각 과민 처치제를 도포하지 않은 대조군의 평균값이 가장 큰 값(14.74MPa)을 보였고, 그 다음은 Superseal® (12.33MPa), Gluma® (5.28MPa), MS-Coat® (4.44MPa), Copalite Varnish™ (3.14MPa) 순의 평균값을 보였다.
2. Superseal® 군만 대조군과 통계학적으로 유의한 차를 보이지 않았으며, Gluma®, MS-Coat®, Copalite Varnish™ 군들은 대조군과 비교하여 유의하게 낮은 결합 강도를 보였다.
3. 주사 전자 현미경적 관찰에서 Superseal®은 도포 후 oxalate입자가 상아세관 깊은 곳으로 들어간 양상을 보였고 MS-Coat®는 상아세관을 포함한 상아질을 전반적으로 두텁게 덮고 있는 양상을 보였다.
4. Panavia F의 전단 파절 후 주사 전자 현미경적 관찰에서 그 파절면은 Superseal®을 도포했을 때 대부분의 상아세관에서 resin tag가 관찰되었고, 상아질과 직접 결합되는 양상을 보였다. 반면에 MS-Coat®를 도포한 군은 전혀 상아질 결합이 이루어 지지 않은 모습을 보였다.
결론적으로 상아질 지각 과민 처치제는 상아질과 레진 접착 시멘트 간의 결합력에 영향을 줄 수 있으므로 성분과 기전에 대한 정확한 이해가 요구된다. 본 연구에서 수용성 oxalate 제제(Superseal®)의 경우는 대조군과 유의성 있는 차이를 보이지 않았고 레진 성분을 함유한 다른 제제들에서는 유의성 있는 절단 결합 강도의 감소를 보여 레진 성분을 함유한 지각 과민 처치제는 레진 시멘트와 상아질 간의 접착에 있어 부정적인 영향이 있는 것으로 보인다.

핵심되는 말 : 지각 과민 처치제, 레진 시멘트, 전단결합강도, 전자 현미경적 관찰.
I. 서론

접착 재진 시멘트는 세라믹, 주조 금관, 유치가 충분하지 못한 수복물 등의 접착에 광범위하게 사용되고 있다. 접착 재진 시멘트와 상아질 사이의 내구성 있는 접합은 수복물의 탈락을 막고, 미세 누출을 예방하고, 이차 우식을 예방하는 가장 중요한 요소 중 하나이다. 수복물을 재진 접착 시멘트로 접착할 때의 문제점은 두꺼운 시멘트의 피막 두께(White 1992, White 와 Kipnis 1993), 경화 수축으로 인한 변연 누출 가능성과 이로 인한 치수 병변 등이 있다.

위에 서술한 것과 같이 지각 과민 처치 제에 함유되어 있는 성분과 원리의 다양하며 몇몇 성분들은 상아질의 구성 성분과 레진 접착 시멘트간의 화학적 상호 작용을 저해할 가능성이 있고, 그로 인해 접착력이 떨어지고 충분한 밀폐를 방해할 가능성이 있을 것이다. Swiet 등 (1997)은 두 가지 레진 성분의 지각 과민 처치 제를 도포 후 zinc phosphate, glass-ionomer, resin-modified glass-ionomer cement로 주조 관을 접착했을 때 대조군에 비해 그 유지를 크게 차이를 보이지 않았다고 보고 했다.

- 2 -
하지만 지각 과민 치치제를 노출된 상아질에 도포 후 레진 접착 시멘트로 수복물을 접착했을 때 그 접착력에 어떤 영향을 주는지에 대한 정보가 거의 없는 실정이다. 레진 접착 시멘트는 상아질의 접착 과정에서 도말층을 적절히 치료하고 레진 침전층을 형성하여 고정 효과가 생기는 것이 중요하니 만약 상아질 지각 과민 치치제가 이런 고정 효과를 막는다면 접착력에 영향을 주게 될 것이다.

이에 본 연구에서 다양한 기전과 성분의 상아질 지각 과민 치치제 도포가 상아질과 레진 접착 시멘트 간의 접착력에 어떤 영향이 있는지를 알아보고, 주사 전자 현미경 사진을 통해 그 원인을 분석해 보고자 하였다.
II. 실험 재료 및 방법

1. 치아 시편의 제작

최근에 발치한 건전한 사람 치아를 이용하였고 치아의 선택 기준은 (1) 넓은 면적의 상아질을 얻기 위하여 상하악 대구치만을 사용하였고 (2) 상아질 기질의 변성 요인을 제거하고자 치아 우식증을 가진 치아를 제외하였다. 이렇게 선별된 125개의 치아를 전단결합강도 측정 실험의 편의를 위해 지름 30mm, 높이 30mm 크기의 원기둥 형태로 주문 제작된 Teflon mold를 이용하여 아크릴리ック 레진(acrylic resin)에 포매하였다. 이때 치아는 교합면이 원통형의 아크릴리ック 레진의 밑면에 가능한 평행하도록 포매하였다. 이들 시편은 Trimmer(Whip mix corporation, Louisville, Kentucky, USA)를 이용하여 치관부의 상아질이 노출될 때까지 삭제를 하였다. 이때 평활하고 포매한 아크릴리ック 레진의 밑면에 평행한 상아질 면을 얻으며 치수가 노출되지 않도록 주의하였다. 노출된 상아질은 pumice powder로 low speed-hand piece를 이용해 표면을 세척 하여 마무리 하였고 증류수에 3일간 보관하였다.(Fig 1.)

Fig 1. Tooth embedded in acrylic resin
2. 치아 시편에 상아질 지각 과민제 도포

시편의 표면 처리는 대조군을 포함하여 5가지로 하였으며 표면 처리를 위한 실험 약제는 Table I과 같고 각각의 실험군에 25개의 치아를 무작위로 선별하여 혼란 변수(confounding factor)의 개입을 극소화 하였다.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Composition</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperSeal®</td>
<td>oxalic acid, potassium salt</td>
<td>Phoenix Dental. Inc, Fenton, USA</td>
</tr>
<tr>
<td>MS-Coat®</td>
<td>Liquid A: water, copolymer</td>
<td>Sun medical Co., Ltd., Moriyama, Japan</td>
</tr>
<tr>
<td></td>
<td>with sulfonic group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid B: water, oxalic acid</td>
<td></td>
</tr>
<tr>
<td>Gluma®</td>
<td>water, (2-hydroxyethyl) methacrylate, glutaraldehyde</td>
<td>Heraeus Kulzer, Dormagen, Germany</td>
</tr>
<tr>
<td>Copalite</td>
<td>copal resin, ether, aceton, alcohol</td>
<td>Cooley & Cooley Ltd., USA</td>
</tr>
<tr>
<td>Varnish™</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

분류된 시편은 Table I의 4가지 상아질 지각 과민 처리제를 각각 제조사의 지시대로 노출된 상아질 표면에 처리 하였고, 대조군의 노출된 상아질 표면은 아무런 처리도 하지 않았다.
3. 레진 시멘트와의 결합

각각의 재료로 표면 처리한 상아질상에 ED primer(Kuraray Co., LTD, Japan)를 도포하고 60초 동안 건조 시킨 뒤 노출된 상아질에 수직으로 Panavia F(Kuraray Co., LTD, Japan)를 Ultradent plastic hole(Ultradent Product, Inc, Utah, USA)에 주입하여 최소 5mm 높이의 접착된 원기둥을 만들었다. (Fig 2.)

Table II는 Panavia F(Kuraray Co., Ltd., Japan)의 성분을 정리한 것이고, Fig 3.은 전체적인 시편 준비과정을 도식화 한 것이다.

Fig 2. Ultradent plastic hole(Ultradent Product, Inc, Utah, USA) for bonding resin cement to dentin
Fig 3. Diagram illustrating specimen preparation.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentin substrates from 125 posterior human teeth</td>
<td></td>
</tr>
<tr>
<td>Tooth dry, Air-blow (5s)</td>
<td></td>
</tr>
</tbody>
</table>

Desensitizer
- None
- SuperSeal®
- Gluma®
- MS-Coat®
- Copalite Varnish™

Sample size
- 25
- 25
- 25
- 25
- 25

Air-blow (5s)

Priming
- ED primer (A/B): 60s (self etching primer)
 - Air-blow (5s)

Bonding
- Panavia F cement (with Oxyguard II)
 - Storage in 37°C water for 3days
 - Shear bond strength testing
Table II. Components and application of test luting resin cement system (Panavia F (Kuraray Medical Inc., Osaka, Japan)) used in the study

<table>
<thead>
<tr>
<th>Material</th>
<th>Component</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-etching primer</td>
<td>Liquid A</td>
<td>HEMA, MDP, 5-NMSA accelerator, water</td>
</tr>
<tr>
<td>(ED primer)</td>
<td>Liquid</td>
<td>B5-NMSA, accelerator, water</td>
</tr>
<tr>
<td>Panavia F cement</td>
<td>A Past</td>
<td>MDP, co-monomers filler, NaF, BPO</td>
</tr>
<tr>
<td></td>
<td>B Past</td>
<td>co-monomers filler, NaF, amine, initiator</td>
</tr>
<tr>
<td>Oxyguard II</td>
<td></td>
<td>polyethyleneglycol accelerator</td>
</tr>
</tbody>
</table>

HEMA: 2-hydroxyethyl methacrylate; MDP: 10-methacryloyloxydecyl dihydrogen phosphate; 5-NMSA: N-methacryloyl-5-aminosalicylic acid
4. 전단 결합 강도의 측정

전단 결합 강도 측정을 위해 제작된 시편을 만능 측정 시험기(Universal testing machine Model 6022, Instron Co, Canton, MA, USA)에 고정하고 상아질과 레진 시멘트의 계면 부위에 힘을 가할 수 있도록 시편을 상부에서 받을 감싸는 특수 제작된 Ultradent사의 device를 이용하여 2mm/min 속도로 파절이 일어날 때까지 전단력을 가하여 전단 결합 강도를 측정하였다.(Fig 4.)

Fig 4. Sample set in universal testing machine for shear bond strength
5. 주사 전자 현미경적 관찰

실험 조건별로 각 시편의 표면처리 후, 전단 강도 실험을 통한 파절 후 각 시편의 표면 미세 구조와 파절된 양상을 알아보기 위해 치아 표면을 주사 전자 현미경(JSM-T2000, JEOL, Tokyo, Japan)을 사용하여 각각 다 양한 배율로 관찰하였다. 관찰 시편은 각 실험군에서 전단 강도의 평균값에 가깝게 수치가 나온 시편 중 4개씩을 선택하여 관찰하였고 주 관찰 대상은 각각의 표면처리 후 상아질 표면의 변화 양상과 전단 강도 측정 후 그 파절 면의 양상이었다.

6. 통계분석

전체적인 각 실험군과 대조군의 분포도를 보기 위해 Descriptive data를 이용하였고, 분산의 정도가 서로 다른지를 정확하게 분석하기 위해 Test of equal variances를 이용하였다.

Welch ANOVA test를 이용하여 각 실험군과 대조군의 차이를 검증하였고, 마지막으로 구체적으로 어떤 실험군과 대조군이 다른지를 분석하기 위해 사후 검정으로 Tukey-Kramer HSD를 이용하였다.
III. 연구 결과

1. 전단 결합 강도

125 개의 시편을 25개씩 무작위로 5개의 군으로 나누어 상아질을 노출시키고 아무런 치료를 하지 않은 하나의 대조군과 4개의 각각 다른 지각 과민제로 치료한 4개의 실험군에 Panavia F (Kuraray Co., Ltd., Japan)를 붙이고 전단 결합 강도를 측정하여 Fig 5와 같은 결과를 얻었다.

![Bar graph showing means and comparisons for all pairs using Tukey-Kramer HSD](image)

Fig 5. Means and Comparisons for all pairs using Tukey-Kramer HSD:

There was no statistical difference of shear strength between control group and the experimental group treated with Superseal®. The shear strength among the experimental groups treated with Gluma®, Varnish®, MS-Coat® was not different statistically.
동분산 가정의 검정을 5% 유의 수준에서 시행하여 Table III와 같은 결과를 얻었으며 이에 따라 비모수 분석인 Welch ANOVA test를 5% 유의 수준으로 시행하여 Table IV과 같은 결과를 얻었다.

Table III. Tests of equal variances.

<table>
<thead>
<tr>
<th>Test</th>
<th>F Ratio</th>
<th>DFNum</th>
<th>DFDen</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’ Brien</td>
<td>4.7201</td>
<td>4</td>
<td>120</td>
<td>0.0014</td>
</tr>
<tr>
<td>Brown-Forsythe</td>
<td>6.2014</td>
<td>4</td>
<td>120</td>
<td>0.0001</td>
</tr>
<tr>
<td>Levene</td>
<td>6.8760</td>
<td>4</td>
<td>120</td>
<td><.0001</td>
</tr>
</tbody>
</table>

DFNum: Degree of Freedom in numerator
DFDen: Degree of Freedom in denominator

Table IV. Welch ANOVA testing

<table>
<thead>
<tr>
<th>F Ratio</th>
<th>DFNum</th>
<th>DFDen</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.50</td>
<td>4</td>
<td>57.749</td>
<td><.0001</td>
</tr>
</tbody>
</table>

DFNum: Degree of Freedom in numerator,
DFDen: Degree of Freedom in denominator

Fig 5에서 볼 수 있듯이 SuperSeal®을 도포한 실험군과 대조군은 통계학적으로 유의한 차를 보이지 않았으며 Gluma®, Varnish®, MS-Coat®를 도포한 실험군들이 대조군 보다 통계학적으로 유의하게 낮은 결합강도를 보였 다.
2. 주사 전자 현미경적 관찰

Fig 6은 4가지 종류의 상아질 각각 과민 처리제를 상아질 표면에 제조자의 지시대로 도포한 후 주사 현미경으로 관찰한 표면의 미세 구조이다. A는 대조군으로 상아세관이 모두 열려 있는 모습을 관찰할 수 있다. B는 Gluma®를 도포한 실험군으로 상아세관을 막고 있는 양상을 어느 정도 확인할 수 있으나 완전한 봉쇄는 되지 않은 상태이며 작은 입자들이 그물처럼 잡혀서 상아세관 내에 위치하는 모습을 보인다. 세관간 상아질부위에도 약체가 약간 도포된 양상을 보이나 두개체 막을 형성하지 않는다. C는 MS-Coat®를 도포한 실험군으로 아주 두터운 막을 형성하고 있으며 그 막이 상아세관을 완전히 덮지는 못하나 상당 부분 세관 쪽으로 연장되어 덮여있는 모습을 볼 수 있다. 또한 세관간 상아질도 완전히 덮여 있는 양상을 보인다. D는 SuperSeal®를 도포한 실험군으로 상아세관 속으로 작은 입자들이 들어간 모습을 볼 수 있다. 완전히 봉쇄된 세관도 있고 그렇지 못한 세관도 있으나 상아세관 입구가 열린 경우도 세관 내로 깊게 위치한 입자들을 확인할 수 있다. E는 Copalite Varnish™를 도포한 실험군이고 대부분의 표면이 별표와 같이 보였으며 도포되지 않은 경계부위를 찾아 촬영한 것으로 그 차이가 분명히 구별된다. 아주 두터운 레진 층으로 덮어 있음을 알 수 있다.

After treating with SuperSeal®, the oxalate particle was found deep in the dentinal tubule. Gluma® plugged the dentinal tubule in a net form while the MS–Coat® showed to cover the overall dentin surface in a thick layer

★: Varnish treated area
Fig 7은 상아질 저가 과민 치료제를 도포하고 그 위에 Panavia F를 붙인 뒤 전단 결합 강도 측정 후 파절면을 관찰한 것이다. 대조군인 A에서는 상아 세관 내로 균일하게 들어가 있는 resin tag를 관찰할 수 있으며 계면에서 파절시 tag만을 남기고 깨끗하게 파절된 양상을 확인할 수 있다. B는 Gluma®를 도포한 실험 군으로 resin tag는 관찰되나 대조군에 비해 균일하지 못하며 완전히 응결되어 있지 않은 양상을 보인다. 또한 세관간 상아질의 표면에 Gluma®로 여겨지는 매끄러운 성분이 도포되어 있는 것이 확인된다. C는 MS-Coat를 도포한 실험 군으로 Fig 6의 C와 큰 차이를 보이지 않는다. 약제가 두껍게 표면을 막고 있어 resin tag의 존재를 확인할 수 없으며 관찰된 표면이 매끈하게 보이고 resin이 점투된 흔적을 찾을 수 없다. D는 SuperSeal®를 도포한 실험 군으로 두텁게 덮여 있는 층이 관찰되며 이것은 그림 4의 D와 비교 시 레진 시멘트가 부착되어 있는 양상으로 보이며 레진 시멘트 내에서 파절이 일어 났음을 시사한다. E는 Copalite Varnish™를 도포한 실험 군으로 깨끗하게 Varnish가 뚫여진 양상을 보이고 resin tag도 전혀 관찰되지 않는다.
Fig 7. Scanning electron microscopic view of dentin surface after treatment with desensitizing agents and shearing resin cement (Panavia F): A. Control group, B. Gluma® desensitizer group, C. MS-Coat® group, D. SuperSeal® group, E. Copalite Varnish™ group, (X5000)

The spectrum treated with SuperSeal® after the shearing of Panavia F, resin tags were found in almost all of the dentinal tubule while the spectrum treated with MS-Coat® showed no dentin bonding.
본 연구는 현재 임상에서 많이 사용되는 성분과 원리가 다른 수종의 상아질 지각 과민 처치제를 노출된 상아질 표면에 도포하고 그 위에 레진 접착 시멘트를 접착하여 전단 결합 강도를 측정함으로써 접착 수복을 위한 레진 시멘트의 사용 전에 상아 세관의 봉쇄를 위한 처치가 레진 시멘트의 상아질 접착력에 미치는 영향이 있는지를 살펴보고 영향이 있다면 최소한의 영향을 미치는 성분을 가진 상아질 지각 과민 처치제를 알아보고자 설계되었다.

두 번째는 Oxalate 입자를 이용하는 방법이다. Potassium oxalate가 상아질 표면에 적용될 때 그것은 상아질 내의 칼슘과 반응해 Calcium oxalate의 복

천수성의 potassium oxalate는 상아 세관의 관주 상아질 기질의 화학 작용으로 불해성 화학 점착물을 형성하며 이런 제재가 이번 실험에 사용한 SuperSeal®이다. 이 제재는 레진 성분이 함유되어 있지 않으며 oxalic acid가 smear layer를 제거하고 potassium oxalate가 세관 내로 깊이 침투하는 것을 돕는다. 실제로 본 연구에서 주사 전자 현미경상에서 세관 내로 침투되어 생성된 oxalate 입자들을 볼 수 있었고 상아질 표면에서는 세관이 열려 있었다. 이런 현상은 레진 접착 시 resin tag가 깊게 형성되게 할 것이고 본 연구의 전단 강도 실험에서도 강도가 대조군과 유의한 차이가 없는 것으로 나왔다. 특히 전단 강도 실험에서 파절 양상이 레진 시멘트 내에서 이루어 지는 것을 볼 수 있었는데 이것은 Panavia F의 ED primer(self-etching primer)의 작용을 극대화 할 수 있는 환경을 제공하기 때문이라 사료 된다. 즉 레진을 함유하는
지각 과민 처치제는 ED primer가 상아질과 작용하는 것을 차단하지만 수용성 지각과민제의 경우는 ED primer가 직접적으로 상아질에 작용을 할 수 있을 것이라 추측된다.

Varnish 도포는 수복이 필요한 결손 부위나 열려 있는 상아 세관을 덮기 위해 오래 전부터 사용하였으나 일시적인 효과만 보였고 부착력이 없어서 금방 떨어졌다고 보고되고 있다(Brännström 1996). 본 연구에서도 전단 강도 측정에서 낮은 강도를 보였으며 주사 전자 현미경 사진에서도 도포 후 아주 두꺼운 레진 층을 형성한 것을 볼 수 있었고 이것이 상아질과의 결합을 완전 차단했다.

Fig 8은 본 연구에서 상아질 지각 과민 처치제를 도포한 뒤 관찰된 형태를 도식화 한 것이다.

Fig 8. Schematic diagram after treat with each desensitizer
착력에 어떤 영향을 주는지를 알아보았고 4가지 상아질 지각 과민 처치제 중에 SuperSeal®만이 레진 접착에 크게 영향을 미치지 않았다. 즉 레진 성분이 함유된 지각 과민 처치제는 레진 시멘트와 상아질 간에 부정적인 영향이 있다 는 것을 알 수 있었다.
V. 결론

수복을 위한 치아 삭제나 외동 형성 시에 발생할 수 있는 상아질 지각 과민과 수복 후 동통을 줄이기 위해 다양한 성분의 상아질 지각 과민 치료제를 도포하고 그 후 레진 시멘트로 수복물을 접착했을 때 상아질과 레진 접착 시멘트 간의 접합력에 어떤 영향이 있는지를 알아보고자 전단 강도 측정과 주사 전자 현미경 사진을 관찰함으로써 다음과 같은 결과를 얻었다.

1. 전단 결합 강도는 노출된 상아질 표면에 아무런 지각 과민 처치제를 도포하지 않고 Panavia F를 접착한 대조군이 가장 큰 값(14.74MPa)을 보였고, 그 다음은 SuperSeal® (12.33MpA), Gluma® (5.28MPa), MS-Coat® (4.44MPa), Copalite Varnish™ (3.14MPa) 순의 평균값을 보였다.

2. 대조군과 SuperSeal® 군은 통계학적으로 유의한 차를 보이지 않았으며, Gluma®, Copalite Varnish™, MS-Coat® 군들은 대조군 보다 유의하게 낮은 결합 강도를 보였다.

3. 주사 전자 현미경적 관찰에서 SuperSeal®은 oxalate입자가 상아세관 내로 들어간 양상을 보이고 상아질 표면과 상아세관의 입구는 노출되어 있었다. MS-Coat®는 상아세관을 포함한 상아질을 전반적으로 두툼하게 덮고 있는 양상을 보였다.

4. Panavia F의 전단 파절 후 주사 전자 현미경적 관찰에서 그 파절면은 SuperSeal®을 도포한 군은 대부분의 상아세관에서 resin tag가 관찰되었고 상아질과 직접 결합되는 양상을 보였으나 MS-Coat®를 도포한 군은 전반 상아질 결합이 이루어 지지 않은 모습을 보였다.
결론적으로 상아질 지각 과민 처치제는 상아질과 레진 접착 시멘트 간의 결합력에 영향을 미칠 수 있으므로 성분과 기전에 대한 정확한 이해가 요구된다. 본 연구에서 수용성 oxalate 제재(Superseal®)의 경우는 대조군과 유의성 있는 차이를 보이지 않았고 레진 성분을 함유한 다른 제제들에서는 유의성 있는 전단 결합 강도의 감소를 보여 레진 성분을 함유한 지각 과민 처치제는 레진 시멘트와 상아질 간의 접착에 있어 부정적인 영향이 있는 것으로 보인다.
참고 문헌

Abstract

The effect of several dentin desensitizers on shear bond strength of resin adhesive luting cement.

Joong Bo Huh
Department of Dentistry
The Graduate School, Yonsei University

(Directed by Professor Moon Kyu Chung)

Dentin desensitizers are frequently used to minimize the possibility of dentin sensitization. Variety of ingredients of different dentin desensitizers and the interference of chemical reaction between dentin and resin cements due to the various ingredients may reduce bonding strength and sealing effect of resin cement. Currently knowledge regarding the bonding strength between dentin and resin cements after usage of desensitizers is not available for dental clinicians. Therefore, the purpose of this study was to find out the effect of shear bonding strength between dentin and resin cement after several dentin desensitizers were used. 125 dentin exposed teeth were randomly assigned to four experimental groups and one control group. Each dental desensitizer was applied to each experimental group except the control group. The dental desensitizers were Superseal® (Phoenix Dental, INC, USA), MS–Coat® (Sun medical Co. LTD, Japan), Gluma® (Heraeus Kulzer, Germany), and Copalite varnish® (Cooley & Cooley LTD, USA). Panavia
F (Kuraray Co., LTD, Japan) was attached using Ultradent plastic hole (Ultradent Product, inc, UTAH, USA) to the top of each experimental and control group and the shear strength was measured using Universal testing machine (Model 6022, Instron Co, Canton, MA, USA). The tooth surface was examined at various magnification with the scanning electron microscope (JSM-T2000, JEOL, Tokyo, Japan) to find out the fracture pattern after measuring the surface microstructure and shear strength of each specimen before and after the application of each dental desensitizer.

The results were as followings:

1. The control group showed the largest strength (14.74 MPa) in the shear strength experiment, followed by SuperSeal® (12.33 MPa), Gluma® (5.28 MPa), MS-Coat® (4.44 MPa) and Copalite Vrnish™ (3.14 MPa).

2. There was no statistical difference of shear strength between control group and the experimental group treated with Superseal®. The shear strength among the experimental groups treated with Gluma®, Varnish®, MS-Coat® was not different statistically.

3. In viewing with the scanning electron microscope, after treating with Superseal® the oxalate particle was found deep in the dentinal tubule. while the MS-Coat® covered the dentin and dentinal tubule overall in a thick layer.
4. In viewing with the scanning electron microscope, the experimental group treated with Superseal® resin tags were found in most of the dentinal tubule while the experimental group treated with MS-Coat® showed no dentin bonding.

In conclusion, among the 4 dentin desensitizers, Superseal® was the only one that did not interfere with the process of resin cementation. Other dentin desensitizers that contain resin ingredient showed interference of bonding between resin cement and tooth dentine.

Key word : desensitizer, resin cement, shear bond strength, scanning electron microscopic view