I-123 IPT SPECT를 이용한 주의력결핍 과잉행동장애 아동에서의 methylphenidate 투여 전후의 기저 신경질 도파민 운반체 밀도 변화 측정

연세대학교 의과대학 전단방사선과학 교실1, 정신과학 교실2, 인하대학교 화학과3, 가천대학교 의과대학 액의학과 교수4
류원기1, 김태훈1, 유영훈1, 윤미진1, 최근아2, 지대윤3, 김종호4, 최태현4, 이종두1

Dopamine Transporter Density of the Basal Ganglia in Children with Attention Deficit Hyperactivity Disorder Assessed with I-123 IPT PECT

Won Gee Ryu, M.D., Tae Hoon Kim, MD., Young Hoon Ryu, M.D., Keun Ah Cheon, M.D., Mijin Yun, M.D., Dae Yoon Chi, Ph.D., Jong Ho Kim, M.D., Tae Hyun Choi, M.Sc, Jong Doo Lee, M.D.

Department of Diagnostic Radiology1, Department of Psychiatry2, College of Medicine, Yonsei University
Department of Chemistry3, Inha University, Department of Nuclear Medicine4, Gachon Medical School.

Abstract

Purpose: Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglia using I-123 N-[(3-iodopropen-2-yl)-2-carboxamethoxy-3beta-(4-chlorophenyl) tropane [I-123 IPT] SPECT in children with ADHD before and after methylphenidate treatment. Materials and Method: Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed [123]IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methylphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Results: Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both basal ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p = 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. Conclusions: These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

Key Words: I-123 IPT, SPECT, Attention Deficit Hyperactivity disorder, Basal ganglia, Dopamine transporter, Methylphenidate.
서 론

주의력결핍 과잉행동장애는 학동기 아동에서 가장 흔한 행동장애 중 하나로서 특정적인 증상으로는 집중력 장애, 부적절한 과잉 행동, 충동성으로 1) 학동기 아동의 약 4~5%에서 발생한다 2). 주의력 결핍 과잉행동장애의 정확한 원인으로 현재까지 알려진 요소들은 가족 및 유전적 요소, 산전 또는 산후 기, 화학적 독소, 사회심리적 스트레스 및 복합적 요소, 뇌구조 및 기능의 이상, 주의력결핍 과잉행동장애와 연관되는 뇌 영역의 발달적 신경생물학적 요소 등이 거론되고 있다 3).

가족 및 유전적 요소가 지난 몇 년간 주의력결핍 과잉행동장애 원인의 중요도 부분을 차지하게 되었고 최근의 연구들로 통해 주의력결핍 과잉행동장애가 유전도가 높은 질환으로 알려지고 있으며 4-6), 또한 주의력결핍 과잉행동장애에 관한 많은 연구들에서 도파민 운반체 유전자와 주의력결핍 과잉행동장애와 연관이 있음을 보고하고 있다 7,8). 이들의 연구에서 주의력결핍 과잉행동장애의 치료제인 methylphenidate가 치료 신경계에 주로 분포하고 있는 도파민 운반체를 차단하여 시냅스의 도파민 농도를 증가시켜 치료 효과를 나타내고 있는 것으로 확인되었다 9,10).

주의력결핍 과잉행동장애의 신경생물학적 원인을 찾기 위한 뇌영상연구도 활발히 진행되었는데 주의력결핍 과잉행동장애의 신경해부학적 구조적 이상소견에 대한 보고 11)에서부터, 기능적 뇌영상의 SPECT와 PET 연구도 행해졌다 12-14). 그러나 이러한 PET 또는 SPECT 연구는 뇌혈류 또는 도포당 대사의 이상을 보고한 연구가 대부분이었으며 주의력결핍 과잉행동장애의 신경생물학적 원인과 관련한 도파민체계학적 적용을 하는 radioligand를 이용한 뇌영상 연구는 미약한 현실이다. Ernst 등 15)은 F18 fluorodopa (DOPA) PET을 이용한 두 연구를 통해 주의력결핍 과잉행동장애 환자에서 증상의 F-18 DOPA 품수가 비정상적으로 증가되어 있다고 보고하였다. 최근에는 신조체에 특정하게 강화하고 다른 뇌부위에는 거의 결합하지 않는 Tc-99m TRODAT-1을 이용한 SPECT영상에서 주의력결핍 과잉행동장애 환자군의 신조체 도파민운반체의 밀도가 정상 대조군에 비하여 유의하게 증가되어 있다는 연구결과도 보고되었다 16). 이 저자들은 주의력 결핍 과잉행동장애 환자에게 methylenphidate를 두어 하기 전과 후의 신조체 도파민 운반체 밀도가 두어 전에 비하여 현저하게 감소되었음을 규명하였고 이러한 감소와 증상의 호전도 연관성이 있다고 보고하였다. Dougherty 등 17)은 6명의 주의력결핍 과잉행동장애 환자들을 대상으로 1-123 altfopane을 이용한 SPECT영상률 통해 주의력결핍 과잉행동장애 환자군의 신조체 도파민 운반체 밀도가 정상 대조군에 비해 70% 증가되어 있다고 보고하였다. 그러나 가장 최근의 연구에서는 [1-123] 2β - carbomethoxy-β -(4-iodophenyl) tropane ([123]I)β - CIT) SPECT을 이용한 주의력결핍 과잉행동장애 성인 환자군과 정상 대조군사이의 신조체 도파민 운반체 밀도로서 두 군 사이에 유의한 차이를 보이지 않았다 18). 이와 같이 주의력결핍 과잉행동장애의 병태생리와 연관있는 도파민 운반체의 밀도를 알아보기 위해 시행되었던 몇몇 연구들에서 조사 일관된 소견을 보이지 않고 있는 상태이다. 또한, 의의 모든 연구들은 성인들을 대상으로 시행되었는데, ADHD가 학령 전후기에 발생하는 대표적 소아정신과 질환이라는 점을 고려할 때, 이런 시점 발생한 상태에서의 뇌 영상 연구가 해야할 필요가 있으며 DAT에 특정하게 결합하는 물질인 1-123 IPT SPECT를 이용하여 9명의 약물 비노출 ADHD 아동군과 6명의 정상 아동들 사이의 기저 신경질 DAT 밀도를 비교한 결과 ADHD 아동군에서의 기저 신경질 DAT 밀도가 유의하게 증가되어 있음을 보고된 바 있다 19).

따라서 본 연구에서는 ADHD 아동에게 치료 목적으로 일정 기간 methylphenidate 두어 후에 기저 신경질 DAT 밀도의 유의한 감소가 있을 것이라고 가정하고, 약물 비노출 ADHD 아동군을 대상으로 methylphenidate 두어 전후로 1-123 IPT SPECT 영상을 이용하여 기저 신경질 DAT 밀도를 비교해 보았다. 또한 ADHD 아동의 증상의 심각도(severity)가 methylphenidate 두어 후 호전된 정도와 기저 신경질 DAT 밀도 변화 사이의 연관성을 규명
대상 및 방법

1. 연구대상 및 평가지표

본 연구의 대상은 본원 소아정신과에 내원한 만 6~12세 사이의 아동들로서 ADHD 아동 9명 (9.47 ±1.45세)과 정상 대조군 7명 (10.26±2.88세)이 포함되었다. ADHD 아동군의 포함기준은 DSM-IV 진단기준5)에 의거하여 ADHD 혼합형(combined type)으로 진단된 아동, 만 6세에서 12세 사이인 아동, 환자와 보호자가 환영에 서면으로 동의한 경우, 연구 참여 당시 methylphenidate와 같은 정신 자극제(psychostimulant)에 향연도 노출된 적이 없는 경우로 하였다. 제외기준은 흡 수증가 및 감작증가 기타 정신병적 장애가 동반된 경우, 과거력 또는 현병력에서 뇌 손상이나 경련성 질환을 보이는 경우, 정신 장애나 자폐증, 언어장애, 학습장애 등의 발달장애가 있는 경우, 청영 전 4주 이내에 어떤 약물이라도 복용한 경우로 하였다.

정상 대조군의 포함기준은 만 6세에서 15세 사이인 경우, 소아 정신과 정신적 장애 또는 발달 장애를 갖지 않는 정신질, 신체적으로 건강한 아동, 환자나 보호자가 환영에 서면으로 동의한 경우로 하였다.

임상증상의 진단 및 평가도구로서는 첫째, Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version (K-SADS-PL)를 주의력결핍 과잉행동장애 진단하기 위한 도구로 사용하였으며, 주의력결핍 과잉행동장애 중상의 심각도를 측정하기 위해 ADHD 평가지표 (ADHD Rating Scale-IV, ARS)를 이용하였다. 모든 ADHD 아동은 대상으로 치료 효과가 나타나기 전에 충분한 용량의 평균 0.7mg/kg/d의 methylphenidate를 약 4주동안 투여하였으며 methylphenidate 투여 전과 후에 임상 중상척도로서 ARS를 실시하고 그와 같은 시점에서 SPECT 활영을 실시하였다. ADHD 아동들은 청영 당시 methylphenidate를 반드시 복용하도록 지시되었다.

2. SPECT 영상분석

I-123 IPT SPECT 활성 3일전부터 ADHD 아동군과 정상 대조군에서 감상반으로 I-123 IPT 가 결합하는 것을 최소화시키기 위하여 약 300 mg의 Lugol 용액을 하루에 3회로 나누어 매번 약 20~30 ml의 물이나 주스에 타 마시게 하였다. 빠른 순간 주사로 I-123 4.85±1.12 mCi (179.45±41.44 MBq)을 약 20초 동안 catheter을 통하여 주사한 후 I-123이 주사기에 남지 않도록 생리시험수로 다시 주사하였다. 각각 아동들에게서 주사 후 2시간에 SPECT camera와 중간 에너지 조절기를 이용하여 정적 SPECT 영상을 얻었다. 데이터 획득을 위해 매 개변수는 13.5 cm의 회전반경, 159KeV 중심 20% 에너지 식별 영역, 180개의 투사각 64 X 64 매트릭스로 step and shoot 방법을 이용하였다.

3. SPECT 영상 분석

획득된 영상들은 자단 주파수 (cut-off frequency) 0.75 cycles/cm과 Hamming filter를 이용하여 재구성하였다. 재구성된 영상들은 Chang의 감쇠보정방법 (attenuation correction)을 이용하여 I-123 감쇠에 대하여 보정하였다. 관심영역 (Region of Interest : ROI)은 좌측 기저 신경질, 우측 기저 신경질, 후두엽에 두고, 후두엽을 참고 (reference) 영역으로 설정하였다. 획득된 해석학적 분석자인 근거리 ROI를 수치로 그린 후, mirror image method를 사용하여 반대측 기저 신경질 ROI를 설정한 후, 세 관심 영역의 평균값 (mean pixel count)을 구하였다. 얻어진 ROI 평균값은 영상을 얻은 시간과 주사한 I-123 IPT의 양을 이용 counts/minute/mCi/pixel의 단위로 normalization하였다.

좌측 기저 신경질 DAT 특이 결합 (DAT bindings of binding of left basal ganglia, LBG)과 우측 기저 신경질 DAT 특이 결합 (DAT bindings of right basal ganglia, RBG), 후두엽 DAT 비특이 결합 (DAT bindings of occipital lobe, OCC)의 비율에 대한 계산은 LBG와 RBG에서 OCC를 빼 값 OCC로 나누어 산출하였다.

LBG/OCC=(LBG−OCC)/OCC
4. 통계분석

9명의 ADHD 아동과 7명의 정상 대조군간의 좌, 우 기저 신경질 DAT 특이 결합/비특이 결합 비율을 비교하기 위하여 Mann-Whitney U test를 이용하였다. ADHD 아동군 내에서의 methylphenidate 투여 전, 후 기저 신경질 DAT 특이 결합/비특이 결합 비율을 비교하기 위하여 paired t-test를 이용하였다.

임상적도의 정도 및 치료 후의 변화와 DAT 밀도 정도가 연관성이 있는지 여부를 조사하기 위하여 ARS 척도 점수 변화와 좌, 우측 기저 신경질 DAT 특이결합/비특이결합 비율간의 상관관계를 Pearson's correlation test를 통해 알아보았다. 통계 프로그램은 인도우용 SPSS 10.0을 사용하였으며 p value가 0.05보다 낮은 경우 통계적으로 유의한 것으로 판정하였다.

결 과

주의력결핍 과잉행동장애 아동은 9명이었으며 정상대조군은 7명이었다. 성별은 주의력결핍 과잉행동장애 아동군에서 남자 6명, 여자 3명이었고, 정상 대조군은 남자 6명, 여자 1명이었다. 주의력결핍 과

<table>
<thead>
<tr>
<th>Patients No.</th>
<th>Sex</th>
<th>Age(year)</th>
<th>Illness duration(month)</th>
<th>ADHD rating scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hy-Imp</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>10</td>
<td>36</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>11</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>11</td>
<td>67</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>7</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>7</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>11</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>11</td>
<td>49</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>12</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>8</td>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>

Mean (SD) 9.67 (2.12) 40.45 (15.66) 19.59 (7.3) 18.27 (4.1) 37.86 (4.4) 9.11 (4.23) 12.89 (4.37) 22.00 (6.89)

M : male, F : female, ADHD rating scale : ADHD rating scale—IV, Hy-Imp : Hyperactivity—Impulsivity symptom severity scores, IA : Inattention symptom severity scores, Total : Total ADHD symptom severity scores, P : Parent rating scale, T : Teacher rating scale, SD : Standard Deviation

Table 1. Demographic data and ADHD rating scale scores in drug-naive children with ADHD
Table 2. Differences of specific/nonspecific dopamine transporter binding ratios of left and right side basal ganglia between drug-naive children with ADHD and normal healthy children.

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>LBG/OCC</th>
<th>RBG/OCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD (N=9)</td>
<td>Controls (N=7)</td>
</tr>
<tr>
<td>1</td>
<td>11.42</td>
<td>6.11</td>
</tr>
<tr>
<td>2</td>
<td>7.86</td>
<td>3.88</td>
</tr>
<tr>
<td>3</td>
<td>6.99</td>
<td>7.43</td>
</tr>
<tr>
<td>4</td>
<td>5.92</td>
<td>7.99</td>
</tr>
<tr>
<td>5</td>
<td>8.00</td>
<td>6.03</td>
</tr>
<tr>
<td>6</td>
<td>12.10</td>
<td>6.24</td>
</tr>
<tr>
<td>7</td>
<td>9.16</td>
<td>6.05</td>
</tr>
<tr>
<td>8</td>
<td>6.81</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>8.90</td>
<td>—</td>
</tr>
</tbody>
</table>

Mean (SD) 8.685 (2.300) 6.24 (1.42) 8.717 (2.480) 6.78 (1.06)

Z 2.096 2.057

p-value 0.032* 0.041*

ADHD: Attention Deficit Hyperactivity disorder, Controls: Normal healthy controls, LBG: Dopamine transporter bindings of binding of left basal ganglia, RBG: Dopamine transporter bindings of right basal ganglia, OCC: Dopamine transporter bindings of occipital lobe (reference), LBG/OCC=LBG-background/OCC-background, RBG/OCC=RBG-background/OCC-background, SD: Standard Deviation, —: not applicable

*: p-value < 0.05 (by Mann-Whitney U test)

Fig. 1. Specific/nonspecific dopamine transporter binding ratios of left and right side basal ganglia before and after methylphenidate treatment in children with ADHD, as compared with normal controls (ADHD baseline-right p=0.041, left p=0.032; ADHD methylphenidate-right p=0.018, left p=0.020)
Table 3. Correlation between specific/nonspecific dopamine transporter binding ratios of left and right side basal ganglia before and after methylphenidate treatment in children with ADHD.

<table>
<thead>
<tr>
<th></th>
<th>LBG/OCC</th>
<th></th>
<th>RBG/OCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (N=9)</td>
<td>Methylphenidate treated (N=9)</td>
<td>Baseline (N=9)</td>
</tr>
<tr>
<td>Mean</td>
<td>8.685</td>
<td>4.95</td>
<td>8.717</td>
</tr>
<tr>
<td>(SD)</td>
<td>(2.30)</td>
<td>(1.32)</td>
<td>(2.48)</td>
</tr>
<tr>
<td>t</td>
<td>3.133</td>
<td></td>
<td>3.239</td>
</tr>
<tr>
<td>P-value</td>
<td>0.020*</td>
<td></td>
<td>0.018*</td>
</tr>
</tbody>
</table>

LBG: Dopamine transporter bindings of binding of left basal ganglia, RBG: Dopamine transporter bindings of right basal ganglia, OCC: Dopamine transporter bindings of occipital lobe, LBG/OCC=LBG-background/OCC-background, RBG/OCC=RBG-background/OCC-background, Baseline: before treatment with methylphenidate, Methylphenidate treated: after treatment with methylphenidate, SD: Standard Deviation
* : P-value < 0.05(by Paired t test)

정상 아동군에 비해 유의하게 증가되어 있었고 주의력결핍 과잉행동장애 아동군에서 methylphenidate를 투여한 후 기저 신경질 DAT 밀도가 투여 전 상태에 비해 유의하게 감소하는 것을 알 수 있었는데 이는 최근에 연구된 Dressel 등16의 연구결과와 일치하는 것으로 주의력결핍 과잉행동장애의 신경생화학적 원인론인 도파민계의 기능이상 가설을 지지하는 결과라고 생각된다.

이전부터 주의력결핍 과잉행동장애의 신경학적 병태생리로 밝혀기 위하여 뇌의 형태학적 연구는 많이 시도되었고 여러 형태학적 연구들을 통해 주의력결핍 과잉행동장애 아동들에서 정상인보다 바리대칭성이 소실되어 있고, 특히 기저신경질과 전진두엽 피질의 부피가 정상 아동들에 비해 약 5~10% 정도 감소되어 있음을 알려져 있다.21 특히 기저 신경질과 전진두엽피질에는 도파민 수용체가 풍부하기 때문에 주의력결핍 과잉행동장애의 원인가설인 도파민계 기능이상에 부합하는 결과로 여겨진다.

주의력결핍 과잉행동장애 아동과 정상 대조군 사이의 뇌혈류량 또는 대사율을 비교한 기능적 뇌영 상 연구들도 많이 행해졌으며 F-18 fluorodeoxyglucose (FDG)를 이용한 PET 연구를 통해 주의력결핍 과잉행동장애 환자의 좌측측 전두엽에서의 포도당 대사율이 유의하게 감소되어 있음을 보고하
되었다.2) Lou 등2)는 xenon-133 inhalation에 의해 추정한 뇌혈류량 연구를 통해 주의력결핍 과과행동장애 환자가 신조직의 혈류량이 다른 뇌영역과 비해 현저히 감소되어 있으며 methylphenidate의 투여가 신조직의 혈류량을 증가시킨다고 보고하고 있다. Functional MRI를 이용한 연구에서도 주의력결핍 과과행동장애 아동군에서 methylphenidate를 투여한 후 신조직 활성이 증가된 결과를 보여주었다.3) 이와 같이 주의력결핍 과과행동장애의 뇌영상 연구들에 서 보고된 이상 형태 또는 혈류량 및 대사량의 변화를 보이는 뇌영역은 주로 도파민 수용체가 풍부한 영역들로서 주의력결핍 과과행동장애 유전론 중심의 하나인 도파민 수용체를 탐색하였다. 그에 따라 F-18 DOPA PET을 이용하여 주의력결핍 과과행동장애 아동들에서의 시냅스 도파민 기능을 알아보기 위한 연구가 행해지게 되었고4) 이 연구들 통해 주의력결핍 과과행동장애 아동군에서 우측 중뇌의 DOPA decarboxylase 활성이 장상군에 비해 48% 증가되어 있음을 보고하였다. 이 저자들은 주의력결핍 과과행동장애 아동군에서 DOPA decarboxylase 활성이 장상군에 비해 증가되어 있는 결과에 대해, 1차적인 활성도 수도 있으나 한편으로 도파민 세포의 기능적 단위들 즉, 도파민수용체, 도파민 흡수 수반체, 도파민 소성 수반체, 피프로효소들 사이에 따른 2차적 현상일 수 있다고 해석하였다. 이와 같은 아동군과 성인군 연구 결과의 차이에 대해, 저자들은 성인 주의력결핍 과과행동장애에서의 전전두엽 DOPA decarboxylase 비정상적 활성은 신경학적 성숙과 적응과정을 동반한 피질화 도파민계 결합의 상호작용에 기인한 결과라고 가정하였다.

뇌영상은 드프싼단백질 밀도 연구는 1998년 Dougherty 등5)이 1-123 alitropane SPECT 연구를 통해 주의력결핍 과과행동장애 환자군의 신조직 도파민 수반체 밀도가 정상 대조군에 비해 증가되어 있다고 보고한 이후, 주의력결핍 과과행동장애 환자군에서 신조직의 도파민 수반체 밀도를 측정하기 위한 PET 또는 SPECT 연구들이 진행되어 오고 있다. 특히 도파민 수반체를 차단하는 기전으로 주의력결핍 과과행동장애 증상의 치료 효과를 도모하는 methylphenidate를 투여한 상태에서 신조직 도파민 수반체 밀도의 변화를 관찰함으로써 주의력결핍 과과행동장애가 도파민계 이상과 관련이 있다는 것을 증명하려는 시도도 함께 이루어지고 있다. Dresel 등6)가 Tc-99m TRODAT-1 SPECT 영상을 통해 측정한 신조직의 도파민 수반체 밀도가 정상 대조군에 비해 유의하게 증가되어 있다고 보고하였고, methylphenidate를 투여한 후 신조직 도파민 수반체 밀도가 유의하게 감소된 양상을 보고하고 있다. 그러나 정신과학계에 노출되지 않은 주의력결핍 과과행동장애 아동 환자군을 대상으로 1-123-CIT SPECT를 적용한 한 최근 연구에서는 신조직의 도파민 수반체 밀도가 정상군에 비해 유의한 차이가 있다고 보고하고 있어7) ADHD 환자군에서 신조직 DAT 밀도 변화에 대한 가설을 확립하기 위해서는 더 많은 연구들이 필요한 실정이다.

이전 연구에서 약물 비노출 주의력결핍 과과행동장애 아동군에서 1-123 IPT SPECT로 측정한 기저 신경질 DAT 밀도가 정상 대조군에 비해 유의하게 증가되어 있음을 밝힌 바 있으며, 본 연구는 그에 대한 추측 연구로서 약물 비노출 ADHD 아동들을 대상으로 일정 기간 동일한 methylphenidate를 투여한 후 DAT 밀도의 변화를 본 것으로 같은 대상군 내에서 치료를 한 후의 변화를 보았는지에서 의의가 있다. 지금까지 행해져온 DAT 밀도를 관찰하기 위한 모든 연구들이 성인을 대상으로 했던 것이고, ADHD가 혈청 전후기에서 발생하는 소아청소년과 정원암을 상기한다면 본 연구의 대상과 대조군이 모두 아동군이라는 점에 중요한 의의가 있다.

본 연구에서는 ARS로 측정한 ADHD의 주요한 증상 및 전 증상 척도가 기저 신경질 DAT 밀도간의 연관성을 알아보기 위해서 methylphenidate 투여 전 상태 및 투여 후 호전도와 DAT 밀도 사이에 유의한 연관성이 없는 것으로 나타났다. 이것은 Dresel 등6)가 Tc-99m TRODAT-1 SPECT를 이용한 연구에서 ADHD 환자군에서 methylphenidate 투여 전과 투여 후의 증상과 DAT 밀도간의 소 사이에 유의한 연관성이 있다고 보고한 것과는 상반되는 결과이다. 반면, van Dyck 등8)이 최근 1-123 β-CIT SPECT을 이용한 연구에서 신조직 DAT 밀도와 ARS로 측정한 methylphenidate 투여
전 중상 척도 점수와 methylphenidate 투여 후 중상 호전도 사이에 유의한 상관성이 없다고 보고한 것과 일치되는 결과이다. 이와 같이 ADHD 중상의 심각도와 DAT 밀도간의 연관성 연구 결과가 다양하게 나오는 것은 기능적 뇌영상 연구의 특장상 많은 대상군을 모집할 수 없다는 점을 들 수 있겠다. 이상 ADHD 중상 척도와 자기 신경질 DAT 밀도간의 연관관계를 보이기 위한 연구가 계속되어 ADHD 중상의 심각도와 DAT 밀도의 연관성이 규명되어야 할 필요가 있다고 생각된다.

본 연구의 제한점은 주의력결핍 과잉행동장애 대상군과 대조군의 수가 적다는 것이다. 지금까지의 주의력결핍 과잉행동장애의 도파민전해체 밀도를 보기 위한 연구들의 대상군 및 대조군 수가 적은 상황이다. 실제로 연구자들 많이 결론을 도출할 수 있는 것이 일반되지 않은 결과들은 주요한 원인 이었던 것을 감안한다면 앞으로 더 많은 주의력결

결론적으로, 본 연구에서는 주의력결핍 과잉행동장애 아동군의 기저 신경질 DAT가 정상 아동군에 비하여 증가되어 있음을 알 수 있었으며 이러한 연구 결과를 통해 주의력결핍 과잉행동장애의 심각성의 일부로 인한 도파민 전해체 기능 이상을 지지한다고 볼 수 있다. 또한, 특정 기저성 DAT의 변화와 밀접한 연관이 있다고 여겨지는 바, 향후 분자유전학적 연구를 통해 주의력결핍 과잉행동장애의 강화한 후보 유전자 중 하나인 도파민 전해체 유전자와 재영상을 통한 DAT 밀도간의 연관성을 가리기 위한 연구가 행해질 필요가 있다고 생각한다.

요 약

목적: 주의력결핍 과잉행동장애 (Attention Deficit Hyperactivity disorder: 이하 ADHD)는 도파민계의 이상 기능으로 생기는 대표적 소아정신과 질환이다. Methylphenidate는 dopamine transporter (DAT)를 차단함으로써 ADHD 중상을 호전시키는 약물로 널리 알려져 있다. 따라서 본 연구에서는 ADHD 아동들을 대상으로 1-123 IPT SPECT를 이용하여 methylphenidate 투여 전후의 DAT density 양상을 비교해 보고자 한다.

대상 및 방법: 연구대상은 9명의 ADHD 아동과 7명의 정상 대조군이었다. ADHD 아동군과 정상 대조군에게 모두 약물 비노출 상태에서 [123I]IPT 롱맥 주사후 2시간이 경과한 상태에서 SPECT를 활영하였다. 이후 ADHD 아동군을 대상으로 methylphenidate 0.7mg/kg/d을 투여한 후 약 8주가 경과한 상태에서 [123I]IPT SPECT를 재활영 하였다. Methylphenidate 투여 전과 후의 좌,우측 기저 신경질 DAT 특이결합/비특이결합 비율을 구한 뒤 비교하였고, 약물 투여 후의 ADHD 중상 척도로 측정한 중상 호전도와 좌,우측 기저 신경질 DAT 특이결합/비특이결합 비율 변화사이에의 상관관계를 알아보았다.

결과: ADHD 아동군에서 약물 비노출 상태와 정상 대조군 사이의 좌, 우측 기저 신경질 DAT 특이결합/비특이결합 비율을 비교한 결과 DAT 결합 비율이 정상 대조군에 비해 유의하게 증가되었다.

결론: 이러한 결과는 주의력결핍 과잉행동장애의 치료제인 methylphenidate가 작용하는 기전을 이용하여 주의력결핍 과잉행동장애의 병태생리와 연관된 도파민계 기능이 이상 가능성을 지지한다고 생각된다.

중성 단어: 주의력결핍 과잉행동장애, Methylphenidate, 1-123 IPT SPECT, 기저 신경질, Dopamine transporter

References

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental disorder, 4th
Dopamine Transporter Density of the Basal Ganglia in Children with Attention Deficit Hyperactivity Disorder Assessed with 123IPT SPECT

