Prevalence and Clinicopathologic Features of Mucinous Cystic Tumor and Intraductal Papillary Mucinous Tumor of Pancreas in Korea

Jin Hee Sohn · Kyung Me Kim · Seoung Wan Chae · Woo Ho Kim · Woo Sung Moon · Young Nyun Park · Chul Gun Park · Eunsil Yu · Hee Kyung Jang · Hee Jin Jang · Jong Jae Jung · Jin Sook Jung · So Young Jin · Jong Sang Choi · Dae Young Kang

The Gastrointestinal Pathology Study Group of the Korean Society of Pathologists

Received: April 24, 2003
Accepted: August 9, 2003

Corresponding Author
Dae Young Kang, M.D.
Department of Pathology, College of Medicine, Chungnam National University, 6 MunHwa-1-dong, Jung-gu, DaeJeon 301-131, Korea Tel: +82.42-580-8232 Fax: +82.42-581-5233 E-mail: dykang@cnu.ac.kr

This study was supported by a 2001-Grant from the Korean Academy of Medical Sciences, KMA.

Key Words: Mucinous Cystic Tumor–Intraductal Papillary Mucinous Tumor–Pancreas

INTRODUCTION

Cystic neoplasms of the pancreas are rare and have relatively similar characteristics on modern imaging modalities.1,2 But the incidences of these cystic neoplasms have been increasing, and the origin of the neoplastic cells and their biologic aggressiveness are still controversial.1–3 17 The spectrum of cystic neoplasms encompasses biologically diverse diseases and can be categorized into serous tumor, mucinous cystic tumor (MCT) and intraductal papillary mucinous tumor (IPMT).1,18 IPMT and MCT are classified as separate categories of pancreatic exocrine tumor.3,19 It has been known that these tumors are potentially malignant, but have good prognosis.3,18,20,21 The recognition and differentiation of MCT and IPMT from other cystic disorders of the pancreas are crucial because of their malignant potential.1 However, differential diagnosis between IPMT from MCT remains a challenge because clear criteria for differentiation have not been established yet, and clinical manifestations are variable and not correlated with the pathologic features. In MCT and IPMT, there are both adenoma and carcinoma lesions, but it is not always possible to differentiate the two lesions, especially before surgical resection. Thus, some authors have suggested that the pathologic features such as degree of cellular atypism and stromal invasiveness should be used as prognostic factors.21–23 Several previous reports suggested the presence of adenoma-carcinoma sequences in these neoplasms.21,24–27

In Korea, the incidence of mucin-producing cystic neoplasms of the pancreas is very low.28 Moreover, the clinical characteristics, prevalent sites, macroscopic and microscopic findings and prognostic factors have yet to be clarified. Therefore, the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists collected cases of MCT and IPMT from hospitals throughout the
country. We then examined clinicopathologic features, including degree of histopathologic abnormalities and prognosis, and immunorexpressions of CEA, p53 and MUC1 to identify their diagnostic values.

MATERIALS AND METHODS

Materials

This study included surgically resected 157 cases of pancreatic mucin producing cystic neoplasms from January 1990 to June 2000 that were retrieved from the files of the department of pathology of 21 hospitals located in different parts of Korea. They were composed of 85 cases of MCT and 72 cases of IPMT. Cases lost during follow-up, cases without exact clinicopathologic data, cases with indefinite data, recent cases, and cases of ductal carcinoma showing cystic change were discarded.

Methods

Evaluation of clinicopathologic findings

A committee reviewed the slides and collected representative slides having the highest degree of dysplasia, well preserved blocks and clinicopathologic data as well as radiological findings from the hospital records and from pathologic reports. Subsequently, committee members reviewed the slides all together several times with 10 head microscopes. Each case was then divided into MCT and IPMT, and classified into adenoma, borderline, non-invasive carcinoma or invasive carcinoma. We correlated these data with the other clinicopathologic parameters and follow-up data. For standardizing the clinicopathologic features, we made a common data sheet containing age, sex, symptoms and signs, radiologic and pathologic features. Pathologic diagnosis and classification were done according to WHO classification.

Immunohistochemical staining

Immunohistochemical staining was performed in 101 cases following the standard avidin-biotin peroxidase conjugate method. At first, several 4 μm-thick sections were obtained from the paraffin-embedded tissue blocks. They were deparaffinized in xylene and rehydrated in graded concentrations of alcohol. Endogenous peroxidase activity was blocked by treating the sections with 0.3% hydrogen peroxide for 5 minutes. In cases of p53 and MUC1, sections were treated in a microwave oven for 10 minutes for antigen retrieval. For CEA the pretreatment was not done. They were treated with different primary antibodies for 40 minutes (Table 1). A Chem Mate Envision detection kit (DAKO Corporation, CA, USA) was used for secondary antibody at room temperature for 30 minutes. We used 3,3-diaminobenzidine for visualizing the immunoreaction, and Mayer’s hematoxyline for counterstaining. Colonic adenocarcinoma was used as a positive control for CEA, and mammary carcinoma was for p53 and MUC1. Normal serum was used instead of primary antibodies for negative controls.

Interpretation of immunohistochemical staining

When a definite brown nuclear staining was present for p53, regardless of the staining intensity, it was considered positive, but cells with very weak equivocal staining were considered negative. Staining patterns of the diffuse type (positive staining in most areas) or nested type (positive staining in cell nests composed of more than 20 cells) were regarded as having p53 overexpression. Cases showing positive reactions in less than 10% of the cells were considered as negative. Diffuse cytoplasmic stainings for MUC1 and CEA were considered as positive. Cases showing only luminal positivity and positive reaction in less than 10% of cells were considered as negative. Quantitative grading was not done.

Statistical analysis

Statistical analysis was performed using the SAS procedures for means, t-test and univariate analysis (SAS institute, Carry, NC, U.S.A.). We computed the mean, standard deviation and correlation coefficient of each feature using Spearman’s nonparametric correlation test. The student’s t-test was used to determine the significance of parameters. Probability values less than 0.05 were considered statistically significant.

RESULTS

Clinicopathologic findings

Patients included 50 men and 107 women (M:F=1:2.1) with a mean age of 53.02 (range 5-92) years (Table 2). According to
the tumor type, MCT was more common in women (p<0.0001) and IPMT was slightly more common in men. Clinical symptoms varied with abdominal pain being the most common symptom (41 cases). The other symptoms were anorexia (30 cases), abdominal discomfort (20 cases), and a palpable mass (16 cases). Twenty-one cases were incidentally detected. Pancreatitis was associated only in 39 cases of IPMT out of 91 cases with abdominal symptoms.

Macroscopically, MCTs were unilocular or multilocular cystic tumors containing abundant mucinous material. Adenoma cases were largely unilocular, and became multilocular more frequently in malignant cases. Connection with the main pancreatic duct (MPD) was noted in 7 cases (8.2%), was absent 64 cases (75.3%) and was not described in 14 cases. The tumor size was variable, ranging from 1 cm to 31 cm (mean: 6.88 cm); the mean sizes of adenoma (5.96 cm), borderline (6.68 cm), non-invasive carcinoma (4.23 cm) and invasive carcinoma (10.62 cm) suggested an increasing tendency of the tumor according to the malignant potential. The tumor size was not described in 16 cases (Table 2). The tail was the commonest site in MCT (62 cases), especially in adenoma cases, while carcinoma cases had a tendency to involve the whole pancreas (Table 3).

IPMTs showed diffuse or segmental dilatation of the MPD with abundant mucin secretion. Connection with the MPD was noted in 49 cases (68.1%) and uncertain in 23 cases. The tumor size of IPMTs ranged from 0.7 cm to 23 cm (mean: 5.76 cm); the mean sizes of adenoma, borderline, non-invasive carcinoma and invasive carcinoma were 4.73 cm, 6.36 cm, 5.43 cm and 8.75 cm, respectively, which exhibited no difference according to the malignant potential. The tumor size was not described in 10 cases. IPMT mainly involved the head and the tail (Table 3).

Microscopically, the cyst wall of MCTs consisted of thick fibrous...
tissue, which was partly hyalinized and partly composed of cellular stroma with spindle cells resembling ovarian stroma. All of the MCTs had cuboidal or columnar lining epithelial cells with areas of papillary projections. The amount of mucin, degree of proliferation and atypia of the neoplastic cells were various from case to case and from area to area within the tumor (37/85 cases). In adenomas, cuboidal cells without cellular atypia lined the cyst walls. Most of the cases did not have papillary structures with fibrovascular cores. Nuclei were located mainly in the basal portion, and pseudostratification was not noted (Fig. 1). Ovarian-type stroma was noted in 34 cases (79%) out of 43 cases. Normal or atrophic pancreatic tissue within the tumor was noted in only one case. In 18 cases of borderline MCTs, most cases exhibited papillary structures lined by columnar epithelia with low or moderate degree of cellular atypism (Fig. 2). Ovarian-type stroma was noted in 13 cases (72%) out of 18 cases. Five cases were non-invasive carcinomas of MCT, which exhibited a definite malignant change of epithelial cells with cellular proliferation, hyperchromasia, decreased mucin, frequent mitosis and nucleoli without evidence of invasion (Fig. 3). Ovarian-like stroma was noted in all cases. Fourteen cases were invasive carcinomas showing ovarian-type stroma with severe cellular atypia and diffuse invasion (Fig. 4). Four men and ten women did not have ovarian-type stroma, which suggested that ovarian-type stroma was not concomitant in all MCTs, even in female patients.

IPMT exhibited no ovarian-type stroma in all cases. IPMTs consisted of papillary proliferation of cuboidal or columnar epithelial cells with small fibrovascular stalks. The cytoplasmic features and grades of cellular atypia of these neoplastic cells varied from case to case and from area to area within the tumor (62/72 cases). Adenoma cases of IPMT showed dilated ducts having papillary...
proliferation of cuboidal mucin-producing cells (Fig. 5). Between these dilated ducts, there was normal or inflamed atrophic pancreatic tissue. Cellular atypism or cellular crowding was not identified. Borderline IPMT showed stratified cuboidal epithelial cells having moderate atypism in all 34 cases (Fig. 6). Nucleoli were enlarged and stratified and moved upward from basal locations (Fig. 7). Adenoma area was accompanied in many cases. One case exhibited diffuse borderline IPMT features in the liver, even though borderline lesions were focally noted in the pancreas with the background of adenoma. Carcinoma cases of IPMT exhibited severe nuclear atypism, irregular nuclear arrangement, prominent nucleoli, hyperchromasia, and frequent mitosis (Fig. 8, 9). Invasion was noted in 5 cases. In those cases, stromal fibrosis, edema, and inflammatory cell infiltration were noted as reactions to invasion (Fig. 10). One invasive carcinoma case showed squamous metaplasia. The amount of mucin in the cytoplasm was inversely correlated with the increase of malignancy.

We followed-up 122 cases for 1 to 126 months. Among them, 104 subjects were alive and 18 subjects were dead. The latter group consisted of 4 adenomas of MCT, 3 borderline MCTs, 2 invasive carcinomas of MCT, 3 adenomas of IPMT, 3 borderline IPMTs, and 3 non-invasive carcinomas of IPMT, which showed no statistically significant correlation between types of tumor and survival. The causes of death in the adenoma patients with MCT and IPMT were not directly related to the tumor: Four patients died within 3 months after operation due to postoperative complications. One patient with adenoma (1.3 cm) of IPMT died 15 months after operation with an unrelated cause; one patient with a 9.5 cm-sized adenoma of MCT, had died 2 years after operation.
We could not obtain the information pertaining to the remaining 1 case. Borderline and carcinoma cases revealed tumor-related deaths.

Immunohistochemical findings

Immunohistochemical stainings for p53, CEA and MUC1 were done in 55 cases of MCT and 46 cases of IPMT (Table 4).

In cases of MCT, CEA was positive in 11 cases (20.0%), p53 in 9 cases (16.4%) and MUC1 in 10 cases (18.2%). A gradual stepwise increase in the frequency of overall expression of CEA and p53 was observed with the increase of cellular atypia from adenoma to borderline, non-invasive carcinoma and invasive carcinoma (p<0.05) (Fig. 11-13). In cases of invasive carcinoma, both invasive and non-invasive areas showed positive reactions to CEA. But one case exhibited positive immunoexpression only in non-invasive area. On the other hand, MUC1 was expressed only in the invasive carcinoma cases (p<0.05) (Fig. 14). Correlations of the immunoexpression showed statistical significance between p53 and MUC1 (p<0.05), between CEA and MUC1 (p<0.05), and between CEA and p53 (p=0.001).

In cases of IPMT, CEA immunoexpression also increased from adenoma through borderline to carcinoma, which was statistically insignificant (p=0.056) (Fig. 15). We were unable to evaluate p53 immunoexpression, because there were no positive cases. MUC1 immunoreactivity was positive only in invasive carcinoma cases, which was statistically significant (p<0.05) (Fig. 16). MUC1 immunoexpression also correlated significantly with that of CEA (p=0.022). Therefore, CEA and p53 immunoreactivities were helpful in identifying the degree of malignancy in MCT, and MUC1 immunopositivity was an useful marker for invasion.

Table 4. Immunoexpression of the mucinous cystic tumors and intraductal papillary mucinous tumors

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>CEA (%)</th>
<th>p53 (%)</th>
<th>MUC1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCT</td>
<td>55</td>
<td>11 (20.0)*</td>
<td>9 (16.4)*</td>
<td>10 (18.2)**</td>
</tr>
<tr>
<td>Benign</td>
<td>24</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Borderline</td>
<td>14</td>
<td>3 (21.4)</td>
<td>1 (7.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Non-inv Carcinoma</td>
<td>3</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Inv Carcinoma</td>
<td>14</td>
<td>8 (57.1)</td>
<td>8 (57.1)</td>
<td>10 (71.4)</td>
</tr>
<tr>
<td>IPMT</td>
<td>46</td>
<td>11 (23.9)</td>
<td>0 (0.0)</td>
<td>4 (8.7)**</td>
</tr>
<tr>
<td>Benign</td>
<td>5</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Borderline</td>
<td>20</td>
<td>4 (20.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Non-inv Carcinoma</td>
<td>17</td>
<td>4 (23.5)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Inv Carcinoma</td>
<td>4</td>
<td>3 (75.0)</td>
<td>0 (0.0)</td>
<td>4 (100)</td>
</tr>
</tbody>
</table>

MCT, mucinous cystic tumor; IPMT, intraductal papillary mucinous tumor; Non-inv, nov invasive; Inv, invasive; *: p<0.05 at the Chi-Square test (Likelihood Ratio) between adenoma, borderline, non-invasive carcinoma and invasive carcinoma. **: p<0.05 at the Chi-Square test (Likelihood Ratio) between invasive carcinoma and other categories.
in both MCT and IPMT.

DISCUSSION

Our study showed that IPMT developed largely in the head and the tail of the pancreas of older men and MCT developed in the tail of middle-aged women. This result was identical to other reports.\(^{20,21,24,26}\) Ovarian-type stroma was present in 66 cases (82.5\%) out of 80 cases of MCT, but none of the 72 cases of IPMT showed ovarian-type stroma. These results were also in line with other reports\(^{3,20}\) and the ovarian-type stroma is one of the histological differential points between IPMT and MCT. Moreover, there was intervening atrophic or normal-appearing pancreatic tissue between cystic neoplastic lesions in all cases of IPMT, while only in one case of MCT. Therefore, this feature is one of the histological points for differential diagnosis between the two. However, there is no identifiable report that definitively describes this feature as a differential point. Many cases of both MCT and IPMT showed variable grades of atypism from borderline to invasive carcinoma in the tumor according to the site. This result agrees with other reports.\(^{1,12,20,21}\) Thus, it suggested that a careful and thorough examination of sections should be mandatory for accurate diagnosis. Although there are some difficulties in differentiating branch-type IPMT from MCT macroscopically and microscopically,\(^{21,27}\) clinicopathologic features such as location, presence of ovarian-type stroma and intercystic pancreatic tissue, connection with the MPD are very helpful features for differential diagnosis. Therefore, a definite diagnosis requires the careful exploration of clinical findings and macroscopic and microscopic features.

The difference of the prognoses between patients with IPMT and MCT was not statistically significant. Overall prognosis was good with only 18 deaths out of 122 cases. Among the deaths, tumor grade and type were similar, and causes of death were not related with the tumors in some cases. These results were similar those of other reports.\(^{20,21,23,27}\)

The immunohistochemical examination showed very meaningful results. In MCT, CEA and p53 immunorexpressions increased from adenoma through borderline to carcinoma, which was statistically significant. Benign and normal ductal epithelial cells showed only weak positive reactions for CEA, along the luminal border but the transition to diffuse cytoplasmic expression was noted in the site of the malignant transformation. These results are in line with previous reports.\(^{5,11,12}\) In one case of invasive carcinoma, a positive reaction was noted only in the non-invasive

Fig. 14. Invasive malignant mucinous cystic tumor. Immunorexpression for MUC1 is noted only in the invasive neoplastic cells.

Fig. 15. Non-invasive malignant intraductal papillary mucinous tumor. Strong cytoplasmic immunorexpression for CEA is present.

Fig. 16. Invasive malignant intraductal papillary mucinous tumor. Strong cytoplasmic immunorexpression for MUC1 is noted only in the invasive neoplastic cells.
area. But other cases showed positive reactions in both invasive and non-invasive areas. This pattern was not described in other reports, suggesting the need for further study. In IPMT, CEA immunoexpression increased from adenoma through borderline areas to carcinoma, which was not statistically significant. This result is in accord with that of the previous study. As with MCT, MUC1 was expressed only in cases of invasive carcinoma, which corresponds with those of the previous reports, and suggests the need for further study. In IPMT, CEA and non-invasive areas. This pattern was not described in other reports, suggesting the need for further study. In IPMT, CEA, p53 and MUC1 appeared to be good markers for evaluating atypism. Therefore, CEA and p53 expressions are helpful for grading these neoplasms because their immunoexpressions increase with the increase of atypism. On the other hand, MUC1 is helpful for the evaluation of invasion.

In conclusion, MCT and IPMT showed varied degrees of atypism and proliferation in and between tumors, suggesting the need for the thorough and careful examination of sections. We also found that several features such as presence of nonneoplastic parenchyma between dilated ducts, tumor location, connection with the MPD and presence of ovarian-type stroma were very useful for the differentiation between MCT and IPMT. Moreover, CEA, p53 and MUC1 appeared to be good markers for evaluating atypism and prognosis.

REFERENCE