Proteomic Approach to CD4+ T Cell Differentiation Protein by Interleukin-12 in Patients with Atopic Dermatitis

Hyo Youn Lee1, Ju Hee Lee2, and Kwang Hoon Lee3

1Brain Korea 21 Project for Medical Science, 2Department of Dermatology, 3Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

The pathogenesis of atopic dermatitis is based on an inflammatory mechanism involving type 2 cytokines such as interleukin (IL)-4 and IL-13. CD4+ T cells in atopic dermatitis express predominantly T helper (Th)2 phenotype and they down-regulates IL-12Rβ2. IL-12 is a major cytokine in the differentiation of naïve CD4+ T cells into Th1 cells. This mechanism is closely related with the expression of IL-12Rβ2. However, it remains unclear that IL-12 signaling mechanism in polarized Th2 cells. The aim of this study was to identify IL-12 responsiveness in CD4+ T cells of patients with atopic dermatitis using a proteomic tools. CD4+ T cells isolated from peripheral blood of patients with atopic dermatitis were treated with neutralizing anti-IL-4 antibody (200 ng/ml) and IL-12 (2 ng/ml) and parallel cultures of untreated cells were also prepared. On day 3, surface phenotype change was examined using IL-12Rβ2 antibody by FACS analysis and separate CD4+ T cells by two-dimensional electrophoresis (2-DE). About 1500 protein spots were detected in the 2-DE gels by modified silver staining. Several areas of the 2-DE map exhibited quantitative and qualitative changes after IL-12 treatment. Several regions including actins showed variations according to the samples. A group of three spots detected in the area of pI 6.0-10.0 with molecular weight about 40 kDa. In addition, decreased or increased spots were observed in the regions of pI 6.5-7.0 with molecular weight about 20 kDa. The identification of these spots must be established in further study in order to find targets regulated by IL-12 in CD4+ T cells of atopic patients.

Key words: Atopic dermatitis, Proteomics, CD4+ T cells, Interleukin-12

* 본 논문은 2002년도 연세대학교 의과대학 21의학기술단과 산업계 대응자료 (아벤티스바이아)에 의하여 지원되었음.
저자연락처 : 이광훈, (120-752) 서울특별시 서대문구 신촌동 134, 연세대학교 의과대학 피부과학실
Tel: (02) 361-5720, Fax: (02) 393-9157/E-mail: kwanglee@yumc.yonsei.ac.kr
서 론

아토피피부염은 유소아에서 발생하여 나아지며 나타내며 특정적인 임상양상이 변하며 제반시되는 환자 양상에 증상이 많다는

아토피피부염의 발생에는 유전적인 요인, 환경적 요인

과 면역학적 이상 등 이르는 인자가 복합적으로 작용하는 것으로 보고되고 있으며 아직까지 정확한 범인과 범례 생리는 완전히 이해되고 있지 않다. 

급성기의 아토피피부염 환자의 면역현황 및 면역 반응에

는 IgE의 수준이 높아지고 있으며, interleukin (IL)-4, IL-13 등의 type 2 면역반응에 관여하는 사이토카인이 그 수용체의 발

현, 그리고 사이토카인을 생성해내는 T 세포가 증가되어 있으며 interferon (IFN)-γ를 억제하는 것 세포는 감소되어 있다. 

이렇게 아토피피부염에서 type 2 면역반응이 우세하게 나타나는 데에는 여러 가지 요인의 관여한다. IL-4, IL-13 유전자

의 다형성 (polymorphism), signal transducers and activators of transcription (STAT)-6 유전자의 다형성 등 유전학적

적 요인과 환경 노출 시 존재하는 사이토카인이나 항체반응

세포의 종류 등이 원인이 되는 것으로 보고되고 있다. 

CD2, CD4 수용체의 소호화 반응과 CD2, CD4 외생인 IL-12, IL-15, IL-16, IL-27의 포도군에 대

한 노출의 감수성 때문에 T helper 세포 (Th) 1의 면역반응이 유도되지 못하고 Th2와 Th2의 비율이 균형을 이루게 되는 결과를 초래하게 된다는 보고도 있다. 

여러 연구들 중 T 세포의 조절기관의 역할에 따른 사이토카인의 분자형 등 세포

성 면역 이상이 아토피피부염이 발병하게 되는 중요한 면

역학적 인자로 생각되어지고 있는데, 또한 아토피피부염 환

자의 면역반응에서는 IL-4와 IL-13의 활성을 증가시키고 있는 것으로 보고되고 있다. 

이로인한 면역반응이 더욱 심화되고 있으며, 이러한 반응

은 사이토카인에 따라 Th1과 Th2로 분류되고, 분비하는 사이토카인은 다른 Th 세포군

에 대해 각각의 분자형을 한다. 

이러한 CD4+ T 세포와 Th1 세포

의 분화는 활성화된 단백질과 수지산세포에 의해 발생

되는 IL-12에 의해 유도되어 IFN-γ 생산 등의 type 1 반응

이 일어난다. 또한 IL-12는 NK 세포를 활성화시키고 세포독

성 T 세포의 분화를 유도하는 등 초기 항 염증성 사이토카

인으로 세포성 면역에서 중요한 역할을 담당한다. 

사이토

카인의 의학적 구조는 그 수용체의 효과적인 발현조절이 신호

전달 및 작용체계에서 중요한 역할을 하는 것으로 알려져 있다. IL-12의 생물학적 효과는, 지속적으로 발현되어 있는 IL-12가 Th1 세포의 환원에 의해 제로 고정으로 조절되는 IL-12가, 두개로 구성된 수용체를 통해서 일어나는데 naive T 세포가 Th2 고유 조절이 아닌 Th1 세포에 분화하는 것으로 들

어할 때 두개의 수용이 강한 채로부터 일어나며, 이렇게

고유 조절이 생성되며 IL-12와 그 반응이 시작된다. 

이는 사이토카인 수용체에 STAT-4와 T-box 전사조절인자(T-bet)의 발현과 Th2 세포 특성 전사조절인자 GATA 3의 down-regulation, suppressor of cytokine signaling (SOCS) 분자들에 통한 응성 피드백에 의한 조절 등 IL-12의 자극에 의해 T 세포의 분화와 영

향을 머리를 뜨는 자극을 부여하여 Th1 세포와 Th2 세포의 영향도 부여하여 Th1 세포를 억제하고 Th2 세포의 활성을 제로 고정으로 조절한다. 

이후에 이런 상황에서 분화된 염증세포가 동시에 분

석하는 수단으로 프로테오믹스 (proteomics) 기법이 활용됨

으로 생각된다. 

프로테오믹스는 유전자와 만들어 나온 단백질의 생물학적

과정을 발전, 번역 후 수정 (posttranslational modification)

단백질의 상호작용을 초점을 두고 연구하는 분야이다. 프로

테오믹스 기법을 이용해야 단백질들의 분화를 종합적인 생

물학적 시각으로 이해할 수 있게 사용가능한 특성 중에서

조직 내의 단백질의 분화를 이해하는 것이 필요하다. 이를 통해 질병의 진행과정을 종합적으로 이해할 수 있어 질병의 진단 및 치료에 유용하

게 활용될 수 있으며, 임상에서 각종 암, 감염성 결핵, 신경

질환 및 노화의 연구에 프로테오믹스 기법이 널리 사용되고 있

다. 

단백질 분석은 1970 년대에 개발된 2 차원 전기영동법을 이용하여 크기가 점차로 단백질의 성 정위에 소요대로 분리된 

다음, 전자스펙트럼 분석 (mass spectrometry: MS)를 이용한 단백질 분

석의 커뮤니티 분석과 데이터베이스에서의 검색을 통해 단

백질의 동작을 결정할 수 있다. 단백질의 이용도를 약화시키는 기술과 immobilized pH gradient (IPG) 기법이 발전하면서 단백질의 분리능이 향상되고 정량성 있는 결과를 얻을 수 있

게 되었을 뿐만 아니라, 여기에 matrix assisted laser desorption ionization/time of flight (MALDI-TOF)와 electrospray ionization (ESI) MS를 이용한 정량 분석 기술이 개발되어서 단백질의 분리 능도를 분석하는 것이 용이해졌다. 

이와 더불어 인간의 유전자 서열이 데이터베이스에 들어 있는 사례가 널리 지식을 대량 발굴 단백질의 기술이 가능하게 되었다. 

_ALREADY KNOWN_의 발전기반을 연구함에 있어서 단백질의 분

석을 이해하는 것은 단전과 치료에 유용하게 쓸 수 있

다. Th1과 Th2 세포의 유전자 발현에 있어서의 차이점을
oligonucleotide microarrays를 이용한 mRNA 수준에서의 연구는 활발히 진행되고 있으며, 문헌에 관련된 세포막 표적자나 신호전달 기전에 관련된 세포막 내 분자에 대한 연구 또한 활발하다.26,27 그러나 면역세포에 대해 프로토콜법을 이용한 연구는 아직 많지 않은 상태로 인해 Th1 세포를 단백질 수준에서 분석한 연구는 아직 단계에 있다. 1984년에 murine T, B 세포를 mitogen으로 환성시킨 후 단백 발현 변화를 이차된 전기영동법을 이용하여 연구된 것이 보고되었고, 2000년에는 Jurkat T 세포주의 프로토콜 분석에 대한 표준 데이터베이스가 구축되기 시작하였다.26,27 이 세포주에 대한 정보는 T 세포 수용체를 통한 신호전달에 대한 연구에 널리 사용될 수 있으며 Th1/Th2 분화에 대한 연구에는 일차배 양 (primary) T 세포가 요구되는 단계가 있다.26,27 인간 일 차배양 T 보조 세포에 대한 연구도 현재 진행되고 있고 고향성 단백에 대한 정보는 SWISS-PROT과 NCBI protein 데이터베이스에서 검색이 가능하다. 일차배양 세포로 이용하는 실험의 여러 가지 케이스로 인해 결과의 직접적으 로 연관된 T 세포의 프로토콜 연구는 아직 미흡한 상태이다.

본 연구에서는 Th2 형이 우세하며 IL-12가 발현되지 않아되는 아토피피부질환을 가진 환자에서 분리한 CD4+ T 세포에서 프로토콜 연구를 이용하여 IL-12에 의해 조절되는 단백질을 분석함으로써 아토피피부질환의 병인기전에서 CD4+ T 세포에 대한 IL-12의 역할에 관한 기초 자료로 활용하고자 한다.

연구대상 및 방법
1. 연구대상

인체대교 응의학부 부속 세브란스병원 알레르기 특수 진료소 및 피부과에 내원한 Hanifin 및 Rajka28의 기준에 의해 아토피피부질환으로 진단된 5명의 환자들을 대상으로 하였다. 아토피피부질환의 환자는 모든 세포에 20m의 혈액을 채취하여 Heparin으로 처리하고 동량의 Ficoll-Hypaque (Amersham Pharmacia Biotech, Uppsala, Sweden)를 넣고 700g에서 15분간 원심 분리한 후 중증의 세포를 취하여 말초혈액 단백세포를 분리한 후, 실험에 사용하기 전까지 절모병기에 동결 보관하였다.

2. 연구방법

1) 말초혈액 CD4+ T 세포의 분리

아토피피부질환을 가진 환자의 말초혈액로부터 CD4+ isolation kit (Miltenyi Biotech, Auburn, CA, USA)을 이용해서 negative selection으로 CD4+ T 세포를 분리하였다. 분리하여 보관한 단핵구를 5% bovine serum albumin (BSA), 2 mM EDTA를 함유하는 phosphate-buffered saline (PBS, pH 7.4)로 3회 반복 세척한 다음 hemocytometer를 이용하여 세 포수를 측정하였다.

말혈구 중 CD4+ T 세포는 hapten-antibody cocktail (anti-CD8, anti-CD16, anti-CD19, anti-CD36, anti-CD56)과 anti-hapten microbeads와 반응시킨 다음 MidiMACS system (Miltenyi Biotech, Auburn, CA, USA)을 이용하여 겔먼에 묶지 않고 분리하는 세포분획을 획득함으로써 분리하였다. 면역억역제에서 분리한 단핵구를 30u nylon mesh에 통과시켜 죽은 세포와 불순물을 제거한 다음 완충액 PBS/5% BSA/2mM EDTA로 세척하였다. 세포 10^6정도 80u의 완충 액을 가하여 세포를 부유시킨 다음, 세포 10^6정도 20u의 hapten-antibody cocktail을 처리하여 10분간 4℃에서 반응시킨 후 2회 세척하고, 20u의 anti-hapten microbeads를 추가하여 4℃에서 15분간 반응시키고 2회 세척하였다. 세포를 배양하는 동안 MidiMACS 자석에 LS 열림을 가하는 5,000g의 완충액으로 세척하여 준비하고, 세포를 500u의 완충액에 다시 부유시켜 컨람에 넣고 10,000g의 완충액으로 엽을 뿌려 묶지 않고 환라노하는 세포를 받아서 분리하였다. 분리된 CD4+ T 세포의 순수도는 FACStar를 이용하여 분석하였다. 이들 세포를 CD4-FITC (Becton Dickinson, San Jose, CA, USA)로 염색하고 이 세포를 정량하기 위해서 동 일 세포군을 mouse IgG1으로 염색한 후 비교, 분석하였다. 분리하는 과정에서 최소한의 자극만을 주기 위하여 CD4 microbead을 이용한 positive selection 방법을 사용하지 않고 hapten-antibody cocktail과 반응시킨 후 negative selection을 통해 얻으며 CD4-FITC 양체를 이용하여 염색하여 분석한 결과 분리한 CD4+ T 세포는 93% 이상의 순수도를 보였다.

2) CD4+ T 세포의 배양

아토피피부질환을 가진 환자 환자에서 분리한 CD4+ T 세포를 T cell을 항원화시키고 종사시에는 물로 잘 알려진 10ng/mL의 phorbol 12-myristate 13-acetate (PMA) (Sigma, St. Louis, MO, USA), 100ng/mL ionomycin (Sigma), 2ng/mL의 recombinant human IL-12p70 (Pharmingen, Franklin Lakes, NJ, USA)와 200ng/mL neutralizing anti-IL-4 antibody (Phar mingen)가 포함되어 있는 RPMI 1640(10% FBS, 2mM L-glutamine, 50 M 2-mercaptoethanol (2-ME), 100U/mL peni- cillin, 100u/mL streptomycin sulfate, 5u/mL Fusison)에서 배양한 것으로 제작 단단으로 배양한 대조군 세포를 준비하고 3일째 FACStar를 통해 R-phycocyanin (R-PE)-conjugated rat
anti-human IL-12Rβ2 antibody (Pharmingen)를 이용하여 발현을 분석하였다.

3) CD4+ T 세포의 이차원 전기영동

CD4+ T 세포의 IL-12를 처리한 세포와 대조군 세포를 준
반한 후 이차원 전기영동을 시행하였다. 세포정은 pH 8.0, 1 M
Tris, 0.3% sodium dodecyl sulfate (SDS), 3% dithiothreitol, 1
mM phenyl methyl sulphonyl fluoride (PMSF)가 함유된 용해
반응액 50 μl과 섞은 후 95℃에서 5분간 가열하였다. 전체시
료를 7 μm, 2 μm, 0.2 μm, 0.1 μm의 튜브를 이용하여 각각
4% 3-(3-cholamidopropyl) dimethylammonio-1-propane-
sulfonate (CHAPS), 0.5% carrier ampholytes, 40 μM Tris, 0.002% bromophenol blue dye가 함유된 젤 전기영동 시료
반응액 400 μl로 회색한 후 sonicator를 사용하여 세포등을 잘
끼고 endonuclease 150 U/μl을 넣어서 실온에서 25분 뒤 다
음의 시료를 20℃, 12,000rpm에서 20분간 현수분리하여
상층액을 수집하였다. 제거수 요부에 준비된 시료를 넣고 18
cm의 pH 3-10 non-linear (NL) IEF strip를 (Amersham Pha-
maricia Biotech, Piscataway, NJ, USA)를 젤 끝면을 납도록 하
여 놓고 24시간 방치하여 제거하고, IEF strip를 (Amers-
ham Pharcacia Biotech, San Francisco, CA, USA)를 이용하
여 총 100,000 vhr로 동결화(isoelectric focusing:IEF)시킨
스트립을 3.6g의 urea, 2% SDS, 5M Tris 2 μl, 50% glycerol
4 μl, 25% acrylamide 1 μl, 200 μM TBP 250 μl가 함유된
dense gel(1.875 M Tris buffer, 40% acrylamide stock solution, 증류수)에서 이차원 전기영동을
시행하였다.

이차원 전기영동을 실시한 젤은 modified silver 염색 방법
을 이용하여 스트립을 가시화 하였다10. 먼저, acetic acid 50
μl, methanol 200 μl, 증류수 250 μl로 15 분 뒤 처리고정
시킨 후, methanol 150 μl, 5% sodium thiostigmate 20 μl, sodium
acetate 34 g, 증류수 330 μl로 30 분간 감시하였다. 10
분간 3번 세척한 후, 2.5% silver nitrate로 염색한 후 다시 1
분간 두 차례 세척하였다. 세취한 젤은 sodium carbonate
12.5g, formaldehyde 200 μl, 증류수 500 μl로 발색시키고, EDTA 7.3g, 증류수 500 μl로 발색을 중단시킨 후, 증류수
500 μl로 5분간 3차에 세척하였다.

4) 프로토입 지도의 비교 분석

영결 절단 후 아토피피부염 화자의 IL-12 처리 전주의
CD4+ T 세포의 이차원 전기영동 젤을 GS-800 Calibrated
Imaging Densitometer(Bio-Rad, Mnich, Germany)를 이용하
여 스캔한 후 PDQuest® 이미지분석 소프트웨어(Bio-Rad)
를 사용하여 단백의 스트림 양상을 비교 분석하고 프로토입
지도를 얻었다.

만약도, 최소 peak, 크기 직도를 조정하여 스트림 찾아낸
다음 edit spot tool을 이용하여 젤 간의 비교를 통해 스트림의
결과와 색제과정을 같았다. 모든 젤을 하나의 matchset으로
만들어 IL-12 처리 전과 처리 후의 각각 replicate군으로 지
정하고 statistical analysis sets를 만들어 각 군간의 스트림을
정량적, 정성적으로 비교, 분석한 후 각 군에서 reference 젤
을 지정하여 matchset을 각각 만들고 high-level matchset으
로 지정한 다음 각각의 젤에서 스트림의 양상을 확인하였다.

5) MALDI-MS 분석

PDQuest를 이용하여 이미지 분석을 하여 의미 있게 증가
하거나 감소, 없어지거나 새로운 생긴 단백 스트림을 찾아낸
후 젤을 Fabriaray e-tube에 올려놓았다. Silver nitrate로 염색이
되어 있기 때문에 먼저 30 mM potassium ferricyanide, 100
mM sodium thiosulfate를 1:1 비율로 섞어 염색된 silver 를
추출하며 증류수로 여러 번 세척하였다. 200 mM ammoni-
um bicarbonate를 청취하여 20분 동안 vortexing하고
100% acetonitrile로 젤 조각을 불투명하게 만드는 뒤
때문 탈수 시켰다. 56℃에서 30분 동안 10 mM DTT/25 mM
ammonium bicarbonate로 환원시킨 다음 상층액을 버리고 55
mM iodoacetic acid로 알킬화(alkylation)하였다. 상층액을 제
거한 후 100 mM ammonium bicarbonate로 5분 동안 vor-
texting하면서 젤 조각을 세척하고 100% acetonitrile로 탈수
시켰다. 이렇게 준비한 젤 조각에 100-400 μg/ml의 trypsin
을 넣고 20μl의 25 mM ammonium bicarbonate를 넣은 다음
37℃에서 16시간동안 펩타이드를 추출하였다. 펩타이드가
추출된 상층액은 다른 e-tube에 올겨 간조가 50 mM am-
nium bicarbonate와 100% acetonitrile로 반응하여 펩타이-
드를 추출하였던 다른 튜브에 올겨 냉동된 펩타이드 추
출 용액과 함께 SpeedVac system을 이용하여 10μl 정도
남을 압착시켰다. 이렇게 추출한 펩타이드는 a-
cyano-4-hydroxycinnamic acid(CHCA)이 포함된 50% ACN/
0.1% TFA의 잘 섞어 MALDI plate에 잘 loading하고 펩타이-
드 스펙트럼을 얻었다. 경우에 따라서는 C18 ZipTip(Mil-
lipore, Bedford, MA, USA)을 이용하여 시료 정제 과정을 거
찬 후 분석하였다. 이렇게 얻어진 스펙트럼을 Peptidiae
(http://expasy.proteome.org.au/tools/peptidehtml.html)나 MS-Fit
(http://prospector.ucsf.edu/ucsfhtmll4.0/msfit.htm)과 같은 데이-
t베이스를 검색하여 단백동정을 시험하였다.
결 과

1. 아토피피부염 환자에서 IL-12에 의한 CD4+ T 세포 표면 IL-12Rβ2의 발현 변화

아토피피부염을 가진 환자의 말초혈액에서 분리한 CD4+ T 세포의 IL-12 처리에 따른 IL-12Rβ2의 발현을 FACSStar를 이용하여 분석하였다. 72시간 배양한 후 관찰한 결과 배지단 죽 처리군 (Fig. 1A)에 비해 10ng/ml PMA, 100ng/ml ionomycin, 2ng/ml recombiant IL-12p70, 200ng/ml neutralizing anti-IL-4 antibody을 처리하여 T 세포를 활성화시켜 배양한 군 (Fig. 1B)에서 IL-12Rβ2 발현이 증가된 것을 관찰하였다. 뿐만 아니라 각각 72, 96, 120시간 처리한 결과 배양시간의 증가에 따라 IL-12Rβ2 발현이 지속되는 것이 관찰되었다 (Fig. 2).

2. 아토피피부염 환자 말초혈액 CD4+ T 세포의 이차원 전기영동 소견

PDQuest 이미지 분석 소프트웨어(Bio-Rad)를 사용하여 아토피피부염 환자의 말초혈액 CD4+ T 세포의 단백 스트립 양상을 분석하였다. Silver nitrate로 염색한 경우 약 1500개의 단백 스트립들이 가시화되었다 (Fig. 3). 여러 구획에서 개 인차를 관찰할 수 있었는데 액틴 패턴에 있어서 다양성을 보였으며 (Fig. 4), 분자량이 약 40kDa이고 pl가 6.0-10부분 (Fig. 5A)과 분자량이 약 20kDa이고 pl가 6.5-7.0인 구획에서 다양성이 많이 관찰되었다 (Fig. 5B).

3. IL-12 처리에 따른 아토피피부염 환자 CD4+ T 세포의 이차원 전기영동 소견

IL-12를 처리한 군과 처리하지 않은 군을 하나의 matchset

Fig. 1. The expression of IL-12Rβ2 in CD4+ T cell of patients with atopic dermatitis by FACS analysis. The cells were cultured for 72 hours with media only(A) or with treatment of PMA, ionomycin, recombinant human IL-12p70, neutralizing anti-IL-4 antibody for 72 hrs (B). They were stained with R-phycocerythrin (R-PE)-conjugated rat anti-human IL-12Rβ2 antibody and analyzed by FACSStar. Expression of IL-12Rβ2 was increased in the group treated with IL-12 (solid histograms: isotype control antibody, outlined histograms: IL-12Rβ2 antibody).

Fig. 2. Changes of the expression of IL-12Rβ2 in CD4+ T cell after treatment with IL-12. IL-12 was treated in 72, 96 and 120 hours. Expression of IL-12Rβ2 in CD4+ T cell was increased in 72 and 96 hours, and it was slightly decreased in 120 hours.

Fig. 3. The result of 2D-electrophoresis of peripheral CD 4+ T cell of patients with atopic dermatitis. About 1,500 protein spots were seen after staining with Silver nitrate. Multiple changes of protein spots were seen after treatment of IL-12.
바람에 둔 다음 replicate group으로 지정하여 각 군을 비교 분석하고 각각의 군의 matchset을 다시 high-level matchset 에 적용시켜 각각의 결과를 분석하였다.

PDQuest®(Bio-Rad)를 이용하여 이미지 분석 결과 대조군에 비해 IL-12를 처리한 군에서 스트로의 증감과 한 군에서만 관찰되는 스폰은 관찰할 수 있었다. PDQuest®의 analysis set tool을 이용하여 IL-12의 처리 전과 처리 후를 정량적, 정성적으로 분석하였다. 정량적인 분석에서 줄어들거나 증가한 범위는 한쪽에 대한 다른 쪽의 양의 차이를 10배로 지정하여 분석하였다. 배지단독으로 배양한 세포에 비해 IL-12가 포함된 배지에서 배양한 세포에서 8개의 단백 스폰이 줄어 들 것이 관찰되었고, IL-12 처리 시 3개의 단백 스폰이 증가된 것이 관찰되었다(Fig. 6).

정성적인 분석에서는 처리 전 군에서만 관찰되는 스폰과 IL-12를 처리한 군에서만 관찰되는 스폰으로 나누어 분석하였다. 배지단독으로 배양한 CD4⁺ T 세포에서 관찰된 단백 스폰 중 7개의 단백 스폰이 IL-12가 포함된 배지에서 배양한 CD4⁺ T 세포에서는 관찰되지 않았다(Fig. 7A). 반면 배지 단독으로 배양한 CD4⁺ T 세포에서는 관찰되지 않으나 IL-12를 처리한 세포에서만 단백 스폰 3개를 관찰하였다(Fig.

Fig. 4. The actin patterns of peripheral CD4⁺ T cell of patients with atopic dermatitis. The patterns show variability according to the samples. Also, the actin patterns show differences between before and after IL-12 treatment.

Fig. 5. Comparison of proteome map of peripheral CD4⁺ T cell of patients with atopic dermatitis. The CD4⁺ T cells from atopic dermatitis patients which were cultured for 72 hours with media only or with treatment of PMA, ionomycin, recombinant human IL-12p70, neutralizing anti-IL-4 antibody were electrophoresized. Most were 40 kDa, the pl was seen in variability between 6.0-10 (Fig. 5A), others were 20 kDa and the pl was between 6.5-7.0 (Fig. 5B).

Fig. 6. Quantitative analysis of the protein spot in the peripheral CD4⁺ T cell of atopic dermatitis patient treated IL-12. 8 protein spots (blue arrows) show that cells were decreased in the IL-12 treated group compared to the media only cultured group. 3 protein spots (red arrows) were increased in the group treated with IL-12.
4. CD4+ T 세포의 MALDI-MS 분석결과

Modified silver 염색법으로 가시화 시켰을 경우 크고 점한 스트로 보이는 단백 스트 lẫn 질량분석기를 통한 동정이 가능하였다. Silver로 염색한 점의 단백 스트로 MALDI-MS로 분석이 가능하게 하였으며 전체 시료에 존재하는 단백의 양이 400μg 정도 여야 한다. 그러나 본 연구에서 얻을 수 있는 각 세포의 단백량은 약 80μg으로 silver 를 이용하여 가시화 시켜 이미지 분석을 하는 것은 가능했으나 MALDI-MS 결과를 연기에는 무축함이 있었다. 예컨대 같은 단백 스트또 단백 동정이 가능하였다.

고찰

아토피피부염에서 관찰할 수 있는 알레르기성 염증반응이나 IgE 항원을 특정 알레르겐에 Th2 세포에 의해 일어나는 면역반응이라고 알려져 있다. 12 IL-4, IL-5, IL-13 등의 사이토카인은 IFN-γ와 IL-12가 배가하는 type 1 면역반응에 대한 길항작용을 함으로써 Th2 군이 우세하게 되고 이것이 아토피피부염의 발병을 유발시킨다. 13

IL-12는 IFN-γ 항성을 유도하고 Th1 세포로의 분화를 결정짓는 중요한 인자이다. 12 인간 T 세포에서 Th1 세포의 표면에 판정된 표지자로 이용할 수 있는 IL-12Rβ2는 IL-12 신호전달 기전에 있어서 필수적인 역할이다. 아토피피부염을 가진 환자에서 분리한 T 세포의 표면에는 IL-12Rβ2가 적은 수치로 분석되어 있는 보고와 IL-4의 길항작용에 의하여 IL-12 배가 면역반응이 저하되어 아토피피부염이 발생한다는 보고가 있어 아토피피부염의 발생기전에 IL-12가 중요한 역할을 하는 것을 알 수 있다.

본 연구에서는 아토피피부염 환자의 IL-12에 의해 조절되는 CD4+ T 세포 단백변화를 찾아 프로테임 양성기술을 이용하여 관찰하였다. 앞서의 결과에서 분리한 naïve T 세포를 인위적으로 Th2 클론으로 분화시킨 세포와 아토피피부염을 가진 환자에서 분리한 집단으로 진단 명상성 Th2 세포를 Th1 클론으로 분화시키기 위한 IL-12가 포함된 배치조건에서 IL-12Rβ2의 발현은 72시간과 96시간 사이에서 관찰되는 것으로 보고된 바 있으며 본 실험에서는 각각 3, 4, 5일째 관찰하였다. 아토피피부염 환자 IL-12Rβ2의 발현은 3일째 발현된 양상이 4, 5일째에서도 비슷하게 지속되는 현상을 보였으며 이 실험에서는 발현이 관찰된 세포를 선택하여 이차원형 기법을 실험을 시행하였다. 같은 조건에서 발현이 관찰되지 않은 세포도 있었는데 이와 같이 IL-12의 자극에 다른 양상 을 보이는 것은 병의 경중도에 따른 Th1/Th2 세포의 비율이 달라서 작용에 대한 감수성이 다르다는 것을 원인으로 생각해 볼 수 있다. 그러나 Th2 측으로 활성화가 일어난 세포에서 전이 IL-12Rβ2의 신호전달이 일어나지 않는다는 가설과, IL-12에 의해서 분화가 일어난 Th2 세포군의 선택에 Th1/Th2의 표현형으로 바뀌는 가설을 보고한 바가 있기에 본 연구의 결과로는 아토피피부염에서 분리한 T 세포에서 IL-12의 IL-12Rβ2의 발현증가에 영향을 미치고 이것이 Th1/Th2 비율을 바꾸는 데 기여한다고 확신하지 못할 것으로 보인다. 또한 Th2 세포의 분화 결정요인은 사이토카인 외에도 항원전달세포의 종류, 항원 유입경로, 단백과의 조절 등을 들 수 있기 때문에 CD4+ T 세포만을 분리하여 시행한 in vitro 실험환경에서는 자극원이 IL-12 밖에서 아토피피부염의 T 세포가 IL-12에 의해 반응을 하는지에 대해서는 보고할 수 없었다.

프로테오믹스는 질환과 연관시켜 병리기전의 이해, 질병 전단을 위한 표지자 발견, 치료에 대한 결과 예측 등에 유용
하게 용용될 수 있다. 사이토카인이 아토피피부염에서 염증 반응과 면역기작에 있어서의 중요한 역할을 한다는 것은 잘 알려진 사실이다. Thi 2 클론으로 분화가 일어난 세포에 대한 IL-12의 신호전달기전에 있어서는 아직도 논란이 계속되고 있어 이 연구에서는 IL-12에 의한 변화를 단백질 소프트를 관찰함으로써 이 사이토카인이 면역세포에 어떤 영향을 미치지 않아보게 되는 결과를 통해 아토피피부염의 발병기전과 연관성을 찾고자 하였다. 따라서 세포의 어떤 특정 단계에서의 단백을 동시에 분석하는 수단으로 유용하게 쓰이고 있는 프로토펙스 연구 기법을 이용하여 아토피피부염 환자의 맥초액 CD4^+ T 세포의 IL-12에 의한 변화를 전반적으로 이해하는 데 유용할 것으로 생각되어 본 연구를 수행하였다.

아토피피부염 환자 맥초액에 CD4^+ T 세포의 전기영동 결과 단백질의 양이 적어 modified silver 염색법으로 가시화시킨 후 이미지 분석과 MALDI-MS를 이용한 페마이드 분석을 결합한 결과를 시험하였다. 인간 CD4^+ T 세포에 대한 프로토펙스 분석은 시간 단계에 91개의 단백질의 총량이 있고 IFN-α에 의해 조절되는 ubiquitin-conjugating 효소에 대한 보고도 있으나, 실험마다 시료를 준비하는 과정이나 절록도의 차이, 가시화 시키는 방법의 차이로 인해 분석물가 조금씩 다른 결과가 보고되고 있어 이를 표준으로 이 실험의 결과와 비교할 수는 없었다. 따라서 아토피피부염의 범리기전을 연구하기 전기성인 CD4^+ T 세포의 표준 지도를 얻는 작업이 우선되어야 할 것으로 보인다.

PDQues의 이용으로 아토피피부염의 각 염증단계의 다양성이 관찰되었는데 이는 범의 경도가 더 커져 CD4^+ T 세포에서 Thi 2와 Thi 2 세포가 차지하는 비율이 다르고 이는 IL-12에 의한 반응에도 차이가 존재하여 단백 발현에 있어서는 영향을 미친 것으로 보인 것이다. 특히 염증의 반현에 있어서 다양성을 보였는데 이는 헤리페단백은 유래 수지상세포의 F-actin의 중첩화 촙면에 영향을 미치므로 범의 경도가 더 커져 세포의 이동을 관해하는 단백 발현에 차이가 보였다고 생각되어 진다. 따라서 앞으로 더 많은 수의 시료를 이용하여 전기영동하여 다양성을 관찰하는 구체의 관찰이 이루어져야 하고 이를 염증성과 연관시키는 것이 필요하다. 그리고 다양성이 관찰되는 단백 소프트의 IL-12에 의한 조절되는 단백질 분석을 정확한 규명을 위해서는 많은 환자들에서 전기영동한 결과와 비교해보는 것이 필요하다.

Silver nitrate를 이용한 modified silver 염색법은 MALDI-MS를 통한 페마이드 분석을 가능하기 때문에 얇은 시료를 가지고 실험하기는 경우에 이미지 분석과 페마이드 분석을 동시에 같은 절로 할 수 있다는 장점이 있으나 In-gel trypsin digestion하여 MALDI-MS를 이용하여 페마이드 분석을 한 결과 크고 전례 보이는 엑티나 T 세포 수용체 beta chain 등의 소프트만 동량이 가능하였다. 상대적으로 작거나 희박한 소프트의 경우 MALDI-MS를 통해 페마이드 스크래트를 얻을 수 있었으나 데이터베이스를 통한 검색결과 많은 양으로 존재하는 소프트를 제외하고는 peptide coverage 비율이 낮아서 단백을 동정하기에는 무척이었다. 앞으로의 실험에서 여러 가지로부터 동정되는 단백 소프트를 모아 다음 MALDI-MS 분석을 시행한다면 더 나은 결과를 얻을 것으로 보인다.

좋은 해상도의 실험결과를 얻기 위해서 범위가 좋은 pH 범위의 IPG 스트립을 사용하는 방법이 있으나 표준 pH 범위 IPG (pH 3-10) 스트립에 loading하는 양의 2-3배가 요구되어 환자에서 얻을 수 있는 맥초액의 양의 한계 때문에 이 실험에서는 적용시킬 수 없었다. 따라서 매우 복잡한 과정으로 이루어진 IL-12에 의한 신호전달 베타워크를 단백질 인산화 위치의 분석이라는 측면으로 병원을 줄이면서 단백의 인산화 경로를 추적해보는 것이 사이토카인의 작용에 의한 신호전달 기작과 이에 따른 분화 양상을 연구하는데 유용할 것으로 보인다. 현재 인산화된 단백의 분석하기는 프로토펙스 분석에서 불가능한 진행되고 있는데 이는 전체단백의 작은 양으로 존재하는 인산화 단백이 전체적으로 분석하는데는 유용하게 쓰일 것으로 보이고 IL-12의 신호전달 기전을 연구하는 데에도 적용할 수 있을 것으로 보인다. 이러한 작업에 앞서 아트피피부염 환자의 CD4^+ T 세포의 표준 지도를 만들고 번화한 단백의 소프트는 다른 아토피 환자에서도 적용시킬 수 있는 유용성이 있는 단백질인자를 정확하게 알아보기 위하여 더 많은 전기영동결과를 얻어서 비교하여 확인해 보는 일이 되려야 할 것이다. 그리고 MALDI-MS나 ESI-MS를 이용한 단백의 동정을 통해 세포 내에서의 기능을 규명하는 일이 필요할 것으로 판단된다. 이것은 앞으로 아토피피부염에서의 CD4^+ T 세포의 면역반응 기전을 이해하는데 기초자료가 될 수 있을 것으로 아토피피부염의 병태생리를 이해하는데 도움이 될 것으로 보인다.

참고 문헌


11. Smits HH, van Rietschoten JGH, Hilkens CMU, et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur J Immunol 2001;31:1055-65


32. Seder RA, Gazinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 1993;90:10188-92

