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Abstract An lrp gene encoding a leucine-responsive
regulatory protein was identified from Vibrio vulnificus, and
its role in the survival of the organism was assessed by
analyzing the stress tolerance of the isogenic mutant, in which
the lrp gene had been inactivated. The results demonstrated
that Lrp contributes to the survival of V. vulnificus, and that
their contribution is dependent on the phase of growth.
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Vibrio vulnificus is an opportunistic Gram-negative pathogen
that commonly contaminates various raw seafood [11],
and is the causative agent of foodborne diseases such as
gastroenteritis and life-threatening septicemia [7]. Predisposed
individuals, with underlying immunocompromised conditions,
liver damage, or excess levels of iron, who consume raw
oysters, can die within days from sepsis. Even otherwise
healthy people are susceptible to serious wound infections
after contact with shellfish or water contaminated with V.
vulnificus [1, 8]. Mortality from septicemia is very high
(>50%), and death may occur within one to two days after
the first signs of illness [1, 8].

The bacteria have evolved with elaborate protection
systems to allow survival and/or growth during exposure
to environmental stresses. Furthermore, pathogenic bacteria
are highly adapted microorganisms with a survival strategy
that requires multiplication on or within another living
organism [14]. Pathogenic bacteria have to survive numerous
stresses imposed upon not only by natural ecosystems and
present control practices, but also by the human immune
defense system, to ensure developing illness. This multifaceted
nature of the stresses indicates that survival of the pathogenic

bacteria is a complex phenotype and typically involves 
products of many genes [12]. Most of the genes a
operons are members of a global regulatory network, a
often subject to coordinate regulation.

Global regulation is the concept that a single transcriptio
regulator can control several distinct genes and oper
in response to environmental signals. Leucine-respons
regulatory protein (Lrp) is a transcription regulator th
controls the expression of a number of genes involved
stress tolerance properties of bacteria [15]. In E. coli, Lrp
controls more than 70 genes that are grouped toge
to reflect physiologically related functions. It has bee
suggested that E. coli uses Lrp for adapting between th
easy life in the gut and the stressed harsh realities of
outside world [15].

Like many other pathogenic bacteria, V. vulnificus occurs
in various environments having different stresses; it natur
inhabits coastal seawaters, contaminates shellfish, and in
the human body. This indicates that the pathogen 
to constantly alter expression of many genes in respo
to ever-changing stresses in its growth environmen
However, until now, only a few studies have addressed
genes whose gene products contribute to stress toler
of the pathogen [17]. Furthermore, no analysis of t
effect of global regulators on the survival of the pathog
under various stresses has been reported. Therefore, 
effort to identify a global regulator involved in stres
tolerance of V. vulnificus, current study identified and
cloned an lrp gene encoding Lrp from V. vulnificus. A
V. vulnificus null mutant, in which the lrp gene had been
disrupted, was also constructed by allelic exchanges. A
being challenged to the conditions, simulating current con
practices used to suppress bacterial growth in raw seafo
such as low pH, hyperosmolarity and cold temperature, 
survival of the mutant was compared with that of paren
wildtype.
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The bacterial strains and plasmids used in this study are
listed in Table 1. Stress tolerance was assessed by measuring
survivals in a challenged broth; M9 supplemented with
5.0% NaCl and incubated at 30oC (for osmotic tolerance)
or M9 supplemented with 2.0% NaCl and incubated at
10oC (for cold stress). For acid tolerance, 10 mM sodium
citrate buffer (pH 4.4) supplemented with 2.0% NaCl was
used. Following inoculation into the challenged broths,
samples were removed at appropriate intervals and plated
in duplicate on LB [Luria-Bertani] supplemented with 2.0%
NaCl as previously described [17]. The percentage of survivors
was calculated relative to the CFU/ml as determined
immediately after inoculation as 100%. Averages and
standard errors of the mean (SEM) were calculated from
at least three independent determinations. The statistical
significance of the difference among the V. vulnificus
strains was evaluated using Students unpaired t test (SAS

software, SAS Institute Inc., Cary, NC, U.S.A.). Significan
was accepted at p<0.05.

Cloning and Sequencing Analysis of V. vulnificus lrp
To assess the role of V. vulnificus Lrp in stress tolerance,
the lrp gene was cloned from strain ATCC29307. A DN
fragment internal to the lrp was then amplified from
genomic DNA of V. vulnificus by a polymerase chain
reaction (PCR) using a pair of oligonucleotide prime
The primers (the LRP01, 5'-GACCGTATAGATCGCAAT
AT-3', sense primer, and LRP02, 5'-GCTTCACTTCTTC
CATGAC-3', antisense primer) were designed using 
lrp sequence of V. cholerae (GenBank accession numbe
AE004266, www.ncbi.nlm.nih.gov) and synthesized (Taka
Seoul, Korea). Since the deduced amino acid sequenc
the resulting PCR product, a 427-bp DNA fragmen
revealed a 79% identity with that of E. coli lrp, the DNA

Table 1. Plasmids and bacterial strains used in this study.

Strain or plasmid Relevant characteristicsa References

Bacterial strains
E. coli

DH5α supE44 ∆lacU169 (φ80 lacZ ∆M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Laboratory Collection
SY327λpir ∆(lac pro) arg(Am) recA56 rpoB λpir; Host for π-requiring plasmids [13]
SM10λpir thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu λpir, oriT of RP4, Kmr; conjugational donor [13]

V. vulnificus
ATCC29307 Clinical isolate Laboratory Collection
HS02 ATCC29307, lrp::nptI This study

Plasmids
pUC18 Apr Laboratory Collection
pLAFR3 IncP ori; cosmid vector; Tcr [18]
pUC4K pUC4 with nptI; Apr, Kmr Pharmacia
pCVD442 R6Kγ ori; sacB, oriT of RP4; Apr [4]
pHS100 Cosmid library containing lrp; Tcr This study
pHS101 9.0-kb BamHI fragment containing lrp cloned into pUC18; Apr This study
pHS102 pUC18 with 2.1-kb PstI fragment containing lrp; Apr This study
pHS102-1 pHS102 with nptI; Apr, Kmr This study
pHS102-2 pCVD442 with lrp::nptI ; Apr, Kmr This study

aApr, ampicillin resistant; Kmr, kanamycin resistant; Tcr, tetracycline resistant.

Fig. 1. Physical map of the lrp gene on the V. vulnificus ATCC29307 chromosome and plasmids used in this study.
Plasmid pHS101 was used to determine the nucleotide sequence of lrp. The shaded boxes represent the coding regions of lrp gene and unknown ORF, and
thick lines represent chromosomal DNA, respectively. The region cloned in the plasmid pHS102-2, used for the construction of the lrp::nptI  mutant, is
depicted. The insertion positions of the nptI cassette are indicated by the open triangle. Abbreviations; EV, EcoRV; K, KpnI; P, PstI.
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was labeled with [α-32P] dCTP and named Lrp-P. To clone
the full genes of the lrp gene, a cosmid library of V.
vulnificus ATCC29307 constructed using pLAFR3 [18]
was screened using Lrp-P as a probe. A colony showing a
positive signal was isolated, and the cosmid DNA was
purified and named pHS100 (Fig. 1). A 9.0-kb band from
the cosmid DNA digested with BamHI was purified and
ligated into pUC18 (New England Biolabs) to result in
pHS101 as shown in Fig. 1. The nucleotide sequence of
the 9.0-kb DNA fragment in pHS101 was then determined
by primer walking (Korea Basic Science Institute, Kwang-
Ju, Korea). The nucleotide sequence of lrp from V.
vulnificus ATCC29307 was deposited in the GenBank
database under accession no. AY160773.

The nucleotide sequence revealed a coding region
consisting of 468 nucleotides. A database search for
nucleotide sequences similar to that of the coding region
revealed three other lrp genes cloned from E. coli, V.
cholerae, and Salmonella typhimurium strains with high
levels of identity. The lrp from these bacteria was 79% to
84% identical in nucleotide sequence with the coding
region in pHS101 (data not shown). This information
proposed that the coding region was a homologue of lrp
genes reported from other Enterobacteriaceae, and led us
to name the coding region lrp to V. vulnificus. The amino
acid sequence deduced from the lrp coding sequence
revealed a protein, Lrp, composed of 155 amino acids with
a theoretical molecular mass of 17,744 Da and PI of 5.88.
The amino acid composition and molecular weight of this
Lrp are quite similar to those of the Lrp from other
Enterobacteriaceae. The amino acid sequence of the V.
vulnificus Lrp was 92% to 98% identical to those of the
Lrp from E. coli, S. typhimurium, and V. cholerae, and
their identity appeared evenly throughout the whole
proteins (Fig. 2, http//www.ebi.ac.uk/clustalw).

Generation and Confirmation of V. vulnificus lrp Mutant
The lrp gene in pHS102 that was constructed by ligati
of a 2.1-kb PstI fragment of pHS101 with pUC18 was
inactivated in vitro by the insertion of nptI encoding
for aminoglycoside 3'-phosphotransferase and conferr
resistance to kanamycin [16]. The 1.2-kb DNA fragme
carrying nptI was isolated from pUC4K (Pharmacia
Piscataway, NJ, U.S.A.) and inserted into a unique EcoRV
site present within the ORF of lrp in pHS102. The 3.3-kb
lrp::nptI cartridge from the resulting construct (pHS102-
was liberated and ligated with SmaI-digested pCVD442 [4],
forming pHS102-2 (Fig. 1). To generate the lrp::nptI  mutant
in V. vulnificus by homologous recombination (Fig. 3A), E.
coli SM10 λpir, tra [13, 3] was transformed with pHS102-2
and used as a conjugal donor to V. vulnificus ATCC29307.
The conjugation and isolation of the transconjugants w
conducted using the methods previously described [6, 5]
double crossover, in which each wildtype lrp gene was
replaced with the lrp::nptI  allele, was confirmed by a PCR
using a pair of primers, LRP01 and LRP02 (Fig. 3B).

The PCR analysis of the genomic DNA from ATCC
29307 with primers LRP01 and LRP02 produced a 0.5-
fragment (Fig. 3B), whereas the genomic DNA from th
lrp::nptI  mutant resulted in an amplified DNA fragment o
approximately 1.7-kb in length. The 1.7-kb fragment w
in agreement with the projected size of the DNA fragme
containing the wildtype lrp (0.5-kb) and the nptI gene (1.2-
kb). To determine the stability of the insertional mutatio
strain HS02 was grown overnight without kanamyc
selection. The inserted nptI DNA was stably maintained,
evidenced by the maintenance of kanamycin resista
and by the generation of the appropriate-sized DN
fragment by PCR (data not shown). The V. vulnificus lrp

Fig. 2. Sequence relatedness of Lrp of V. vulnificus and other
bacteria.
Identical sequences are indicated with asterisks, and dashes represent
missing sequences. Alignment was based on the amino acid sequences in
the Genbank (NCBI) database and derived by the CLUSTRALW
alignment program. (http://www.ch.embnet.org/software/ClustalW.html ).

Fig. 3. Allelic exchange procedure and construction of lrp::nptI
isogenic mutant.
Double homologous recombination between strain ATCC29307 a
plasmid PHS102-2 led to an interruption of lrp gene and resulted in
construction of mutant HS02. Dashed lines represent the bacte
chromosome; a full line, the plasmid DNA; open boxes, the target lrp gene;
shaded boxes, the nptI gene; large Xes represent genetic crossing ov
Abbreviations; sacB, levansucrase gene; bla, β-lactamase gene (A). PCR
analysis of ATCC29307 and isogenic mutant HS02 generated by al
exchange. Molecular size markers (1-kb ladder, GIBCO-BRL, Gaithersb
MD, U.S.A.) appear in the last lanes of the gel (B).
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mutant chosen for further analysis was named HS02 as
shown in Fig. 3B.

Effect of lrp Mutation on Survival Under Various Stresses
The survival of log-phase cells (A600=0.8) of the parent strain
(ATCC29307) was significantly greater (p<0.05) than that of
the lrp::nptI mutant (HS02), when challenged with acidic pH
(pH 4.4; Fig. 4A). The parent strain decreased ca. 1.0 log10

CFU/ml (90%), while the mutant strain decreased ca. 4.0
log10 CFU/ml (99.99%) during a 60 min acid challenge.
Similar to the results with the acid challenge, the survival of
log-phase cells of the parent strain was significantly greater
(p<0.05) than HS02, when challenged with either a low
temperature (10oC) or hyperosmolarity (5% NaCl) (Figs. 4B
and 4C). This indicated that log-phase cell of the lrp mutant
was more sensitive to stresses than the wildtype, and that the
Lrp plays an important role in the survival of V. vulnificus.

The survival of the cells grown to stationary phase (A600

=2.0) under stress challenges is shown in Fig. 5. The trend
in survival of the stationary-phase cells (A600=2.0) in an
acidic pH was similar to that for log-phase cells. However,
the survival of ATCC29307 and HS02 of stationary-phase

cells increased significantly under an acid challenge. F
ATCC29307, there was only a ca. 0.5 log10 CFU/ml
decrease of stationary-phase cells compared to a ca. 1 10

CFU/ml reduction with log-phase cells after a 60 min ac
challenge. As observed for acid challenge, stationary-ph
cells of both ATCC29307 and HS02 exhibited the slow
rate of decline and had greater number of survivors a
these stress challenges than log-phase cells. Addition
compared to the results with log-phase cells, sma
differences in the survival of the parent strain and the lrp
mutant were observed with stationary-phase cells (Fig.
Consistent with this, the survival of stationary-phase ce
of the parent strain, ATCC29307, and HS02 in a hyperosm
M9 broth was not significantly different, indicating that th
role of Lrp in survival under high osmotic stress was n
crucial for stationary-phase cells (Fig. 5C).

Consequently, it was apparent that the contribution
the lrp gene to the stress tolerance of V. vulnificus is
substantial, but dependent on growth phases. It is a
noteworthy that cells grown to stationary phase were m
tolerant to stresses, regardless of the type of stresses challe
than log-phase cells. It has been previously reported 

Fig. 4. Stress tolerance of log-phase ATCC29307 and isogenic lrp mutant.
Survival of log-phase V. vulnificus parent strain (ATCC 29307) (�) and lrp::nptI  mutant (HS02) (� ). Both strains were challenged with acidic pH (A), low
temperature (B), and hyperosmolarity (C) as described in the text. All points represent the mean from three independent trials. Error bars represent the
standard errors.

Fig. 5. Stress tolerance of stationary-phase ATCC29307 and isogenic lrp mutant.
Survival of stationary-phase V. vulnificus parent strain (ATCC 29307) (�) and lrp::nptI  mutant (HS 02) (�). Both strains were challenged with acidic pH
(A), low temperature (B), and hyperosmolarity (C) as described in the text. All points represent the mean from three independent trials. Error bars represent
the standard errors.
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Enterobacteriaceae undergo a global modification of their
gene expression pattern at the onset of the stationary phase
[9, 10]. As a result, the bacteria acquire tolerance to a
number of chemical and physical stresses, such as extreme
temperatures, oxidative agents, hyperosmotic tension, and
nutritional starvation. The stress tolerance of stationary-phase
cells is multifactorial, and backup or redundant genes and
factors contributing to the stress tolerance have often been
identified. One well-known example is the RpoS regulon: In
E. coli, the production of more than 40 proteins is associated
with stationary-phase tolerance to stresses and encoded by
genes of the RpoS regulon, and these stationary genes are
regulated by RpoS (σS or σ38), a stationary phase-specific
sigma factor [19, 2]. Although other explanations are possible,
the smaller differences in stress tolerance between the lrp
mutant and the parent strain grown to stationary phase
could be related to the presence of these other stationary
genes contributing to the survival of V. vulnificus.

Until now, the role of the Lrp either in stress tolerance or in
the survival of V. vulnificus has never been established. From
the point of bacterial pathogenesis, the finding that Lrp
contributes to the survival of V. vulnificus under various
stresses would be of a great interest. When the pathogen
invades a human body, the scarcity of specific nutrients and
increased stresses imposed upon by the host immune defense
system would be encountered. Therefore, the bacteria must
survive these stresses in order to multiply and finally result
in local damage and systemic disease. This survival often
involves coordinate expression of sets of assorted genes [14]
and many of these genes are probably regulated by Lrp.
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