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Oxidative stress defined as outbalanced generation of reac-
tive oxygen species (ROS) than the existing antioxidative
defense mechanisms plays an important role in tissue injury.
Ischemia/reperfusion accompanied during organ transplantation
is well- established oxidative stress-induced tissue injury. We
hypothesized that oxidative stress may also play a role in the
development and progression of chronic allograft nephropathy
(CAN), since that ROS are major signaling molecules of
growth factors and cytokines [platelet-derived growth factors,
transforming growth factor- 81 (TGF- 81)] upregulated in the
kidney of CAN, that ROS in turn upregulate TGF- 81, and that
mycophenolic acid may inhibit features of CAN [proliferation
and extracellular matrix (ECM) accumulation in vascular
smooth muscle cells and glomerular mesangial cells] through
inhibiting cellular ROS. Cellular ROS activate signal transduc-
tion cascade (protein kinase C, mitogen-activated protein
kinases, and janus kinases) and transcription factors (nuclear
factor- £ B, activated protein-1, specificity protein 1, and signal
transducers and activators of transcription) leading to regula-
tion of genes and proteins involved in cellular proliferation,
ECM remodeling, and apoptosis accompanied in CAN. This
review is intended to provide an overview of oxidative stress
in renal allograft nephropathy.
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INTRODUCTION

Oxidative stress is defined as a tissue injury
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induced by increase in reactive oxygen species
(ROS) such as hydrogen peroxide (H:0:), super-
oxide anion (O;"), and hydroxyl radical (OH).
ROS are continuously generated under normal
physiology but effectively eliminated by existing
antioxidative defense mechanisms such as anti-
oxidative enzymes [superoxide dismutase (SOD),
catalase, and glutathione peroxidase], vitamins C
and E, and glutathione reduced form (GSLI).
However, when the generation of ROS outbal-
ances the existing antioxidative defense mecha-
nisms, ROS will react with and denature cellular
macromolecules including carbohydrates, lipids,
proteins, and nucleic acids. ROS thus have been
considered cytotoxic to a given tissue or cell.
However, recent evidence suggests that ROS may
be an integral component of membrane receptor
signaling in mammalian cells, as ROS fulfill the
important prerequisites for intracellular messen-
gers." In this context, i) the production of ROS has
been detected in various cells stimulated by cyto-
kines, growth factors, seven transmembrane re-
ceptor agonists, and phorbol ester, ii) administra-
tion of ROS mimics the effects of given external
stimuli (first messenger), iii) generation of ROS in
response to external stimuli are related to the
activation of other signal transduction molecules
such as signal transduction cascade [protein
kinase C (PKC), mitogen-activated protein kinases
(MAPK), and janus kinases (JAK)] and transcrip-
tion factors [nuclear factor- kB (NF-£B), activated
protein-1 (AP-1), specificity protein 1 (Spl), and
signal transducers and activators of transcription
(STAT)], iv) antioxidants effectively ameliorate
altered cell physiology in response to external
stimuli.
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ROS can be generated within the nephron
segments like the glomeruli and segments 2 and
3 of the proximal tubule.” Ischemia/reperfusion
(I/R) inevitably accompanied with organ trans-
plantation is well-characterized oxidative stress-
induced tissue injury immediately after kidney
transplantation.” Injury initiated by the lack of
oxygen during cold preservation is augmented by
ROS during subsequent warm reperfusion of
grafts through activation of inflammatory cascade.
On the other hand, there are a few reports on the
role of oxidative stress in chronic allograft ne-
phropathy (CAN). CAN is the most common
cause of graft loss after the first post-transplan-
tation year”” and no specific treatment available
for CAN at present. It is, therefore, necessary to
understand the mechanisms involved in the
development and progression of CAN in order to
provide a specific treatment for CAN. In this
review, we propose the hypothesis that growth
factor- and cytokine-induced ROS may act as
integral signaling molecules in CAN.

OXIDATIVE STRESS AND RENAL INJURY

Chronic renal failure (CRF) is now viewed as a
state of chronic inflammation™ and the preva-
lence of atherosclerosis is strikingly higher in CRF
than in normal population.” It is, therefore, rea-
sonable to speculate that oxidative stress is
increased in CRF. Indeed, surrogate markers of
oxidative stress were found increased and
antioxidative defense mechanisms decreased in
CRF." Recent experimental studies also suggest
that CRF plays active role in inducing oxidative
stress. Vaziri et al."”> demonstrated that superoxide
dismutase expression was decreased and nicotina-
mide adenosine dinucleoride phosphate reduced
form oxidase (NADPH oxidase) expression in-
creased in the kidneys of experimental CRF rats.
Buzello et al.” reported that nitrotyrosine expres-
sion in atherosclerotic plaque was increased in
uninephrectomized Apo E knock-out mice and
further increased with subtotal nephrectomy.

Oxidative stress accompanied in CRF is signifi-
cantly improved after successful renal transplan-
tation but increases in CAN,"" suggesting that
oxidative stress may be a relevant pathophysio-
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logical factor for the development and progression
of CAN. Oxidative stress-induced I/R injury in
the kidney graft immediately after implantation is
considered as one major deleterious factor of
successful renal transplantation.”” In addition that
I/R injury causes an increased risk of delayed or
primary non-function of transplanted grafts
during the immediate post-transplant period, I/R
has been identified as a key risk factor in pre-
disposing earlier development of CAN and short
graft life."""

OXIDATIVE STRESS AND CHRONIC ALLO-
GRAFT NEPHROPATHY

The major histological findings of CAN are
gradual vascular obliteration, glomerulosclerosis,
interstitial fibrosis with mononuclear cell infiltra-
tion, and tubular atrophy, while the clinical course
of CAN is characterized by progressive loss of
renal function, arterial hypertension, and protein-
uria. These features are common in progressive
renal injury in which oxidative stress has been
proposed to play an important role.” Markers of
oxidative stress, plasma lipid peroxides measured
by malondialdehyde and carbonyl proteins, are
increased and GSH decreased along with de-
creased SOD, glutathione peroxidase, and vitamin
E in CAN""™"®" as in CRE." We” recently ob-
served that plasma malondialdehyde, IL-6, heat
shock protein 70, and transforming growth
facator- 81 (TGF- 81) were significantly increased
in transplant recipients with serum creatinine
between 1.5 and 5.0mg% compared to healthy
control and recipients with serum creatinine
below 1.5mg% at least 1 year after renal trans-
plantation. Phorbol ester- and hydrogen peroxide-
induced dichlorofluorescein-sensitive cellular ROS
in PBMC was significantly higher in renal re-
cipients with serum creatinine between 1.5 and 5.0
mg% than healthy control and recipients with
serum creatinine below 1.5mg%.” A preliminary
study” suggest that supplementation of vitamin E
may have protective effect on long-term graft
function of renal transplantation. All these data
suggest that oxidative stress is associated with
CAN and may play a role in the development and
progression of CAN. We propose the hypothesis
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that growth factor- and cytokine-induced ROS
may act as integral signaling molecules in CAN
based on the following observations.

Platelet-derived growth factor (PDGF) and TGF-
B1 play important roles in glomerulosclerosis
characterized by mesangial cell proliferation and
extracellular matrix (ECM) accumulation in the
mesangium. The expression of both PDGF and
TGF-B1 are upregulated in the kidneys under-
going CAN.” PDGF induces cell proliferation”
and ECM accumulation” in vascular smooth mus-
cle cells and glomerular mesangial cells through
cellular ROS. ROS also mediate TGF- A1-induced
plasminogen activator inhibitor-1 (PAI-1) in glo-
merular mesangial cells® and TGF- Al-induced
epithelial-mesenchymal transition (EMT) and
ECM accumulation in tubular epithelial cell.”
PAI-1 suppresses generation of plasmin and acti-
vation of matrix metalloporteinases and thereby
decreases ECM degradation. Antioxidants have
been shown to effectively reduce PDGF-induced
vascular smooth muscle cell proliferation™** and
TGEF- B1-induced EMT and ECM accumulation in
tubular epithelial cells” suggesting that ROS may
act as major mediators in CAN. We™ recently
reported that mycophenolic acid, a selective ino-
sine  monophophate dehydrogenase inhibitor,
inhibited PDGF-induced vascular smooth muscle
cell proliferation through inhibiting cellular ROS
and subsequent ERK1/2 and p38 MAPK activa-
tion. MPA inhibit PDGF-induced cellular ROS
through inhibiting NADPH oxidase® and through
directly scavenging hydrogen peroxide.”

On the other hand, exogenously administered
hydrogen peroxide upregulates the expression of
TGF-B81” in mesangial cells suggesting that TGF-
Bl-induced ROS may amplify TGF- 81 signaling
involved in renal injury. Hydrogen peroxide
upregulates fibronectin,””" and PAI-1* in renal
cells leading to ECM accumulation. Hydrogen
peroxide also upregulates a-smooth muscle actin
and downregulates E-cadherin expression through
MAPK activation leading to tubulointerstitial
fibrosis.”’

The mechanisms involved in growth factor- and
cytokine-induced cellular ROS are currently under
active investigation. NADPH oxidase is consi-
dered as the major mechanism for cytokine-
induced cellular ROS generation leading to tissue

injury.”” Considering that available antioxidants
may act as not only antioxidants but also pro-
oxidants depending on cellular redox state, it is
important to understand the mechanisms in-
volved in cellular ROS generation to provide
effective treatment for oxidative tissue injury.
ROS-regulated signaling pathways in vascular
and renal cells leading to CAN also need to be
completely understood in order to provide target
molecules for the treatment of oxidative stress-
induced CAN.

CONCLUSION

Data from cell culture studies demonstrate that
growth factor- and cytokine-induced ROS may
amplify cellular signaling through upregulating
the secretion of growth factors, cytokines, and
ECM proteins by vascular and renal cells. These
observations suggest that strategies to inhibit ROS
generation may reduce oxidative stress and allow
better preservation of graft function. Large-scale
clinical trials are required to verify the role of
oxidative stress and the therapeutic effect of
antioxidants in the structural and functional
changes in the kidneys of CAN.
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