남성성악가의 Vocal Register Transition(Passaggio)의 공기역학적 변화와 E.G.G의 변화 연구

연세대학교 의과대학 이비인후과학교실 음성언어의학연구소
남도현 · 최정희 · 최재남 · 최홍식

Abstract

Analysis of Phonatory Aerodynamic & E.G.G during Passaggio of the Trained Male Singers

Do Hyun Nam, MD, Seong Hee Choi, MD, Jae Nam Choi, MD and Hong Shik Choi, MD
Department of Otorhinolaryngology, The Institute of Logopedics & Phoniatrics, Yonsei University College of Medicine, Seoul, Korea

Vocal Register Transition(Passaggio) is one of the most important vocal technique for classically trained male singers(tenor). Passaggio is that it bridges the chest register to head register without a noticeable voice break. Vocalist gets the feeling that voice is not locked a particular register.

The purpose of this study was to clarify the difference between easy(B₁) tone and non passaggio(F♯ₐ) & passaggio(F♯ₜ). We selected 6 trained singers(tenor), who had more than 12.6 years of experience and were well trained in passaggio technique. Simultaneous measurement was performed frequency(F₀), mean flow rate(MFR), intensity(I), and subglottal pressure(Psub) using a phonatory function analyzer(Nagashima) and Closed Quotient(CQ). Jitter, Shimmer, NHR using a Electro-glottography (EGG) of Lx. Speech Studio(Laryngograph Ltd, London, UK) and vocal efficiency was calculated by Carroll's method. For the tenor, target tone /a/ was measured in three conditions : 1) easy phonation : B₁, 2) high tone without passaggio : F♯ₐ, 3) high tone with passaggio : F♯ₜ.

The results revealed that F₀ of the target tones between non-passaggio group and passaggio group were not significantly different though higher is F₀, higher is subglottal pressure. And also CQ, MFR, Psub were increased in passaggio than nonpassaggio but these values were not statistically different.

This study concluded that passaggio is the vocal technique to make the same quality of tone between chest register and head register in tenor.

KEY WORDS : Passaggio · F₀ · Closed Quotient · Mean flow rate · Intensity · Subglottal pressure.
있고, 현재는 passaggio란 용어는 고유명사로 쓰여지고 있으며 여러 개의 다른 성구를 연결하는 발성의 제급만을 말한다. 최초로 성구에 대하여 언급한 Lodovico Zacconi (1555-1627)의 Pratica di musica에서 그는 누구에게나 처음과 고음에서 서로 다른 두개의 성구가 있는데 그것을 형성구(Chest Register)와 무성구(Head Register)라고 한다(그러나 이때의 두개는 현재의 가슴(Falsetto)에 해당한다). 18세기에 페라의 성구가 더 있다는 주장이 나타나면서 19세기에에는 성구를 중성구(Middle Register)를 추가하여 총 3개로 구분하게 된다.31

현재 성구를 크게 나누면 첫성구(Modal Register)과 가슴구(Falsetto Register)가 구분할 수 있고 중성구(Middle Register)는 다시 중성구(Chest Register), 중성구(Middle Register), 무성구(Head Register)로 구분할 수 있다. 여성을의 경우 높은 고음인 D6 이상의 음역을 Flageole트리라 하는 성구를 구 분하며, 이 성구를 Flute Register라 부르기도 한다. 성구의 사전적 의미는 발성기관의 조절에 의하여 생성되는 향후의 소리로 설명하며, 성구란 향후의 위치에서 동일한 방법으로 소리를 낼 수 있는 음의 구역을 말한다.32

혼란 받지 않은 일반인은 고음으로 올라가면서 동일한 소리로 나오지 않고 베양구에서 가슴구로 급작한 성구의 변화의 현상을 보게 된다. 이러한 음의 급작한 변화를 보이는 현상(pitch break)은 남녀 구분 없이 300-350Hz 사이에 동등적으로 나타나는데33 다만 남성보다 여성이 한 옥타브 (octave) 높게 발성을 하므로 여성의 pitch break 현상은 저음부에서 중음부로 올라갈 때 급격한 변화를 보이며 이때의 여성의 성구전환을 1st passaggio라 한다. 그러나 남성의 pitch break 현상은 고음부에서 나타나는데 이때의 성구전환은 2nd passaggio라 한다. passaggio는 여성이 성구의 다른 음색을 하나의 성구에서 나눈 음색과 같이 만드는 기술인데,34 특히 Tenor가 고음부로 올라가면서 음절의 변화나 소리의 급격한 변화를 없애 주는 발성 테크닉인 것이다.

후두점을 발명한 Manuel Garcia는 “성대의 틀본이 피열연골(arytenoids)의 작용에 의하여 성대가 전체적으로 접촉했을 때, 성대가 벌어진 상태일 때 성대의 접촉은 독특이 진행할 수 있다는 것을 알려주며 한다. 다만 첫 번째 경우에는 소리의 음질이 중후하고 밝은 음색으로 나오고 두 번째에 목소리가 분명하게 들리는 음색을 가지고 있는 것을 볼 수 있다.”라고 설명하고 있다.35 이렇게 되면 저음부의 음색과 고음부의 음색이 차이를 크게 보이기 때문에 가성 시 좋은 복소리를 구사할 수 없게 된다. 고음으로 멜 때 성대의 뒷면(back posterior glottal cleft) 성대의 접촉면이 적게 되면 성대막의 무리가 가는 것으로 생각된다. 또한 고음으로 갈수록 성음하조와 호기류 중기가 중요해짐을 하며, 성대의 접촉이 적게 되면 성대가 호흡과 압력에 비하여 옆의 강도가 크게 변화하지 않는다는. 따라서 고음으로 저음 발성 시와 같은 음색을 유지하기위한 발성테크닉이 passaggio인 것이다.

Passaggio의 개념 자체는 매우 추상적이지만 정량적으로 판단할 수 있는 것인지 특정성을 가지고 있다. 성과 무성의 음선이 급격히 변하지 않으며, 목소리가 갈기 갈기하지는 않도록 들리며 소리가 강화되고 목소리가 줄어지는 현상이 나타난다. 그러나 신체가 잘 강하려고 많은 성악가들은 passaggio 부분에서의 음질의 변화가 적고 성구의 변화가 거의 없다. 이때의 연속의 변화를 보면 흔히 이로 이르고 가성과 무성의 사이의 공간이 확장되어 후두께는 위로 올리고 공명방은 낼어지며 혈의 막부가 약간 낮아지고 연구에서는 passaggio를 하지 않을 때 보다 조용 내려온다고 한다.36

이에 본 저자는 성악가들이 이러한 발성 테크닉을 사용 시 기본주파수(F0 : Fundamental Frequency), 음의 강도(Intensity), 성대접촉률(CQ : Closed Quotient), 수파수 변동률(Jitter), 긴박 변동률(Shimmer), 감응 대응 비율(NHR : Noise to Harmonic Ratio), 분제감기류율 (MFR : mean Flow Rate), 성음하압(Subglottal pressure), 음성효율(Vocal efficiency)37 등의 변화를 측정하여 음악적 특성을 비교하여 보고자 하였다.

연구방법

1. 연구대상

성공된 심혈관은 음악대학 성악과를 졸업하고 현재 활동 중인 성악가로 평균성장 경력이 12.6년인 Tenor를 대상으로 하였다. 이들의 평균 연령은 30.9세로 예전에 음성전환 현상이 없는 사람으로서 후두 내시경검사를 통해 현재 음성 절환이 없는 성악가 중 성악 전문가점과 철학이 없어지고, 정상적인 발성하는 사람으로서 6명을 심혈관으로 선정하였다. 성악을 풍부한 사람 누구나 passaggio로 구사 할 수 있는 것은 아니므로 어느 정도의 성악경력이 가지고 있는 사람 중 passaggio를 구사 할 수 있는 기여를 체험한 후 심혈관을 선정하였다.
2. 연구방법

1) 측정도구

(1) 전기성문화과정검사(Electroglottography)

Lx. Speech Studio(Laryngograph Ltd, London, UK)의 SPEAD(Speech Pattern Element Acquisition and Display) 프로그램을 이용하여 공기력학적검사기의 기류저항

저작권에 놓려지기 직전의 구간에서 성대의 전체 전동주기 중

성대의 접촉시간의 비율인 성대접촉률(CQ : Close Quotient), 주파수변동률(Shimmer), 진동변동률(Jitter), 잔음 내

배음(NHR : Noise to Harmonic Ratio) 을 측정하면서

공기력학적 검사를 동시에 실시하였다.

(2) 공기력학적검사

공기력학적검사지는 phonatory function analyzer

(nagashima Ltd, Model FS 77H, Tokyo, Japan) 을 사용하여 검사기구에 부착된 마스크에 입을 밀착시키며 공기도 세

지 않도록 하였으며 "아" 모음은 연장발성 한 후 기본주파수

(F₀ : Foundamental Frequency), 음의 강도(Intensity), 평균

호기류율(MFR:Mean Flow Rate)을 측정하고 검사

기구의 기류저항 장치를 이용하여 성문혈압(Psub : Subglot-

ottal pressure)을 측정하였다.

또한 phonatory function analyzer 통한 기본주파수의

측정과 Lx. Speech Studio에서의 기본주파수의 측정치는

차이가 없었다고 보고하고 있는데 이번 기본주파수의 측정

은 phonatory function analyzer에서 검사한 수치를 사용

하였다.

2) 측정방법

(1) Easy 음의 측정 : 권한한 음 F₂(246.9Hz)의 "아"

모음 측정

실현자를 약간 차체로로 공기가 새지 않도록 코를 손

으로 막은 다음 공기력학적검사 측정기구에 부착된 마스크

에 구강부분을 밀착시킨 후 후두주위를 알코올로 탭한 다

음 Lx. Speech Studio의 E.G.G 벨트를 정부 주위에 부착

하고 피실험자가 pitch pipe를 붙어서 F₂(246Hz)음을 선

정한 후 같은 눈이의 소리를 권한하게 "아" 모음을 갑게

낸 소리를 측정하였다.

(2) Non-passageglio음의 측정 : F₃(369.8Hz)에서 pass-

aglio음 하지 않은 "아"모음 측정

권한한 음을 넣 때와 같은 방법으로 pitch pipe로 붙어서

F₃ 음을 정한 후 passaggio음을 하지 않은 소리들(non-pas-

saggio)로 "아"모음을 내게 하여 측정하였다.

(3) Passaggio음의 측정 : F₄(369.8Hz)에서 passaglio

음을 한 "아" 모음 측정

Non-passageglio 같은 방법으로 pitch pipe로 붙어서 F₄

음을 정한 후 passaggio한 소리를 "아" 모음을 내게 하여

측정하였다.

1, 2, 3) 검사 모두 여러 번의 연습을 한 후 선정 음의 기

본주파수(B₀, F₀)에 가장 근접한 측정치 각 2회를 선정

하여 분석하였다.

3) 음성효율의 계산

음성효율의 계산은 Carroll이 제시한 방법을 사용하여 계

산하였다.

(VE : Vocal efficiency)

Acoustic power, watt

Aerodynamic power, watt

\[4 \times 3.14 \times R^2 \times \text{Sound intensity} \]

air flow late \times \text{sub glottal pressure}

(R은 측정치의 반지름 : 통상 0.3m에 해당함)

4) 통계분석

SPSS(version 11.5) ANOVA repeated measure를 시행하였으며 유의 수준은 95%로 하였다.

결 과

기본주파수는 호흡압력의 변화에도 불구하고 실험군에

제시한 기준음과 거의 차이가 없었다. Passaggio음 때와

non-passageglio음에 기본 주파수의 변화는 거의 없었다. 청

각적으로는 같은 음으로 판단되며 음의 강도가 증가하고 성

문혈압, 평균호기류율이 증가하면 기본주파수가 증가한다

는 보고가 있었으나 본 연구에서는 아주 조금 증가하였으나

통계적으로는 의미가 없었고 같은 기본주파수로 판단할 수

있었다.

음의 강도는 easy 발생(79.8±3.3Hz)에 비하여 non-

passaggio(88.8±1.8Hz)와 passaggio(90.9±2.2Hz)가

높아 통계적으로 의미 있는 차이를 보였다. 그러나 같은 음

도에서 non-passageglio와 passaggio를 비교시, passaggio

에서 음의 강도가 약간 증가하였으나 통계적으로 유의한 차

이는 없었다.

평균호기류율은 easy(182.8±27.8ml/sec)보다 non-

passaggio(179.6±30ml/sec)보다 고음으로 올라갔음에도

불규칙하고 약간 감소하는 경향을 보였으나 아주 미미한 차

이를 보여 거의 같은 평균호기류율로 보이며, passaggio

(214.3±38.6ml/sec)에서는 조금 더 증가 하였으나 통계
적으로는 유의한 차이가 없었다.

상호작용은 easy (71.8±12.8mmHg), non-passaggio (102mmHg, 15.9mmHg), passaggio (106mmHg±35.4mmHg) 순으로 점성 증가하였으며 통계적으로는 차이를 보이지 않았다.

대용량은 easy발생에서는 60.2±1.4로 높게 나타났고, non-passaggio 사용시 58.5±4.1, passaggio 사용시 59.8±5.3으로 전반적인 음도 상대에서 가장 높았고, 고음에서 약간 감소하는 경향을 보였으나 통계적으로는 유의한 차이를 보이지 않았다.

주파수변동량(jitter)은 easy 발생(1.0±1.2%), non-passaggio(0.9±1.4%), passaggio(2.7±2.5%)로 passaggio 발행 테크닉에서 가장 증가하였으나 통계적으로 유의한 차이가 없었다.

진폭변동량(shimmer)은 easy(4.2±1.3%), non-passaggio(4.0±3.8%), passaggio(1.9±2.2%)로 passaggio 발생에서 가장 낮았으나, 통계적으로 유의한 차이가 없었다.

음성량은 easy(31.0±4.4%), non-passaggio(34.8±3.7%), passaggio(26.2±7.8%)로 passaggio에서 가장 높았으나 통계적으로 유의한 차이가 없었다(Table 1).

음성효율은 easy(7.18±1.73), non-passaggio(7.05±3.19), passaggio(4.97±2.68)로 passaggio에서 가장 낮게 나타났으나 통계적으로 유의한 차이가 없었다(Table 2).

고 절

흡상에서의 성대의 진동양상은 성대 하순(low lip)이 닫히고, 나머지 상순(upper lip)이 단단히 두 개 oscillation의 진동과정을 이루고, 성대의 진동범위가 크게 성대가 전장(全長), 전폭(全幅), 전후(全厚)로 진동하며 배음이 중부하고 소리가 강하다. 두통에서는 성대의 간질근중 용상 간질근(CT : cricothyroid muscle)의 활동이 증가하면서 성대는 열리지면서 상순만 진동하는 one mass oscillation 형태의 진동과정을 만들고, 홍성과 같은 호흡기질환 경우에는 운동범위가 줄고, 성대가 전장(全長), 전폭(全幅), 전후(全厚)로 진동하며 배음이 적고 소리가 약하다. 사람에 따라 차이가 있으며 일반적으로 홍성으로 고음을 올리기 보다는 pitch break 현상이 나타난다. 이 pitch break 현상이 나타나면 목소리는 감소해지고 호흡이 급격히 증가하며, 배음으로 올라가는 기가 턱달다. 이런 경우 pitch break의 조절을 하자면 간질근의(TA : Thyroarytenoid muscle) 활동이 활발해져 증가된 내장은 상쇄하기 위해 성대들기(vocal process)를 벌리는 방법을 하게 된다. 이런 경우를 involuntary passaggio라 한다. 이
때의 음성은 악화되었고 힘이 없는 소리가 되어 호흡의 난비가 심한 복병명한 목소리를 가 initWith가. 이형력보니 저음부
의 음악과 고향음의 음역이 차이가 크게 보이기 때문에 가
장시 좋은 목소리를 구할 수 없게된다. 고음음이 낮을 때 성
대의 위치 변화 posterior chink가 생기고 성대의 접촉면
적은 적어도 성대절막에도 무리가 가지므로 생각된다.
보통 고음음으로 갑수록 성대침과 호기계의 증가가 중요한
역할을 한다. 그러나 성대의 접촉이 적절할 경우, 증가하는
호흡량과 압력에 비해 음의 강도는 증가하지 않으므로 반
약한 소리를 내개한다. 이하의 문제점은 해결하는 방향에
크게 passaggio인 것이다.
본 연구에서 성대의 접촉은 다른 연구에 비하여 성대
접촉음의 비교적 높게 나타났는데 낳성성을 악기의 경우 혼란
기간이 길수록 성대접촉음이 높게 나타난다고 보고하고 있
다. Sundberg 등은 바리논을 대상으로 한 연구에서는 성
대접촉음은 낮은 음표일 때 보다 높은 음표에서 높은 강도
을 보인다고 보고하고. 이
란 결과는 바리논과 태야의 음표가 다르며 차이가 나는
것으로 생각된다. 중앙증후 높이의 음표 easy 방법의 성
대접촉음은 60.2±1%로 높은 접촉률을 보이며 고음음에
서의 non passaggio는 58.5±4.1%로 약간 감소하였고 반
면에 passaggio시 다시 성대접촉음(59.8±3.3%)이 증가
하였다. 이 결과는 passaggio 방법 대략시 성대 접촉음이
다시 증가하면서 혼성의 접촉음에 가까워지고 음역운용성
의 소리와 비슷하게 되는 것으로 보여진다. 그러나 성대접
촉음이 동계적으로 유의한 차이가 없게 나타난 것은 성대접
촉음의 큰 변화는 음정의 큰 변화를 의미하므로 passaggio
시 성대접촉음이 약간 증가하는 것이 당연하리라 생각된다.
이번 연구에서 동계적으로 의미 있게 나타난 것은 음의 강
도였는데, Ottolino 등 연구에서는 성대접촉음에 영향을
미치는 요소로 여러 가지가 있는데 그 중 가장 중요한 것으로
발생의 강도이며 성대접촉율과는 양의 상관관계가 있다고
하여. 즉 발생강도의 크기에 따라 성대의 진동주기의 비
율이 차이가 발생하는 것으로, 강도가 낮을 때에는 피하등에
비해 개방기가 상대적으로 길며 강도가 증가할수록 개방기
의 비율이 커져서 성대접촉음은 커지게 된다고 보고하고 있
으며, 주파수의 증가도 성대접촉율은 증가하기나 주파수
의 변화가 미치는 영향은 강도의 변화에 비해 크지 않은
것으로 되어 있었다. 18) Sundberg는 성대접촉음은 한 톤트병
도 기저주파수에서 증가할 때 음도의 강도가 8-9dB 정도 증가
한다고 하였다. 이번 연구에서는 특히 passaggio에서 90.9
±2.2dB로 매우 높게 나타났다. 이것은 성대접촉음, 평균호
기류율, 성대침이 증가한 것 때문이라는 생각되어 선
행연구와 같은 결과를 보였다. 11)
Murry 등의 보고에 의하면 평균호기류율은 성구의 종류
와 성대접촉음에 따라 호기류율의 영향을 받는다고 하였고. 12)
Birch 음악이 낮은 사람음에 음역이 줄은 사람에 비해 음구
물과 적게 작용한다고 하였다. 그 이유는 성대의 길이가 영향
을 미친 것으로 예상되었으며 거의 대부분의 사람들들은 모
음이 달라도 음기소도 거의 비슷하였다고 보고하였다. 13)
평균호기류율의 평균치는 89-114ml/sec 정도이고 200
ml/sec 이상이거나 40ml/sec 이하는 비정상으로 간주하고,
반후두침감염(Recurrent laryngeal nerve paralysis), 성대구중(sulcus vocalis), 후두염(laryngitis), 성대절막(vocal
nodules), 풍림(vocal polyp), 라인케비부종(Reinke’s
edema)의 질병이 있을 경우 평균호기류율이 크게 나타나며,
경련성 발발증상(spasmodic dysphonia)에서는 정상보
다 감소한다고 한다. 14)
 이번 연구에서는 평균호기류율은 182.8±27.8ml/sec에
서 214.3±38.6ml/sec로 일반 평균치보다 높게 나타났는
데, 그 이유는 평균호기류율은 저주파보다는 고효화에서 음
표의 강도에 보다 밀접한 연관이 있는데, 음의 높이가 높고,
음의 강도가 아주 강하게 나타난 것이 평균항의 평균호기
류율의 증가로 나타난 것으로 예상된다.
성문학습은 발생 시 중요한 변수로, 평상 발생 시 평균
50-100mmHg이며 후두암(glottic cancer)이나 반화후두
신경마비, 가능적 음성장애(functional voice disorders) 시
상당히 증가한다고 한다. 성문학습은 음의 강도와 정비하게
하며 음의 강도는 성문학습의 4배에 비례한다고 한다. 15)
또한 큰소리를 만들기 위해서 높은 성문학습을 사용하면 큰
소리를 생산할 뿐 아니라 울도도 증가하는 경향을 보인다고
보고하고 있으나, 본 연구에서는 성문학습의 증가에도 불구하고 음도는 변화가 없었으며 이는 성성인들은 오랜 혼
란과 성대손과 성문학습의 영향으로 보아서 가능할 것으로
생각된다. 성문학습의 증가는 성대접촉음을 증가시키며,
대부분 높은 성문학습은 55% 정도의 성대접촉율을 보
인한다고 한다. 16) 그리고 성학기는 같은 효과와감을 사용하면
서도 일반인보다 10-12dB 정도 크게 음의 강도를 나타내고
하도 하였다. 성학기는 일반인보다 같은 효과에적으로 3-4
배 정도의 시간을 약간할 수 있다고 보고하고 있는데 이는
성문학습으로 성대가 진동할 때 성대접촉에서 에너지의 손
실이 적어 성대접촉이 더 큰 것이 보인다라고 하였다. 17) 본
연구에서도 평균 71.8±12.9mmHg에서 106.3
±35.4mmHg로 높은 성문학습을 보였으며 음의 강도가 크
게 증가하여 같은 결과를 보였다.
 큰 소리를 낼 경우 음도의 증가 뿐만 아니라 성대접촉음
남성성악자가의 Vocal Register Transition(Passaggio)시 공기 역학적 변화와 EGG의 변화 연구

에 따라 가치 변화가 나타났다고 하였는데(1) 이번 연구에서 주파수 변동률과 전작변동률은 easy와 non-passaggio에서는 차이가 없으나 passaggio에서는 높고 낮은 각도에서 변동률 차이를 나타내었으나 정상범위 내의 변화였다. 음성효율은 동계적으로는 의미가 없으나 passaggio에서 음성효율이 떨어지는 결과를 보았는데 음의 강도의 증가한 것에 비해 성분항과 평균호기류율이 증가가 많은 것 때문이라 생각된다.

결
론

발성테크닉인 passaggio를 하면 두성에서 성대의 접촉
물이 증가하고 이때 평균호기류율, 성분항 등이 증가하
여 평균과 비슷한 음색이 되며 음의 강도는 증가하는으
로 생각된다. 그러나 음의 강도 이상의 다른 검사에서 동
계적 의미가 없게 나타난 것은 음성의 급격한 변화는 오히려 평균과 두성의 급격한 음색의 차이를 보이게 되므로 좋
은 발현이란 할 수 없을 것으로 생각된다. 또한 음성효율을 높게 하려면 적당하게 성분항과 평균호기류율의 증가가
 thiết해야 한다.

중점 단어 : 성구전환, 성대접촉률, 평균호기류율, 음의 강
도, 성분항.

REFERENCES

3) Tizze IR. Principles of voice production. Prentice Hall.