Curcuma xanthorrhiza oil이 함유된 구강분무액의 구취감소효과에 관한 임상적 연구

김백일, 정승화, 김민영, 김해선, 유자혜, 권호근
연세대학교 치과대학 예방치과학교실, 구강과학연구소

색인: 구강분무액, 구취, Curcuma xanthorrhiza oil, Xanthorrhizol

1. 서 론

구취는 일상적인 구강 내 증상의 하나이지만, 심각할 경우 대인관계나 사회생활에 큰 영향을 미칠 수 있는 사회성 질환이다. 그 결과 최근 삶의 질이 더욱 부각되고 있는 사회에서, 기존에 비해 구취에 관한 일반인의 관심이 증가하고 있는 실정이다. 구취발생은 치아우식증이나 치주질환과 마찬가지로 구강 내 미생물들이 형성한 치태에 의해서 주로 발생한다. 특히 쌓이거나 치간부 치태는 구취의 주된 원인으로 주목되고 있어서 치주질환뿐만 아니라 혈출 젤, 치식질 등에 의한 물리적 치태조절이 중요한 해결책이다. 구취 억제를 위해서는 물리적 치태조절법과 병용하여 구취발생 미생물의 성장과 증식을 화학적으로 억제할 수 있는 항균물질을 병용하는 것이 더욱 효과적이다. 이를 위해 치아나 양치약 등에 항균물질을 넣어서 구취 감소효과를 얻으려는 시도들이 많이 있었으나, 양치약에 함유되는 항균물질로는 클로로헥시딘, 에센셜오일, 염화세틸피리디늄 등의 인공항성물질들이 주로 사용되고 있으며, 최근에 와서는 장기간 사용해도 부작용이 적은 천연항균물질을 이용하려는 시도들이 활발히 이루어지고 있다. 그 중에서 본 연구에서 주목한 항균물질은 생강과 (Zingiberaceae) 식물의 일종인 Curcuma xanthorrhiza의 뿌리에서 추출한 물질인 Curcuma xanthorrhiza oil이었다. 이 식물은 일반적으로 Temu lawak 또는 Javanese turmeric으로 알려진 인도네시아의 전통 약용식물이다. Curcuma xanthorrhiza의 약리활성으로는 항암효과, 간 보호효과(hapatoprotective effect), 신독성(nephrotoxicity) 감소효과, 항암효과 및 항산화(anti-metastasis)작용 등이 보고된 바 있다. Curcuma
표 1. 실험군과 대조군의 구성성분 및 배합비율

<table>
<thead>
<tr>
<th>구성성분</th>
<th>구성성분</th>
<th>1 실험군</th>
<th>2 실험군</th>
<th>대조군</th>
</tr>
</thead>
<tbody>
<tr>
<td>주요성분</td>
<td>Curcuma xanthorrhiza oil</td>
<td>0.025%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>에탄올</td>
<td>30.00%</td>
<td>30.00%</td>
<td>30.00%</td>
</tr>
<tr>
<td></td>
<td>항료 (Menthol, Mint oil 등)</td>
<td>7.00%</td>
<td>7.00%</td>
<td>-</td>
</tr>
<tr>
<td>기타성분</td>
<td>글러세린, 정제수, 글러세일 모노 올레레이트 등</td>
<td>적량</td>
<td>적량</td>
<td>적량</td>
</tr>
</tbody>
</table>

xanthorrhiza의 구강균주에 대한 효능은 왕 등13,14에 의해 처음 알려지기 시작했고, 김 등15은 이 물질을 함유한 치약의 항우식, 항구취효과에 대해서 보고했다.

구강분무액은 치약이나 양초액을 사용할 수 없을 때, 순간적으로 구취를 없애줄 목적으로 사용되는 휴대용 제품으로써 지금까지는 주로 구취의 원인군들을 억제시킨다고 보다는 단순히 항우해에 의해서 구취를 가려주는 미용 목적의 제품들이 대부분이었다. 구강분무액과 관련된 국내 선행연구로는 정 등16이 자동분자 및 치 추출물을 함유한 구강분무액의 구취감소효과를 보고한 것이 유일한 상태이며, 해외에서는 Clavero 등17이 노인중증 대상으로 클로로핵시드가 함유된 구강분무액을 사용해서 치과 및 치은열 감소효과를 보고한 바 있다. 만약 일시적인 구취감소를 위해 사용하는 구강분무액에 웅동한 항균력이 보장되는 물질이 함께 사용된다면 구취감소의 효과를 좀 더 오랫동안 지속시키는 것이 가능할 것이다. 이에 본 연구의 목적은 Curcuma xanthorrhiza oil이 함유된 구강분무액의 구취감소 효과를 평가하기 위해서 in-vitro 연구 및 in-vivo 연구를 시행하였다.

연구목적 달성을 위한 세부 연구가설은 다음과 같았다.

첫째, Curcuma xanthorrhiza oil이 함유된 구강분무액을 실험자로부터 채취한 타액에 용량별로 투여했을 때 대조군이나 다른 실험군에 비해서 타이줄성화합물(Volatile Sulfur Compound, VSC)발생량이 감소될 것이다.

둘째, 실험자를 대상으로 Curcuma xanthorrhiza oil이 함유된 구강분무액을 사용한 직후, 1시간, 2시간, 3시간 경과 후에 구취 발생 정도를 GC 및 관능 감사를 이용하여 평가하였을 때 대조군이나 다른 실험용 구강분무액에 비해서 구취가 감소될 것이다.

2. 연구방법

2.1. 실험에 사용된 구강분무액의 조성

유럽 약제에 등재된 Curcuma xanthorrhiza의 뿌리에 n-헥산을 첨가하여 상온에서 24시간 추출한 다음 여과 추출한 원액을 감압농축한 뒤, n-헥산과 에틸아세테이트 혼합액(100:1)을 전게용매로 하여 컬럼크로마토그래피를 수행하였다. 실리카 부피의 2-4배의 전가용매를 취한 후 감압농축하여 40%농도의 Curcuma xanthorrhiza oil을 제조하였다. 본 연구에서 실험한 1, 2 실험군 및 대조군 구강분무액의 구체적인 성분은 표 1과 같다.

2.2. 연구대상자

본 임상평가에 참여한 피험자들은 남자: 7명, 여자: 9명, 24-33세 연령대의 16명의 남녀로서 현재 임상 중인 치아우식중이나 3.5 이하의 치주병이 없으며, 치열이 고르고, 특별한 전신질환을 갖지 않은 건강한 사람들을 대상으로 하였다. 본 실험에 들어가기 전에 실험내용에 대해서 충분히 설명한 뒤 동의서를 받고서 진행하였다. 연구대상자들의 자세한 특성은 표 2와 같다.
표 2. 연구대상자의 특성

<table>
<thead>
<tr>
<th></th>
<th>남자</th>
<th>여자</th>
<th>전체</th>
</tr>
</thead>
<tbody>
<tr>
<td>인원 수(N)</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>연령(평균±표준편차)</td>
<td>29±1±2.5</td>
<td>26.3±2.2</td>
<td>27.6±2.6</td>
</tr>
<tr>
<td>혈연여부 N(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>비흡연자</td>
<td>3(43)</td>
<td>9(100)</td>
<td>12(75)</td>
</tr>
<tr>
<td>과거흡연자</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재흡연자</td>
<td>4(57)</td>
<td></td>
<td>4(25)</td>
</tr>
<tr>
<td>운주여부 N(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>비흡주자</td>
<td>-</td>
<td>2(22)</td>
<td>2(13)</td>
</tr>
<tr>
<td>과거흡주자</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>현재흡주자</td>
<td>7(100)</td>
<td>7(78)</td>
<td>88(14)</td>
</tr>
<tr>
<td>치석보유자율(%)</td>
<td>43</td>
<td>33</td>
<td>38</td>
</tr>
</tbody>
</table>

2.3. 구취제조과정평가방법

2.3.1 Gas Chromatography 방법을 이용한 in-vitro 구취재조평가

피험자 10명을 대상으로 첫술을 1시간 후에 각각 5 ml의 태액을 플라스틱관 튜브에 채취하였다. 헌기성 시험용 기구(anaerobic chamber)에서 채취한 태액을 250 ml의 비어치에 옮긴 후 자석 교반기를 이용하여 500 rpm의 속도로 10분간 균일하게 혼합하였다. 이 중 2 ml의 태액을 취하여 20 ml의 GC용 Vial에 옮긴 후 아무것도 첨가하지 않은 음성 대조군과 20, 50, 100, 200 ml의 제 1실험군, 제 2실험군 및 대조군 구강분무액을 각각 투입한 후 밀봉하여 37 ℃의 헌기성 배양기에서 1시간 배양 후 GC 측정을 위한 시료로 사용하였다. 또한 검정은 동일한 방법으로 3회 반복 실험하였다. 배양된 시료는 Head space sampler가 장착된 휘발성화합물에 선택적인 GC와 FPD(Flame Photometric Detector)로 VSC 의 농도를 측정하여 각 개인의 초기값(대조치)을 결정하였다. GC(Agilent 3050 series)에서는 Cosmosil 330 Teflon을 컬럼으로 사용하였으며, 청화합물에 대하여 선택성이 뛰어난 FPD를 장착하여 사용하였다. GC내의 캐리어 가스로는 헨름을 24 ml/min의 속도로 통과시켰으며, 종류의 온도는 70℃로 유지하였다. 검출기 내의 기체 흐름은 수소와 공기의 75에서 100 ml/min의 속도로 통과하도록 설정하였으며 검출기의 온도는 180℃를 유지하도록 하였다. 시료의 투입을 위한 Head Space의 시료 채취부 온도는 70℃, 혈연구의 온도는 발생된 가스의 출착이나 변성이 일어나지 않도록 80℃로 유지하였다. 그리고 최종 투입구의 온도는 90℃로 하여 5 ml의 채취된 가스를 투입 밸브의 개방여 Gauge 에 의해 GC 컬럼 내로 유입되어 최종 분석되도록 하였다.

2.3.2. Gas Chromatography 방법을 이용한 구강 분문역의 구취제조 임상평가

전산적으로 긴장한 남여의 피험자 16명을 대상으로 세 종류의 구강분무액에 대하여 교차 연구설계(cross over design)를 통한 임상 평가를 진행하였다. 그림 1은 본 임상실험의 전체적인 내용을 설명하는 모식도이다. 교차 실험 시 효능체의 잔존 섭득에 의하여 발생할 수 있는 문제점을 해결하기 위하여 제 1, 2실험군 및 대조군간의 평가 간격은 각각 3일 간 동일한 차단과 치료를 사용하는 wash out 기간을 설정하였다. 실험 실시 1시간 전에 동일한 차단과 치료를 사용하여 치료지를 시행한 후 실험 직전에 태액을 채취하여 이를 초기치로 하였다. 실험 전의 치료의 0.2 ml의 구강분무액을 제 1 실험군, 제 2 실험군 및 대조군에 대하여 각각 사용 후, 1시간, 2시간,
간 및 3시간 이 후에 각 실험자의 타액을 2.5 ml 액체 취하였다. 현기성 실험용 기구(anaerobic chamber)에서 2 ml의 타액을 취하여 20 ml의 GC용 Vial에 냉긴 후 냉분하여 37℃의 현기성 배양기에서 1시간 배양 후 GC 측정에 사용하였다. 배양된 시료는 Head space sampler가 장착된 VSC에 선택적인 GC와 FPD로 화합물의 농도를 측정하였다. 본 연구에서도 실험 2.3.1에서 사용된 GC와 같은 실험조건으로 분석을 진행하였다.

2.3.3. 관능검사에 의한 구강분무액의 구취 억제 임상 평가

실험 실시 1시간 전에 동일한 치약과 치솔을 이용하여 치솔질을 시행한 후 실험 직전에 타액을 채취하여 이를 초기치로 하였다. 1회 사용량이 0.2 ml인 구강분무액을 제 1 실험군, 제 2 실험군 및 대조군에 대하여 각각 사용 직후, 1시간, 2시간 및 3시간 후에 관능평가 하였다.

구강분무액의 구취 관능 임상 평가에는 내경이 3/8 인치이고 외경이 1/2 인치인 길이 1 m의 테프론 튜브를 장착한 90 × 120 cm의 벽을 제작하여 사용하였다. 테프론 튜브는 내화합성이 뛰어나기 때문에 구강 내에서 발생한 화합물과 반응하지 않도록 하기 위하여 사용하였다. 제작된 벽의 한쪽 면에는 2명의 구취 평가자들이 위치하였고, 다른 한편에 피험자들이 위치하여 1분간 항구를 한 후 구강 내에 있는 공기만을 호흡하도록 하여 평가자들이 표 3의 척도에 의거하여 구취 지수를 평가하였다. 이때 모든 시험과정은 이중명령법으로 진행하였다. 구취검사는 2명의 검사자가 수행하였는데 구취 평가자의 일치도는 피어슨 상관계수로 0.81을 나타내어 검사 자간에 매우 높은 신뢰도를 가진을 확인하였다.

2.4. 통계분석방법

In-vitro 상태에서 구강분무액에 함유된 유효물질의 유효량을 구취 억제 효과를 비교하기 위해서 일정 인분산분석법을 시행하였고, 다중비교는 Duncan test를 시행하였다. GC 및 관능검사를 이용한 임상
표 4. Gas Chromatography를 이용한 구강분무액의 구취약제 in-vitro 평가

<table>
<thead>
<tr>
<th>구분</th>
<th>Peak Area of Volatile Sulfur Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>제1 실험군</td>
<td>1,476±135a</td>
</tr>
<tr>
<td>제2 실험군</td>
<td>293,601±36,798b</td>
</tr>
<tr>
<td>대조군</td>
<td>170,654±16,056b</td>
</tr>
</tbody>
</table>

모든 수치는 평균±표준편차。

A, B, C: ANOVA 검정 후 Duncan 방법에 의한 사후검정결과. 동일한 부호표기는 유의수준 5%에서 통계적으로 유의한 차이 없음.

표 5. 구강분무액 사용 후 시간 경과에 따른 GC를 이용한 휘발성 황화합물의 Peak 면적 분석 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>Base Line</th>
<th>분무 직후</th>
<th>측정시기</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1시간 후</td>
<td>2시간 후</td>
</tr>
<tr>
<td>제1 실험군 (N=16)</td>
<td>681.8±648.8a</td>
<td>9.2±11.3a</td>
<td>142.9±152.4a</td>
</tr>
<tr>
<td>제2 실험군 (N=16)</td>
<td>641.4±586.4a</td>
<td>15.2±18.7a</td>
<td>196.8±206.8a</td>
</tr>
<tr>
<td>대조군 (N=16)</td>
<td>720.1±763.1a</td>
<td>112.1±180.6b</td>
<td>378.1±391.1b</td>
</tr>
</tbody>
</table>

모든 수치는 평균±표준편차.

A, B, C: ANOVA 검정 후 Duncan 방법에 의한 사후검정결과. 동일한 부호표기는 유의수준 5%에서 통계적으로 유의한 차이 없음.

실험에서는 각 시간대별로 3군 간의 구취감소효과의 차이는 일정한 분산분석법을 시행하였고, 다중비교는 Duncan test를 시행하였다. 또한 반복측정자료의 분산분석법(repeated measure ANOVA)을 통해서 초기치(baseline)에 비해 시간의 호흡에 따른 구취발생 변화정도를 비교하였다. 모든 통계처리는 SPSS 12.0 통계 패키지를 사용하여 분석하였다.

3. 연구성적

3.1. Gas Chromatography 방법을 이용한 구강분무액의 in-vitro 구취약제 평가

10명의 피험자들로부터 수집된 타액을 균일하게 혼합한 후 구강분무액의 종류에 따라 GC를 이용하여 측정한 휘발성 황화합물의 발생량을 표 4에 제시하였다. 실험군 분무액들은 사용량이 증가함에 따라서 휘발성 유기 황화합물의 발생량도 급격히 증가하는 것을 확인할 수 있었다. Curcuma xanthorrhiza oil이 유효성분으로 함유된 제 1실험군과 이 물질이 빠진 제 2실험군 간에는 통계적으로 유의한 차이가 없었으나, 두 실험군 모두 대조군에 비해서는 구취 감소효과가 뚜렷함을 확인할 수 있었다(p < 0.05).

3.2. Gas Chromatography 방법을 이용한 구강분무액의 구취억제 임상평가

남, 여 16명을 대상으로 제 1실험군, 제 2실험군과 대조군 구강분무액의 교과 실험을 시행한 뒤 GC를 이용하여 평가한 결과가 표 5에 제시하였다. 피험자들로부터 초기상태에서 채취한 각각의 타액을 GC로 분석한 결과 세 군간의 황화합물 peak 면적에 유의한 차이는 없었다(p > 0.05). 구강분무액 사용 직후에는 대조군에 비해서 제 1실험군은 8%, 제 2실험군은 14% 수준에서 황화합물 발생량이 감소하였다. 그러나 분무 직후에 제 1실험군과 제 2실험군 간에는 통계적으로 유의한 차이는 나타나지 않았다. 하지만 분무 후 1시간에서부터 시간이 지남에 따라 Curcuma xanthorrhiza oil이 함유된 1실험군이 대조군뿐만 아니라 제 2실험군에 비해도 통계적으로 유의한 수준의 구취 감소효과를 나타내었다(p < 0.05). 구강분무액 사용 후 3시간간 그 정도에서는 통계적인 차이가 나타나지 않았다.

 초기치를 기준으로 각 시간대별로 구취감소효과
표 6. 구강분무액 사용 후 시간 경과에 따른 구취 관능평가 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>Base Line</th>
<th>분무 직후</th>
<th>1시간 후</th>
<th>2시간 후</th>
<th>3시간 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>제1실험군(N=16)</td>
<td>3.7±0.9a</td>
<td>0.1±0.2a</td>
<td>2.1±0.5a</td>
<td>2.9±0.7a</td>
<td>3.6±0.9a</td>
</tr>
<tr>
<td>제2실험군(N=16)</td>
<td>3.5±1.1a</td>
<td>0.2±0.4a</td>
<td>2.5±0.9a</td>
<td>3.3±0.7a</td>
<td>4.4±1.2b</td>
</tr>
<tr>
<td>대조군(N=16)</td>
<td>3.5±1.1a</td>
<td>1.1±0.5b</td>
<td>3.0±1.4b</td>
<td>3.7±1.3b</td>
<td>4.7±1.7b</td>
</tr>
</tbody>
</table>

모든 수치는 평균±표준편차임. 
A,B,C ANOVA 검정 후 Duncan 방법에 의한 사후검정결과임. 동일한 부호표기는 유의수준 5%에서 통계적으로 유의한 차이 없음.

을 반복 측정된 분산분석으로 비교한 결과, 1군과 2군에서 분무액 사용 직후, 1시간 및 2시간 경과 후의 경우 초기치에 비해서 통계적으로 유의한 수준으로 구취가 감소되는 것으로 나타났다(p < 0.05). 그러나 3시간 경과 후에는 구취발생정도가 초기치 값과 차이가 없는 수준으로 회복되는 것으로 나타났다.

3.3. 관능검사에 의한 구취 임상평가 실험결과

16명의 피험자를 대상으로 구강분무액 사용 후 구취 감소정도를 관능평가를 이용해서 비교한 실험결과가 표 6에 제시되어 있다. 구강분무액 사용 직전의 초기치를 측정한 결과 세 군간에 유의한 차이가 없음을 확인하였다. 구강분무액을 사용한 직후에는 제1, 2실험군 모두 대조군에 비하여 구취가 감소함계 감소하였다(p < 0.05). 1시간 및 2시간 이후에도 사용 직후와 마찬가지로 대조군에 비하여 제1실험군과 제2실험군이 모두 유의하게 구취 억제 효과를 나타내었다(p < 0.05).

초기치를 기준으로 각 시간대별로 구취감소효과를 반복측정자료의 분산분석법으로 비교한 결과, 1군에서는 분무액 사용 직후, 1시간 및 2시간 경과 후까지 초기치에 비해서 통계적으로 유의하게 구취가 감소되는 것으로 나타났다(p < 0.05). 한편 2군에서는 분무액 사용 직후와 1시간까지만이 초기치에 비해서 통계적으로 유의하게 구취가 감소되는 것으로 나타났다(p < 0.05).

4. 고 안

파구에는 여러 가지 구강질환 중에서 구취가 특별한 질환으로 인정받지 못했지만, 최근에는 일반인 뿐만 아니라 치과계에서도 점차로 주목하고 있는 질환이다. 미국의 경우 2000년도에 구취관리 양치액 시장의 규모는 7억 4천만 달러로 추정되고 있으며, 매년 급격한 신장을 보고하고 있다. 구취를 감소시키기 위해서는 근본적으로 배설을 유발하는 저체를 물리적으로 제거하는 것이 가장 좋은 방법이다. 그러나 이전의 실험결과는 저체의 치료를 시행할 수 없을 경우 양치액과 같은 화학적인 저체조절법을 이용할 수도 있다. 그동안 사용되었던 양치액에 함유된 대표적인 양초물질로는 클로로헥시딘과 에센셜 오일, 트라이코로산 등이 있었다. 이중에서 클로로헥시딘은 대표적인 치료용 양초 양초액으로써 널리 이용되던 반면 클로로헥시딘은 대표적인 치료용 양초 양초액으로써 널리 이용되던 반면 클로로헥시딘은 대표적인 치료용 양초 양초액으로써 널리 이용되었다. 양초액을 사용하면 차아에 채색을 유발하고, 점막에 감함을 주는 등의 부작용이 있던 반면 클로로헥시딘은 클로로헥시딘이 양초를 감소시키고 대신에 염화세틸피리니디늄(CPC)이나 아연(Zn) 같은 다른 성분을 병용함으로써 부작용은 줄이고, 항균력은 향상시키는 시도를 하고 있다. Quirynen 등은 저주수속 후 유지기에 있는 환자들에 0.05%의 클로로헥시딘과 0.05%의 CPC를 혼합한 양초액이 기존의 0.2%의 클로로헥시딘에 비해서 부작용을 줄이면서 높은 항저항효과를 유지할 수 있
품이 임상적으로 구취감소에 효과적인지 보고사 하였다. 본 실험은 크게 타액을 이용한 실험
실 실험과 인해를 대상으로 하는 임상실험을 병용하
여 진행하였다. 먼저 피검자의 타액을 이용한 실험
실 실험에서는 Curcuma xanthorrhiza oil이 함유된
제 1실험군이 모든 용량에 걸쳐서 대조군과 비해서
우수한 구취감소효과를 보였으나, 제 2실험군에 비
해지는 유의한 차이가 나타나지 않았다. 다음으로
16명의 피검자를 대상으로 한 임상 교차실험 결과,
제 1실험군은 대조군에 비해서 GC평가에서는 분무
액 사용 직후부터 2시간까지, 관능평가에서는 3시
간까지 통계적으로 유의한 수준으로 구취감소효과
를 나타냈다. 제 1실험군과 제 2실험군 간에 구취감
소 효과를 비교한 결과, 제 1실험군은 GC평가에서
는 분무액 사용 후 1시간과 2시간사이, 관능평가에
서는 사용 후 3시간에서 제 2실험군에 비해서 구취
가 억제효과가 뚫어난 것을 확인할 수 있었다. Roldan
등23)은 0.12%의 클로로헥실타나 0.05%의 CPC가 함
유된 양치액을 사용했을 때 가장 효과적으로 구취
감소가 나타났으며, 그 지속시간이 5시간까지 유지
되었다고 하였다. 한편 본 연구에서는 유지항균 물질인
Curcuma xanthorrhiza oil이 단지 0.025%만이 함
유되었고, 구강분무액의 통상적인 사용량이 양치액
보다 월슨 적다는 것을 고려한다면, 시간까지 구취
감소효과가 유지된다면 그것은 매우 놀라운 결과라고
어져게 된다. 이와 같은 결과는 황 등36)의 선행연구에서
치주질환 및 구취유발 균주인 Porphyromonas
gingivalis에 대해서 Curcuma xanthorrhiza와 클로
르헥실타나 최소억제도(MIC)에 큰 차이가 없었다
는 결과와 심30)의 연구에서 치아를 형성하는 주된 균
주 중에 하나인 Actinomyces viscosus와
Fusobacterium nucleatum에 대한 Curcuma
xanthorrhiza의 항균효과가 다른 치안구조물에 비해
서 매우 놀라운다는 사실을 통해서 확인할 수 있다.
항균효과를 구강분무액의 형태로 적용한 다른 임
상연구결과와 본 연구결과를 비교한 결과, 본 연구에서 평가한 Curcuma xanthorrhiza oil 함유 구강분무액의 효능이 뛰어난 것을 알 수 있었다. 정 등(6)이 자몽초주, 차 및 UDCA 함유 구강분무액의 구취감소효과를 평가한 연구에서는 메틸알킬탄의 발생량이 본무액 사용 13분 후까지 유의하게 감소한다고 보고하였다. 정 등(6)이 보고한 논문은 구강분무액에 대한 유일한 국내 논문이었지만, 구취감소효과를 단지 13분까지 확인하던다는 제한점이 있었다. 하지만 본 연구에서 구취감소효과를 3시간까지 측정하였는데, 그 이유로는 비록 구강분무액의 양치액에 비해서 소량만 사용한 것이 하더라도 훨씬 효과적인 것을 고려한다면 적어도 항구취 효과가 3시간은 지속되어야한다고 생각했기 때문이 다. 본 논문에서 사용한 Curcuma xanthorrhiza oil은 0.025%로써 Clavero 등(7)이 사용했던 0.2%의 클로로헥시딘 구강분무액에 비해서도 농도가 높을 뿐만 아니라 기존의 클로로헥시딘 저항형체이론 0.05%나, CPC 0.05%보다도 절반 수준의 농도도 가지고 있어도 상대적으로 긴 시간 동안 항구취효과가 유지되는 것으로 나타났다. 그러나 본 연구에서는 단지 16명의 피검자를 활용하여 단기 항구취효과만을 평가했다는 제한점이 있었다. 그러므로 향후 연구에서는 보다 많은 수의 피검자를 활용하여 수개월에 걸친 장기 사용 후의 구취감소효과에 대해서 더 다양한 입상평가가 필요하다고 사료되었다.

5. 결 론

본 연구는 Curcuma xanthorrhiza oil이 0.025% 함유된 구강분무액의 구취감소효과를 평가하기 위해서 in-vitro 연구로써 10명의 피검자로부터 채취한 타액에 20-200 μL의 실험군 및 대조군 구강분무액을 넣은 뒤 발생된 황화합물의 양을 GC를 이용해서 측정하였다. 그리고 구강분무액의 구취감소효과를 임상실험으로 평가하기 위해서 16명의 피검자를 교차 실험하여 실험 및 대조 구강분무액 적용 후 3시간까지의 구취발생정도를 GC와 맛느낌을 평가한 결과 다음과 같은 결론을 얻게 되었다.

1. Curcuma xanthorrhiza oil이 함유된 구강분무액은 10명의 피검자로부터 채취한 타액에 용량별로 투여하여 구취 감소효과를 GC를 이용하여 in-vitro 연구로 평가한 결과, Curcuma xanthorrhiza oil이 주성분으로 함유된 제 1 실험군과 이 물질이 빠진 제 2 실험군 모두 대조군에 비해서 구취감소효과가 높은 것으로 나타났다(p < 0.05). 그러나 제 1 실험군과 제 2 실험군 간에는 통계적으로 유의할 만한 차이가 없었다.

2. 16명의 피검자를 대상으로 Curcuma xanthorrhiza oil이 함유된 구강분무액을 사용하고 나서 시간 경과에 따른 구취 감소정도를 GC를 이용하여 평가한 결과, 본무 직후에는 대조군에 비해서만 유의한 구취감소효과가 나타났으나, 본무 후 1시간과 2시간 경과 후에는 대조군 뿐만 아니라 제 2 실험군에 비해서도 통계적으로 유의한 수준의 구취감소효과가 나타났다(p < 0.05).

3. 16명의 피검자를 대상으로 Curcuma xanthorrhiza oil이 함유된 구강분무액을 사용하고 나서 시간 경과에 따른 구취 감소정도를 본무 실시를 이용하여 평가한 결과, 본무 직후부터 2시간까지는 대조군에 비해서는 유의한 구취감소효과가 있었으나, 제 2 실험군의 구취감소효과가 있는 차이가 없었다. 그러나 본무 실험 3시간 경과 후에는 대조군 뿐만 아니라 제 2 실험군에 비해서도 유의한 수준의 구취감소효과가 나타났다(p < 0.05).

이상의 연구결과 Curcuma xanthorrhiza oil이 함유된 구강분무액은 대조 구강분무액에 비해서 구취 발생을 보다 효과적으로 억제할 수 있었으며, 향후 다양한 수준의 진전된 임상평가가 필요할 것으로 여겨진다.
참고문헌


20. Quirynen M, Soers C, Desnyder M, Dekeyser C, Pauwels M, van Steenberghhe D. A 0.05% cetyl pyridinium chloride/0.05% chlorhexidine mouth rinse during maintenance phase after initial periodontal therapy, J Clin Periodontol 2005;32(4):390-400.


23. Adolfsen Erici M, Pettersson M, Parkkonen J, Sturve J. Tricosan, a commonly used bactericide found in human
Clinical anti-halitosis effects of oral spray containing
_Curcuma xanthorrhiza_ oil

Baek-Ill Kim, Seung-Hwa Jeong, Min-Young Kim, Hae-Sun Kim, Ja-Hea Yoo, Ho-Keun Kwon

Department of Preventive Dentistry and Public Oral Health,
Oral Health Research Center, College of Dentistry, Yonsei University

Keywords: Curcuma xanthorrhiza oil, halitosis, oral spray, xanthorrhizol

Objectives: The purpose of this study was to determine effects of anti-halitosis for oral spray containing _Curcuma xanthorrhiza_ oil(CX) by in-vitro and in-vivo method.

Methods: This study used three kinds of oral sprays. First experimental group was containing 0.025% _Curcuma xanthorrhiza_ oil plus 7% essential oil(CX+EO), second experimental group was containing 7% essential oil alone(EO), and control group was not containing any active ingredients. _in-vitro_ trial, after mixing saliva from taking 10 subjects and adding these 20-200 µl oral sprays, the levels of whole-mouth volatile sulphur compounds(VSCs) were measured by means of a gas chromatography(GC). In-vivo study, sixteen volunteers(7 male and 9 female), with a healthy oral status, were enrolled in a double-blind, cross-over design. After using above oral spray up to 3 hours, the levels of VSCs were measured by means of a GC and organoleptic analysis.

Results: The effects of anti-halitosis by GC using salivary samples from taking volunteers were that CX+EO group showed higher effects of anti-halitosis than control group in proportion to dosage(p < 0.05). In the result of clinical trial of effects of anti-halitosis for sixteen volunteers, CX+EO group has more effectiveness of anti-halitosis than EO group in GC evaluation from 1 to 2 hours and in organoleptic analysis at 3 hours(p < 0.05).

Conclusions: This study results that oral spray containing _Curcuma xanthorrhiza_ oil showed more effectiveness of anti-halitosis than other control sprays.