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The Journal of Immunology

Nucleocytoplasmic Shuttling of HMGBI1 Is Regulated by
Phosphorylation That Redirects It toward Secretion’

Ju Ho Youn* and Jeon-Soo Shin**"*

The high mobility group box 1 (HMGB1) protein can be secreted by activated monocytes and macrophages and functions as a late
mediator of sepsis. HMGB1 contains two nuclear localization signals (NLSs) for controlled nuclear transport, and acetylation of
both NLSs of HMGBI is involved in nuclear transport toward secretion. However, phosphorylation of HMGB1 and its relation
to nuclear transport have not been shown. We show here that HMGBI1 is phosphorylated and dynamically shuttled between
cytoplasmic and nuclear compartments according to its phosphorylation state. Phosphorylation of HMGB1 was detected by
metabolic labeling and Western blot analysis after treatments with TNF-a and okadaic acid, a phosphatase inhibitor. Hyper-
phosphorylated HMGB1 in RAW 264.7 and human monocytes was relocated to the cytoplasm. In a nuclear import assay, phos-
phorylated HMGBI1 in the cytoplasm did not enter the nucleus. We mutated serine residues of either or both NLSs of HMGB1
to glutamic acid to simulate a phosphorylated state and examined the binding of HMGBI1 to karyopherin-a1, which was identified
as the nuclear import protein for HMGBI1 in this study. Substitution to glutamic acid in either NLSs decreased the binding with
karyopherin-al by ~ 50%; however, substitution of both NLSs showed no binding, and HMGB1 was relocated to the cytoplasm
and subsequently secreted. These data support the hypothesis that HMGB1 could be phosphorylated and that the direction of

transport is regulated by phosphorylation of both NLS regions. The Journal of Immunology, 2006, 177: 7889-7897.

igh mobility group box 1 (HMGBI1)® protein, a highly
H conserved ubiquitous protein, was first purified almost

30 years ago as a nuclear protein (1). HMGBI is in-
volved in nucleosome stabilization and gene transcription (2) and
can also localize to the cell membrane of neurites for outgrowth (3)
and to the cell membranes of tumor cells for metastasis (4).
HMGBI is passively released by necrotic cells, though not by
apoptotic cells, and triggers inflammation (5). HMGBI1 also func-
tions as a late mediator of endotoxemia, sepsis, and hemorrhagic
shock in animals and human patients (6—8). Specific inhibition of
endogenous HMGB1 with HMGB1 antagonists could reverse the
lethality of established sepsis (9). HMGBI is released from acti-
vated monocytes and macrophages (6, 10) and NK cells (11) and
behaves as a proinflammatory cytokine. Exposure to HMGB1
leads to various cellular responses, including the chemotactic cell
movement of smooth muscle cells and monocytes (12, 13) and the
release of proinflammatory cytokines such as TNF-a, IL-1, IL-6,
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and IL-8 (14). Furthermore, when NK cells are in close physical
contact with immature dendritic cells (DCs), the immature DCs
produce IL-18 that causes NK cells to produce HMGB1. HMGB]1,
in turn, causes DC maturation and Thl polarization, events that
initiate the adaptive immune responses (11, 15).

HMGBI1 contains two homologous DNA-binding motifs (HMG
boxes A and B) and an acidic tail (16). It also contains two nuclear
localization signals (NLSs) and two putative nuclear export signals
(10), demonstrating that HMGB1 shuttles between the nucleus and
the cytoplasm through a tightly controlled mechanism. In activated
monocytes HMGB1 is hyperacetylated and relocated from the nu-
cleus to the cytoplasm for exocytosis, and this is mediated by the
nuclear exportin, chromosome region maintenance 1 (CRM1) (10,
17). No evidence of phosphorylation, methylation, or glycosyla-
tion has previously been found in HMGB1 from the calf thymus,
mouse thymus, or activated human monocytes (10). Phosphoryla-
tion of several plant HMG family proteins has been seen and re-
ported to modulate the stability and DNA binding of these proteins
(18, 19). Moreover, phosphorylation of NLSs in many proteins
influences their binding to nuclear import proteins and conse-
quently increases (20) or decreases (21) their nuclear accumula-
tion, suggesting that phosphorylation of HMGB1 also may affect
its nuclear transport. Considering that positively charged residues
are abundant in NLSs and are necessary for binding to nuclear
importin proteins such as the karyopherins (KAPs) (22), the
change in the charge of HMGB1 NLSs that results from phosphor-
ylation may disrupt the interaction of HMGB1 with the nuclear
importin. However, the effect of phosphorylation of HMGB1 on its
nuclear import has not been previously shown.

The present study shows that HMGB1 was phosphorylated in ac-
tivated RAW 264.7 cells by TNF-q;, a proinflammatory stimulus, and
okadaic acid (OA), a phosphatase inhibitor. In addition, phosphory-
lation of HMGB1 at both NLSs was found to influence its nuclear
import in a nuclear import assay and its immunoprecipitation with a
nuclear cargo carrier protein, KAP-al, which was found to bind
HMGBI in this study. Finally, HMGB1 showed reduced binding to
KAP-a1 in a phosphorylation-dependent manner.
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Materials and Methods

Cell culture

Murine macrophage RAW 264.7 cells (American Type Culture Collection)
and HeLa cells were cultured at 37°C under 5% CO, in DMEM supple-
mented with 10% FBS (Invitrogen Life Technologies), 100 U/ml penicil-
lin, 100 wg/ml streptomycin, and 2 mM L-glutamine. Human peripheral
blood monocytes (PBMo) were harvested from the adhesive cells on the
culture flask by Ficoll-Hypaque gradient centrifugation after yielding
PBMC. Human recombinant TNF-a (R&D Systems), OA (Calbiochem),
trichostatin A (TSA; Sigma-Aldrich), and cycloheximide (CHX; Sigma-
Aldrich) were purchased.

Western blot analysis

To analyze the secretion of HMGBI1 in the supernatants, culture media
were replaced with serum-free OPTI-MEM (Invitrogen Life Technologies)
medium and concentrated with Amicon Centricon filtration (Millipore) af-
ter removing cell debris, and Western blot analysis was performed. The
cytoplasmic and nuclear fractions from 5 X 10° cells were separated using
a digitonin-based method (23) to observe the levels of HMGBI in each
fraction. The cells were lysed using 1% Nonidet P-40 buffer containing a
protease inhibitor mixture (Sigma-Aldrich), and the protein concentrations
were measured by Bradford assay (Bio-Rad) for the analysis of whole cell
lysates (WCLs). The protein samples underwent 12% SDS-PAGE and
were transferred to a nitrocellulose membrane. Western blot analysis was
performed using rabbit anti-HMGB1 (BD Pharmingen) and HRP-labeled
goat anti-rabbit Ig as primary and secondary Abs, respectively. The signals
were revealed with ECL (Pierce).

Immunoprecipitation

To identify the phosphorylated residues of the HMGB1 protein, TNF-a-
treated RAW 264.7 cells were lysed with a protease inhibitor mixture. Cell
homogenates were centrifuged at 20,000 X g for 15 min and precleared by
incubation with protein G-Sepharose (Amersham Biosciences) at 4°C for
30 min. The precleared extracts (500 ug) were incubated with rabbit poly-
clonal anti-phosphoserine, anti-phosphotyrosine, and anti-phosphothreonine
(all from Chemicon) and then protein G-Sepharose was added and incubated
for 3 h at 4°C. Immune complexes were collected by centrifugation and
washed with lysis buffer. Collected complexes were fractionated by SDS-
PAGE, transferred to membranes, and blotted with anti-HMGB1 for detection.
Anti-pAKT (Cell Signaling Technology) was used as a negative control. To
investigate the time-dependent phosphorylation of HMGBI, the WCLs of
RAW 264.7 cells treated with TNF-« for the indicated time were immuno-
precipitated with anti-HMGBI and subjected to Western blot analysis using
anti-phosphoserine.

Immunofluorescence and GFP imaging

Cells were cultured in LabTek II chambers (Nalgene) and fixed in 3.7%
paraformaldehyde in PHEM buffer (60 mM PIPES, 25 mM HEPES, 10
mM EGTA, and 4 mM MgSO, (pH 7.0)) for 10 min at room temperature.
After fixation, the cells were washed with PBS and incubated for 3 min at
4°C with HEPES-based permeabilization buffer containing 300 mM su-
crose and 0.2% Triton X-100. The cells were blocked with 0.2% BSA in
PBS for 15 min and incubated with rabbit anti-HMGBI for 1 h at room
temperature. After three washes with blocking solution, secondary Ab
FITC-conjugated goat anti-rabbit Ig (BD Pharmingen) was added. Cells
expressing various HMGB1-enhanced GFP (EGFP) proteins were stained
with 4',6-diamidino-3-phenylindole and observed with a BX51 fluorescent
microscope (Olympus). Cells expressing HMGB1-EGFP and its deriva-
tives were fixed as described above.

Nuclear import assay in digitonin-permeabilized cells

Nuclear import assays were performed with minor modification as previ-
ously described (24). Briefly, the HeLa cell cytosol was first prepared. For
this, HeLa cells at a density of 5 X 10° cells/ml were harvested and washed
twice in ice-cold PBS and once in washing buffer (10 mM HEPES (pH
7.3), 110 mM KOAc, 2 mM Mg(OAc),, and 2 mM DTT). They were then
homogenized with hypotonic lysis buffer (5 mM HEPES (pH 7.3), 10 mM
KOAc, 2 mM Mg(OAc),, 2 mM DTT, 20 uM cytochalasin B, 1 mM
PMSF, and 1 pg/ml leupeptin, pepstatin, and aprotinin, each). The super-
natants were sequentially centrifuged at 1,500 X g for 15 min, 15,000 X
g for 20 min, and 100,000 X g for 1 h, dialyzed against transport buffer
(TB; 20 mM HEPES (pH 7.3), 110 mM KOAc, 2 mM Mg(OAc),, 5 mM
NaOAc, | mM EGTA, 2 mM DTT, and | ug/ml leupeptin, pepstatin,
and aprotinin, each), and frozen in aliquots in liquid nitrogen before
storage at —80°C.

HMGB1 PHOSPHORYLATION AND NUCLEAR TRANSPORT

For the assays, HeLa cells were washed in TB and permeabilized for 5
min on ice in TB containing 40 wg/ml digitonin. The cells were rinsed for
5-10 min with several changes of TB, and the excess buffer was removed.
The cells were incubated with transport mixture for 1 h at 22°C. The
transport mixture contained HeLa cell cytosol at a final concentration of 2
mg/ml, which was preincubated for 30 min at room temperature with an
ATP-regenerating system (1 mM ATP, 5 mM creatine phosphate, 20 U/ml
creatine phosphokinase, and 0.5 mM GTP) either with or without 10 uM
OA, and with 30 ug/ml each substrate. The cells were fixed with 3.7%
formaldehyde for 10 min and immediately examined by fluorescent
microscope.

DNA constructs and mutagenesis

The gene encoding human HMGB1 was cloned upstream of EGFP in
pEGFP-N1 (BD Clontech), and the construct was named pHMGB 1-EGFP-
N1. For the recombinant HMGBI1-EGFP protein, a Sacl/Notl fragment
from pHMGB1-EGFP-N1 was subcloned into pET-28a (Novagen). Hise-
tagged HMGB I-EGFP, GST-EGFP, and EGFP proteins were produced in
Escherichia coli BL21(DE3) pLysE (Novagen). The cells transformed with
each construct were grown in Luria-Bertani medium containing kanamycin
(15 pg/ml) and chloramphenicol (34 ug/ml) to an ODgq, of 0.4-0.5 at
37°C, cooled to 25°C, induced with 0.1 mM isopropyl-B3-p—thiogalactopy-
ranoside, and grown overnight at 25°C. The cells were lysed by sonication,
and the clear lysate was loaded onto a Ni’*-NTA column. The bound
protein was washed with 50 mM NaH,PO, 300 mM NaCl, and 20 mM
imidazole (pH 8) and was eluted in the same buffer supplemented with 200
mM imidazole. All proteins were dialyzed into TB and stored at —80°C.

Site-directed mutations of HMGB1 were generated from pHMGBI-
EGFP-NI1 as a template using the QuikChange site-directed mutagenesis kit
(Stratagene). Six serines were partially or completely mutated into alanine or
glutamic acid. Each HMGB1-EGFP mutation was depicted in Fig. 5A.

Human KAPs were cloned into BamHI/Xhol (KAP-al, -a2, -a4, and
-a6), EcoR1/Xhol (KAP-a3 and -a5), or BamHI/Notl (KAP-B1) sites of
PGEX-4T-1 (Pharmacia) to produce GST fusion proteins. KAP-al (GenPeptide
Protein Database accession no. AAC60648), KAP-a2 (GenPeptide Pro-
tein Database accession no. AAA65700), KAP-a3 (GenPeptide Protein Da-
tabase accession no. AAH17355), KAP-a4 (GenPeptide Protein Database ac-
cession no. AAC25605), KAP-a5 (GenPeptide Protein Database accession
no. AAH47409), KAP-a6 (GenPeptide Protein Database accession no.
AACI15233), and KAP-B1 (GenPeptide Protein Database accession no.
AAH03572) were prepared from PCR amplifications of oligo(dT)-selected,
HeLa cell-derived cDNA. The primers were as follows: KAP-al, 5'-CGCG
GATCCATGACCACCCCAGGAAAAGAGAAC-3' (forward) and 5'-CCG
CTCGAGAAGCTGGAAACCTTCCATAGGAGC-3" (reverse); KAP-a2,
5'-CGCGGATCCATGTCCACCAACGAGAATGCTAATAC-3" (forward)
and 5'-CCGCTCGAGAAAGTTAAAGGTCCCAGGAGCCCCAT-3" (re-
verse); KAP-a3, 5'-CCGGAATTCATGGCCGAGAACCCCAGCTTGGA
G-3' (forward) and 5'-CCGCTCGAGAAAATTAAATTCTTTTGTTTGAA
GGTTGGC-3' (reverse); KAP-a4, 5'-CGCGGATCCATGGCGGACAACG
AGAAACTGGAC-3' (forward) and 5'-CCGCTCGAGAAACTGGAACCC
TTCTGTTGTACA-3' (reverse); KAP-a5, 5'-CCGGAATTCATGGATGCC
ATGGCTAGTCCAGGG-3' (forward) and 5'-CCGCTCGAGAAGTTGAAA
TCCATCCATTGGTGCTTC-3" (reverse); KAP-a6, 5'-CGCGGATCCATG
GAGACCATGGCGAGCCCAGGG-3' (forward) and 5'-CCGCTCGAGTA
GCTGGAAGCCCTCCATGGGGGCC-3' (reverse); and KAP-B1, 5'-CGCG
GATCCATGGAGCTGATCACCATTCTCGAGAAGACC-3' (forward) and
5'-ATAAGAATGCGGCCGCAGCTTGGTTGTTGACTTTGGTCAGTTCT
TTTG-3' (reverse). The nucleotide sequences of restriction enzyme sites are
underlined. The GST-KAP fusion proteins were produced in E. coli BL21.
Cells were harvested and disrupted by sonication in lysis buffer with 1% Triton
X-100, 10% glycerol, 1 mM EDTA, 1 mM DTT, and a protease inhibitor mix
(1 pg/ml leupeptin, pepstatin, and aprotinin and 1 mM PMSF) (Sigma-
Aldrich) in PBS. After centrifugation, the supernatants were incubated with
glutathione-Sepharose at 4°C. Bound proteins were eluted by incubation at
room temperature for 30 min with 10 mM reduced glutathione. SDS-PAGE
analysis of each eluted GST-KAP protein revealed a major protein band with
the predicted molecular size. For the transfection study, Flag-tagged KAP-a1
was cloned into pCMV-Tag2 (Stratagene). All constructs were confirmed by
DNA sequencing (Applied Biosystems). FUGENE 6 (Roche) was used for the
transfection study.

Interaction between KAP protein and HMGBI1 mutant proteins

Two micrograms of each GST-KAP protein was coupled to glutathione-
Sepharose 4B beads and incubated with 500 ug of WCL from RAW 264.7
cells as a HMGBI source at 4°C overnight. WCLs were obtained after
incubating cells in lysis buffer (50 mM HEPES (pH 7.4), 150 mM NacCl,
1.5 mM MgCl,, 10% glycerol, 1% Nonidet P-40, 1 mM EDTA, 50 mM
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FIGURE 1.

HMGB1
(Culture sup)

HMGBI is phosphorylated by TNF-a or OA treatment in RAW 264.7 cells. A, RAW 264.7 cells were treated with TNF-a (20 ng/ml for

16 h) or OA (100 nM for 8 h). The nuclear (Nu) and cytoplasmic (Cyt) proteins were separated and blotted with anti-HMGB1. B, Metabolic **P-labeling
of HMGBI1 in RAW 264.7 cells. RAW 264.7 cells were metabolically labeled with [*?P]orthophosphate for 4 h and stimulated with OA (100 nM) for 2 h
and with TNF-a (20 ng/ml) and LPS (100 ng/ml) for 8 h. WCLs were immunoprecipitated with rabbit anti-HMGBI1 from two different vendors, BD
PharMingen (BD) and Upstate Biotechnology (UP). The proteins were resolved and visualized by autoradiography. C, RAW 264.7 cells were treated with
TNF-«, and WCLs were immunoprecipitated (IP) with anti-phosphoserine (pSer), anti-phosphotyrosine (pTyr), and anti-phosphothreonine (pThr) and
blotted with anti-HMGB 1. WCL was loaded as an HMGBI1 control (lane 1). Anti-phosphorylated AKT (pAKT) was used for a control Ab (lane 3). D, RAW
264.7 cells were treated with TNF-« for the indicated length of time. WCLs were immunoprecipitated with anti-HMGB1, immunoblotted (IB) with
anti-phosphoserine, and reblotted with anti-HMGB1. The same culture supernatants were concentrated, separated, and blotted with anti-HMGBI1.

NaF, 1 mM sodium orthovanadate, 1 mM DTT, 1 mM PMSF, 10 pg/ml
aprotinin, 10 ug/ml leupeptin, and 10 ug/ml pepstatin) for 30 min on ice.
Extracts were clarified by centrifugation at 20,000 X g for 15 min at 4°C.
GST complexes were washed and separated by 12% SDS-PAGE. The blots
were probed with anti-HMGBI1 and the signals were revealed by ECL
detection as described above.

To observe the binding of KAP protein to each mutant HMGBI1 in the
cells, Flag-tagged KAP-a1 and each mutant HMGB 1-GFP plasmid were
cotransfected into RAW 264.7 cells. Cell homogenates of transfected
RAW 264.7 cells were harvested and incubated with M2 mouse anti-Flag
(Sigma-Aldrich) and mouse anti-GFP (Santa Cruz Biotechnology) at 4°C
overnight. Immune complexes were collected and the membranes were
blotted with anti-Flag and anti-GFP, respectively. The reciprocal experi-
ment was also performed. GST was used as a negative control, and to test
the direct binding of HMGBI1 to KAP-al, a GST pull-down assay was
performed. For this study, His¢-tagged wild-type HMGB1 and boxes A (aa
1-79) and B (aa 88-162) of HMGBI1 were cloned into pRSETB (Invitro-
gen Life Technologies) and purified proteins were included in this test. The
recombinant protein of HMGB1 was incubated with GST-KAP-al (10
ng), which was coupled to glutathione-Sepharose 4B beads. After sepa-
rating on the gel, the membrane was probed with anti-His and reprobed
with anti-GST.

Metabolic labeling

RAW 264.7 cells were cultured in phosphate-free DMEM containing 10%
dialyzed FBS (Invitrogen Life Technologies) for 4 h and further incubated
for 4 h by adding 600 uCi of [**P]orthophosphate (Amersham Biosciences)
per milliliter to each dish. After 4 h the cells were stimulated with 100 nM
OA for 2 h and 100 ng/ml LPS and 20 ng/ml TNF-« for 8 h. The labeling
was terminated by removing the culture medium followed by two imme-
diate washes of the cells with ice-cold PBS. The cells were harvested by
scrapping in 0.8 ml of lysis buffer (50 mM Tris (pH 7.5), 150 mM NaCl,
2 mM EDTA, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 50
mM NaF, 10 mM sodium pyrophosphate, 25 mM (B-glycerophosphate, 1
mM sodium orthovanadate, 1 mM DTT, 10 wg/ml aprotinin, 10 wg/ml
leupeptin, 5 ug/ml pepstatin, and 0.5 mM PMSF) and centrifuged at
21,000 X g for 20 min at 4°C. The concentration of total soluble proteins
in the supernatant was quantified. Precleared lysates were incubated with 2
ng/ml rabbit anti-HMGB1 from two different companies (BD Pharmingen
and Upstate Biotechnology) for 2 h at 4°C. Following the addition of pro-
tein G-Sepharose, the tubes were rocked for an additional 1 h and beads
were washed 10 times with lysis buffer without SDS. Proteins were eluted

in Laemmli sample buffer and separated. The gels were dried and the ra-
dioactivity was analyzed by autoradiography.

To observe the phosphorylation of the HMGB1 mutant plasmid, RAW
264.7 cells were transfected with 10 ug each of the wild-type HMGB1-
EGFP and HMGB1 NLS1/2A-GFP plasmids (Fig. 5A) and incubated for
24 h. The cells were added with [*?PJorthophosphate and stimulated with
100 ng/ml LPS for another 8 h. WCLs were immunoprecipitated with
anti-GFP and resolved for autoradiography.

Results
HMGBI serine residues are phosphorylated by TNF-a and OA
treatments

To investigate whether HMGB1 is phosphorylated and how its
phosphorylation influences its nuclear transport, RAW 264.7 cells
were treated with OA, a type 1/2A protein phosphatase inhibitor
(25), to induce phosphorylation of HMGB1. OA was used at a low
concentration of 100 nM for 8 h or less to minimize the nuclear
leakage of HMGBI1 and to block entry into the cell cycle (26).
Treatment with TNF-« as a positive control cytokine resulted in
the translocation of nuclear HMGBI1 to the cytoplasm (Fig. 1A,
upper panel), confirming previous reports (17, 27). Treatment of
cells with OA also resulted in increased levels of HMGBI in the
cytoplasm (Fig. 1A, lower panel) similar to that seen with TNF-
a-treated cells, suggesting that phosphorylation of HMGB1 is pos-
sibly related to its relocation.

Next, to demonstrate the direct evidence of HMGB1 phosphor-
ylation, RAW 264.7 cells were labeled with [**P]orthophosphate
and stimulated with 100 nM OA, 20 ng/ml TNF-«, and 100 ng/ml
LPS, and the WCLs were immunoprecipitated with anti-HMGB1
for autoradiography. We used rabbit anti-HMGB1 from two dif-
ferent vendors for confirmation. HMGB1 was phosphorylated by
OA, TNF-a, and LPS treatments (Fig. 1B), and we confirmed the
phosphorylation of HMGB1 in LPS-treated RAW 264.7 cells,
which were transfected with a HMGB1-GFP plasmid and meta-
bolically labeled (Fig. 5B).
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FIGURE 2. Effect of HMGBI1 phosphorylation on its location in RAW 264.7 cells and human PBMo cells. A and B, RAW 264.7 cells (A) and human
PBMo cells (B) were treated with OA (100 nM for 8 h), and immunofluorescent staining was performed to observe the HMGB 1. TNF-« (20 ng/ml for 16 h)
was used as a positive control cytokine. HMGB1 was exclusively observed in the nuclei of the unstimulated (Medium) RAW 264.7 and PBMo cells but
moved to the cytoplasm after OA treatment. C, Western blot analysis of the HMGB1 protein in the culture supernatants of PBMo cells, which were from
B. D, HMGBI in the nucleus is transported to the cytoplasm by phosphorylation. RAW 264.7 cells were transfected with a wild-type HMGB 1-GFP plasmid
and cultured for 24 h, and then the cells were treated with 2 pg/ml CHX for 1 h followed by OA treatment for 4 h or by TSA treatment for 2 h and green

fluorescent images were observed. Bar, 10 wm.

To determine which amino acid residue of HMGB1 is phosphor-
ylated, RAW 264.7 cells were treated with 20 ng/ml TNF-« for 16 h.
WCLs from treated cells were immunoprecipitated with anti-
phosphoserine, anti-phosphotyrosine, and anti-phosphothreonine Abs,
separated, and immunoblotted with anti-HMGB1. Only serine resi-
dues of HMGB1 were phosphorylated by TNF-« treatment (Fig. 1C).

Next, to observe HMGBI1 secretion, RAW 264.7 cells were
treated with TNF-« for the indicated length of time and the culture
supernatants were harvested and concentrated. WCLs were immu-
noprecipitated with anti-HMGB1 and then immunoblotted with
anti-phosphoserine. The levels of HMGB1 were nearly constant
within whole cells but increased in the culture supernatants (Fig.
1D, middle and lower panels), confirming previous reports of time-
dependent secretion of HMGB1 (6, 27, 28). The level of phos-
phorylated HMGB1 also increased after TNF-a treatment in a
time-dependent manner (Fig. 1D, upper panel).

Phosphorylated HMGBI is relocated toward secretion

To further examine the effect of phosphorylation on the relocation
of HMGBI1, RAW 264.7 cells were treated with OA and indirect
immunofluorescent staining was performed. HMGB1 was mostly
observed in the nuclei of unstimulated RAW 264.7 cells (Fig. 2A).
When the cells were treated with OA for 8 h, HMGB1 was ob-
served in both the nucleus and the cytoplasm, which was similar to
that seen in TNF-a-treated cells (Fig. 2A). Relocation of HMGB1
after OA treatment was also clearly observed in freshly isolated
human PBMo cells (Fig. 2B). In addition, HMGB1 was detected
in the culture supernatants of PBMo cells after OA treatment
(Fig. 2C), suggesting the relation of HMGB1 secretion to its
phosphorylation.

To exclude the possibility of HMGB1 presence in the cytoplasm
due to new protein synthesis, HMGB1 relocation was directly ob-
served using a HMGB-GFP plasmid after treatment with CHX, an
inhibitor of new protein synthesis. RAW 264.7 cells were trans-
fected with wild-type HMGB1-GFP plasmid, incubated for 24 h,
and then treated with 2 pwg/ml CHX. One hour after CHX treat-
ment, OA was added for 4 h in the presence of CHX. We also
treated the cells with TSA, a histone deacetylase inhibitor, for 2 h
as a positive control because hyperacetylated HMGB1 has been

shown to relocate from the nucleus to the cytoplasm (10). As
shown in Fig. 2D, the HMGB1-GFP protein, which was mostly
observed in the nuclei of the cells 24 h after transfection, was
relocated to the cytoplasm after OA treatment in the presence of
CHX. This result suggests that the HMGB1 observed in the cyto-
plasm after phosphorylation is not due to new protein synthesis but
is caused by the relocation of existing proteins inside the nucleus.

Phosphorylated HMGBI in the cytoplasm does not enter the
nucleus

HMGBI1 can traverse the nuclear membrane in both directions.
However, HMGB1 molecules are predominantly in the nucleus in
an unstimulated state, indicating that import is much more effec-
tive than export (10). To further demonstrate whether phosphory-
lation influences nuclear import of HMGB1, a nuclear import as-
say was performed using a digitonin-permeabilized HeLa cell-free
transport system (24). Digitonin-permeabilized cells have perfo-
rated plasma membranes, which release cytosolic components
from cells while the nuclear envelope and other major organelle
membranes remain intact. As a source of exogenous HMGB1 pro-
tein, recombinant HMGB 1-GFP protein was purified from E. coli
(Fig. 3A). GST-GFP was prepared as a control protein.
HMGB1-GFP was observed in the nuclei of digitonin-treated
HeLa cells when the cells were incubated for 1 h with a transport
mixture that contained HMGB1-GFP but not OA, suggesting that
HMGB1-GFP entered the nucleus by a default pathway (Fig. 3B,
upper left panel). When the cells were incubated with a HMGB1-
GFP-containing transport mixture that included OA, HMGBI1-
GFP remained in the cytoplasm (Fig. 3B, upper right panel).
Meanwhile, the GST-GFP protein did not enter the nucleus re-
gardless of whether the transport mixture was treated with OA or
not (Fig. 3B, middle panels). Unfused GFP was distributed
throughout the cells (Fig. 3B, lower panels), which is a well-
known observation. These results show that HMGB1 once ex-
ported to the cytoplasm after phosphorylation or the phosphoryla-
tion of HMGBI1 occurring in the cytoplasm prevented its nuclear
import and plays a critical role in localizing HMGBI to the cyto-
plasm. Although GST has no NLS and thus remains in the cyto-
plasm regardless of its phosphorylation state, HMGB1 has two
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FIGURE 3. Nuclear import assay of HMGB1. A, Western blot analysis
of His-tagged HMGBI1-GFP, GST-GFP, and GFP proteins. Hisg-tagged
HMGB1-GFP protein was expressed in E. coli BL21 (DE3) pLysE for a
nuclear import assay. These proteins were purified using a Ni>*-NTA col-
umn and blotted with anti-GFP. Each protein was observed at the predicted
size. B, Nuclear import assay of HMGB1. HeLa cells were permeabilized
with digitonin and incubated for 1 h at 22°C with the complete transport
mixture. The transport mixture contained recombinant import protein and
HeLa cell-derived cytosol, which was preincubated with an ATP-regener-
ating system in the presence or absence of OA. The cells were fixed and
immediately observed by fluorescent microscopy. Bar, 10 um.

NLSs for nuclear import (10). Therefore, the phosphorylation of
HMGBI at regions close to both NLSs may possibly play an im-
portant role in the controlled shuttling mechanism of HMGBI.

HMGBI binds to KAP-al, and phosphorylation of HMGBI1
decreases its binding to KAP-al

To investigate whether phosphorylation prevents HMGBI1 from
interacting with a nuclear import protein, we first determined
which KAP protein is involved in binding with HMGBI1 as its
cargo protein and then observed the interaction of phosphorylated
HMGBI1 with the KAP protein. KAP family proteins act as shut-
tling receptors and specifically bind NLS motifs of cargo proteins
to facilitate their nuclear import (29). For this study, the GST-KAP
fusion proteins al, a2, a3, a4, a5, a6, and 31 were produced in
E. coli. GST-KAP-S1 was included because some proteins directly
bind KAP-1 for their nuclear transport (30). For an in vitro pro-
tein-protein interaction study, WCLs of unstimulated RAW 264.7
cells, a source of unphosphorylated HMGB1, were incubated with
each GST-KAP fusion protein that was bound to glutathione-
Sepharose beads. KAP-al was identified as the carrier protein for
HMGBI (Fig. 4A).

We then tested the direct binding of recombinant HMGBI1 pro-
tein to KAP-al to exclude the possibility that other HMGB1-in-
teracting proteins present in cell lysates could have a role in bind-
ing. A purified Hisq-tagged wild-type HMGB1 protein and box A
(aa 1-79) and box B (aa 88-162) proteins, which were identified
at expected sizes by Coomassie blue staining (Fig. 4B, left panel),
were purified from E. coli BL21. The same molar amounts of the
wild and truncated forms of HMGB1 were added to GST-KAP-al,
and a GST pull-down assay was performed. Only wild-type
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FIGURE 4. The binding of HMGBI to nuclear import proteins. A, GST-
KAP-al, -a2, -a3, -a4, -a5, -a6, and -B1 fusion proteins immobilized on
glutathione-Sepharose 4B beads were incubated with WCLs of RAW 264.7
cells overnight at 4°C. Sepharose-bound proteins were separated and the
membrane was immunoblotted (IB) with anti-HMGB1 and reblotted (Re-
blot) with anti-GST. WCL was loaded as an HMGBI1 control (lane 1), and
GST protein was used negative control (lane 2). B, Hisg-tagged wild-type
(WT) HMGBI1 and boxes A (aa 1-79) and B (aa 88-162) HMGBI1 proteins
were purified from E. coli BL21 and identified at the expected size by
Coomassie blue staining. HMGB1 and GST-KAP-al was incubated and
the precipitate was blotted with anti-His for HMGB1 and reblotted with
anti-GST for KAP-al. C, GST-KAP-al, immobilized on glutathione-
Sepharose beads, was incubated with WCLs of RAW 264.7 cells that were
treated with OA, TSA, or TNF-a. The precipitates were blotted with anti-
HMGBI and reblotted with anti-GST.

HMGBI1 was found to bind GST-KAP-al (Fig. 4B, right panel),
showing the direct binding of HMGB1 to KAP-al without any
other interacting proteins. Box A and box B proteins, which in-
clude NLS1 (aa 28—-44) and do not include a NLS, respectively,
showed no binding.

We next tested the binding of phosphorylated HMGB1 to the
KAP-al protein. When the binding of an OA-treated RAW 264.7
cell lysate to KAP-al was tested the interaction was not observed,
whereas the binding of a medium-treated RAW 264.7 cell lysate to
KAP-al was clearly seen (Fig. 4C). This result demonstrates that
phosphorylation of HMGB1 is one of important modifications that
decrease its nuclear import by reducing the binding to KAP-al.
Acetylated HMGBI1 from a TSA-treated RAW 264.7 cell lysate
also showed no binding to KAP-a1, implying that the re-entry of
acetylated HMGBI to the nucleus is blocked because of an inter-
ruption in the binding to KAP-«a1.

The effect of phosphorylation of both NLS regions of HUGBI
on the binding to KAP-al

Because HMGB1 was phosphorylated in serine residues (Fig. 1C),
we hypothesized that serine phosphorylation close to either or both
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FIGURE 5. The effect of phosphorylation of HMGBI1 on binding to KAP-al. A, Schematic presentation of mutated HMGB1-GFPs. Six serines were
point-mutated into alanine (A) or glutamic acid (E). The first gray box (aa 28—53) contains NLS1 (dot box) and the adjacent serine-containing region, and
another gray box (aa 179-185) is NLS2. Boxes A and B, the acidic tail, and the amino acid numbers are marked. WT, Wild type. B, RAW 264.7 cells
were transfected with wild-type HMGB1-GFP and HMGB1 NLS1/2A plasmid and metabolically labeled with [**PJorthophosphate as described in Ma-
terials and Methods. The cells were stimulated with 100 ng/ml LPS for 8 h and immunoprecipitated with anti-GFP. The proteins were resolved and
visualized by autoradiography. A GFP plasmid was used as a negative control. GFP is not phosphorylated and nonspecifically observed at the possible
position of the asterisk. C, RAW 264.7 cells were cotransfected with Flag-tagged KAP-a1 and each HMGB 1-GFP mutant plasmid. After 24 h, WCLs were
prepared, immunoprecipitated (IP) with anti-GFP, and subjected to Western blotting. The membranes were immunoblotted (IB) with anti-Flag and reblotted
with anti-GFP. Flag-KAP-al levels were observed to determine whether equal amounts of WCLs were loaded. D, The reciprocal experiments were also
performed. The m.w. of HMGB1-GFP is similar to that of the Ig H (Igh) chain, and the bands are located just below the IgH chain bands.

NLSs is crucial for its relocation. There are 11 serines throughout
HMGBI1. Among them, four serines are at 35, 39, 42, and 46 within
NLS1, and one is at position 181 within NLS2. The NetPhos 2.0
program ((www.cbs.dtu.dk/services/NetPhos/)) predicts six serines as
the possible phosphorylation sites: the above-mentioned five serines
within NLS1 and NLS2 and one more serine at position 53 close to
NLSI1. To observe whether these six serines are mainly involved in
phosphorylation, RAW 264.7 cells were transfected with a wild-type
HMGBI1-GFP plasmid and a HMGB1 NLS1/2A-GFP plasmid (Fig.
5A) for metabolic labeling. Wild-type HMGB1-GFP was strongly
phosphorylated; however, HMGB1 NLS1/2A showed a near back-
ground level of phosphorylation, which was similar to that of GFP
when transfected with a GFP plasmid (Fig. 5B). This result suggests
that the above-mentioned six serines are the major phosphorylation
sites of HMGBI.

To observe the effect of phosphorylation in both NLS regions of
HMGBI1 on the binding to KAP-a1 and on the subcellular local-
ization of HMGBI in transfected cells, a number of site-directed
mutations of six serines of NLS1 and NLS2 were generated using
a HMGB1-GFP fusion construct plasmid (Fig. 5A). Serines 35, 39,
42, 46, and 53 within or close to NLS1 and serine 181 within
NLS2 were partially or completely mutated into alanine or glu-
tamic acid. Substitution with alanine and glutamic acid simulated
an unphosphorylated and a phosphorylated state, respectively (31).
RAW 264.7 cells were cotransfected with a Flag-tagged
KAP-a1 plasmid and with each mutant HMGB1-GFP plasmid,
and immunoprecipitates using anti-GFP for HMGB1 or anti-
Flag for KAP-al were analyzed. As shown in Fig. 5, C and D,
the interactions of HMGB1 NLS1A, NLS2A, and NLS1/2A
with KAP-al were similar or slightly decreased as compared
with wild-type HMGB1 NLS. Those of HMGB1 NLSIE and
NLS2E, which mimicked phosphorylation in either NLS region,
were significantly decreased to ~50% of wild type. HMGB1
was predominantly observed in the nucleus after transfection
(Fig. 6A), possibly suggesting a slow entrance to the nucleus.
However, HMGB1 NLS1/2E showed no binding to KAP-al.

These results suggest that phosphorylation at either or both
NLSs of HMGBI1 differentially reduces the binding to KAP-al
and has a significant impact on the nuclear import of HMGB1.

Phosphorylation of both NLS regions of HMGBI is required for
its relocation to the cytoplasm

We also investigated the subcellular localization of HMGBI1 de-
pending on the state of HMGB1 phosphorylation at either or both
NLSs. RAW 264.7 cells were transfected with each mutant
HMGB1-GFP plasmid and cultured for 24 h without any stimula-
tion. The mutant fusion proteins from the HMGB1 NLSIA,
NLS2A, NLS1/2A, NLS1E, and NLS2E constructs, which showed
at least ~50% of interaction with KAP-al as compared with wild-
type HMGBI1, were localized to the nuclei 24 h after transfection
(Fig. 6A). HMGB1 NLS1/2E, mimicking phosphorylation at both
NLSs, however, was located in the cytoplasm. When the same
culture supernatants were harvested to observe secreted HMGB1-
GFP, HMGB1-GFP was detected only in HMGB1 NLS1/2E-trans-
fected cells (Fig. 6E). These data strongly suggest that the con-
comitant change to the phosphorylated state at both NLSs is
important for the cytoplasmic localization and subsequent secre-
tion of HMGB1. When the transfection study was conducted using
a nonmyeloid HeLa cell line, similar results were also obtained
(data not shown).

Next, RAW 264.7 cells were treated with OA 24 h after each
transfection to further investigate the effect of change in the phos-
phorylation state upon HMGBI1 relocation. Wild-type HMGB1
NLS, NLS1E, and NLS2E were relocalized to the cytoplasm after
OA treatment, whereas HMGB1 NLS1A, NLS2A, and NLS1/2A
were unaffected and remained in the nucleus (Fig. 68). HMGB1
NLS1A, NLS2A, and NLS1/2A remained in unphosphorylated
states at either or both NLS regions even after OA treatment.
Hence, HMGBI relocation to the cytoplasm is induced by phos-
phorylation of both NLS regions. When RAW 264.7 cells were
treated with TSA, which induces forced acetylation of HMGB1
regardless of serine phosphorylation, the wild-type and all mutant
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FIGURE 6. Mutation of HMGB1 NLS sites
alters subcellular distribution of HMGB1. A, RAW
264.7 cells were transfected with wild-type (WT)
and each mutant HMGB1-GFP plasmid and im-
munofluorescent assays were performed 24 h later
without any treatment. B, C, and D, OA (100 nM
for 4 h) (B), TSA (10 ng/ml for 2 h) (C), and
TNF-a (20 ng/ml for 16 h) (D) were applied 24 h
after transfection to observe the effect on HMGBI1
nuclear export by phosphorylation, acetylation, or
both. Some cells showed no GFP, implying no
transfection. E, Western blot analysis of HMGB1-
GFP protein in the culture supernatants, which
were from A. The membrane was blotted with anti-
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HMGBI1-GFPs showed cytoplasmic relocation (Fig. 6C) as ex-
pected (10). The same results were observed in TNF-a-treated
cells (Fig. 6D). Proinflammatory signaling pathways via TNF-«
have an impact on enzymes responsible for acetylation/deacetyla-
tion (10) and also on those responsible for phosphorylation, ac-
cording to our data. These results show that, in addition to acety-
lation, the phosphorylation of both NLS regions of HMGBI is
involved in the cytoplasmic relocation and its eventual secretion.

Discussion

HMGBI is released from necrotic cells and acts as one of the
endogenous danger signals (15). Activated monocytes and macro-
phages can also secrete HMGB1 in the absence of cell death. Mac-
rophages and monocytes play a central role in coordinating in-
flammation. TNF-a or IL-1 can stimulate the production of
HMGBI (6), and HMGBI1 also induces the production of TNF-«
and IL-1 (14). HMGBI1 is an important mediator of DC maturation
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and Th1 polarization (11, 15, 32). Thus, it is important to identify
the regulation of HMGBI1 secretion, because HMGBI1 is involved
in the initiation of immune responses in microenvironmental cir-
cumstances and the amplification of downstream proinflammatory
responses and shock.

In this study we have found that phosphorylation of HMGBI1 oc-
curs in vivo after TNF-o and OA treatments and results in the trans-
port of HMGBI1 to the cytoplasm for eventual secretion. HMGBI
phosphorylation has not been clearly identified, although phosphory-
lation of several plant HMG family proteins (18, 19) and of human
and insect (Chironomus) HMG-Is (33, 34) has been reported. The
phosphorylation of the HMG box delays its translocation to the nu-
cleus (35). Our finding that HMGBI is phosphorylated is in contrast
to a previous report showing no evidence of phosphorylation in
HMGBI1 from the calf thymus and activated human monocytes (10).
We currently have no information about this discrepancy. It might be
due to a lower extent of phosphorylated HMGBI in their samples. We
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found that HMGB1 phosphorylation occurs at six serines mainly
around NLS1 and NLS2, although we did not show which serine was
phosphorylated in this study. Early reports also indicated that lamb
HMGs1 and 2 are phosphorylated in serines only (36). Human
HMG-I of HMG family is phosphorylated at serine and threonine
residues (33). These results suggest that the site of phosphorylation of
HMG family proteins may vary.

Furthermore, our study discovered that HMGB1 was translo-
cated to the cytoplasm after OA treatment in RAW 264.7 and
freshly isolated human PBMo cells. In addition, transfected nu-
clear HMGB-GFP was relocated to the cytoplasm after OA treat-
ment in the presence of CHX, suggesting that HMGB1 is phos-
phorylated in the nucleus upon stimulation and is moved toward a
secretory direction. Because OA did not induce acetylation (data
not shown), it is possible that phosphorylation alone can increase
nuclear export. It has been established that nuclear export of
HMGBI1 is mediated through a CRMI1-dependent pathway (10,
17). Hence, phosphorylation may influence the interaction with
CRM1 to facilitate nuclear export. Further studies regarding the
molecular interactions of phosphorylated HMGB1 with CRM1
will provide a better understanding of the nuclear export of
HMGBI1.

Fluorescent analysis after the transfection of each HMGB1 NLS
mutant plasmid suggests that phosphorylation is important in the
accumulation of HMGBI in cytoplasm and the possible subse-
quent secretion. In an unstimulated state, HMGB1 protein was
imported to the nucleus by KAP-al as a nuclear cargo carrier
protein after translation and eventually accumulated in the nucleus.
However, a significant fraction of HMGBI1 cannot re-enter the
nucleus if it has been exported from the nucleus due to phosphor-
ylation. One novel feature of the present study is the semiquanti-
tative analysis of mutant HMGB1 protein binding to the KAP-al
protein. Phosphorylation at both NLS sites is important in blocking
the re-entry to the nucleus and in the accumulation in the cyto-
plasm. Previously, only acetylation has been known to regulate
HMGBI1 relocation (10, 17). This study, however, showed that
phosphorylation is also important in the regulated secretion of
HMGBI, although it is unknown which modification is dominant
under physiological conditions. Thus, the enzyme that is involved
in the phosphorylation of HMGB1 would be a good candidate to
target for treating HMGB1-mediated shock.

It would be interesting to know why the concomitant phosphor-
ylation of both NLSs separated by >130 amino acids is necessary
for the cytoplasmic localization. In an unstimulated state, the
acidic tail region of HMGB1 interacts with basic stretches in the A
and B boxes, mainly the A box (37). This observation implies that
NLS1 and NLS2 may come close together in three dimensions to
bind KAP-al because HMGB1 NLS1 and NLS2 are located in the
A box and just in front of the acidic tail, respectively. Thus, it is
hypothesized that the close proximity of both NLSs in a resting
state is disturbed by concomitant phosphorylation at the regions
close to the NLSs when stimulated. In the study of HMGB?2 (pre-
viously HMG?2) protein, which has high sequence similarities with
HMGBI, the acidic carboxyl terminus influences its retention in
the nucleus (38, 39). Thus, we are now studying the role of the
HMGBI acidic tail in the nuclear transport of the protein because
HMGBI1 and HMGB2 are not structurally and functionally the
same (40, 41).

In conclusion, in addition to previously established acetylation,
we showed in this study that the subcellular localization of
HMGBI is also finely tuned by phosphorylation at both NLS
regions.

HMGB1 PHOSPHORYLATION AND NUCLEAR TRANSPORT
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