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Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by
reducing malonyl-CoA levels in the liver and skeletal muscle
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Aims: Rosiglitazone and fenofibrate, specific agonists of the peroxisome proliferator activated receptors-γ
(PPARγ) and -α (PPARα), respectively, improve insulin sensitivity in diabetic animals and in patients with
type 2 diabetes. Here we investigated how pre-diabetic Otsuka Long–Evans Tokushima Fatty (OLETF) rats fed
with normal and high-fat diets respond to these PPAR agonists.
Main methods: Pre-diabetic OLETF rats were subjected to high-fat or standard diets with or without
rosiglitazone or fenofibrate for 2 weeks. The metabolism of the rats and the levels of malonyl-CoA and
activities of malonyl-CoA decarboxylase (MCD), acetyl-CoA carboxylase (ACC), and AMP-activated protein
kinase (AMPK) in metabolic tissues were assessed.
Key findings: Rosiglitazone and fenofibrate significantly improved insulin sensitivity and reduced the levels of
plasma triglycerides and free fatty acids in OLETF rats fed with a high-fat diet. Fenofibrate particularly
reduced the body weight, fat, and total cholesterol in high fat diet OLETF rats. The highly elevated malonyl-

CoA levels in the skeletal muscle and liver of OLETF rat were significantly reduced by rosiglitazone or
fenofibrate due to, in part, the increased MCD activities and expression. On the other hand, ACC activities
were unchanged in skeletal muscle and decreased in liver in high fat diet group. AMPK activities were
dramatically decreased in OLETF rats and not affected by these agonists.
Significance: These results demonstrate that treatment of pre-diabetic OLETF rats–particularly those fed a
high-fat diet–with rosiglitazone and fenofibrate significantly improves insulin sensitivity and fatty acid
metabolism by increasing the activity of MCD and reducing malonyl-CoA levels in the liver and skeletal
muscle.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Rosiglitazone and fenofibrate, specific agonists of peroxisome
proliferator activated receptors-γ (PPARγ) and -α (PPARα), respec-
tively, improve insulin sensitivity in diabetic animals (Guerre-Millo
et al. 2000; Kramer et al. 2001; Wang et al. 2001), and in people with
type 2 diabetes and insulin resistance syndrome (Mudaliar and Henry
2001; Saltiel and Olefsky 1996). PPARs are members of the nuclear
hormone receptor superfamily and are activated by natural or
synthetic fatty acids. They regulate transcription by forming hetero-
dimers with the retinoid X receptor (RXR) and binding to specific
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PPAR-response elements (PPREs) in the promoter region of target
genes (Blaschke et al. 2006; Jepsen and Rosenfeld 2002).

PPARγ is the key transcriptional regulator of adipogenesis and it
plays a critical role in glucose homeostasis (Lehmann et al. 1995;
Rosen et al. 1999). PPARα is critical for peroxisome proliferation (Lee
et al. 1995) and it functions as fatty acid sensor important for the
regulation of fatty acid metabolism and energy homeostasis (Blaschke
et al. 2006). Although PPARγ and PPARα play specific and separate
roles under physiological conditions, their agonists have similar
effects on triglyceride levels in the blood of diabetic animals (Chaput
et al. 2000). Malonyl-CoA is a potent inhibitor of mitochondrial car-
nitine palmitoyltransferase (CPT1), the key regulatory enzyme in-
volved in the first committed step of fatty-acid oxidation in
mitochondria (Rasmussen et al. 2002), and its levels are precisely
regulated in various nutritional states (Chien et al. 2000). Inhibition of
CPT1 by malonyl-CoA decreases the uptake of fatty acids into the
mitochondria and slows mitochondrial fatty acid oxidation (Mcgarry
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2002). Malonyl-CoA is synthesized by acetyl-CoA carboxylase (ACC)
(Thampy 1989) and degraded to acetyl-CoA and carbon dioxide by
malonyl-CoA decarboxylase (MCD) (Saha et al. 2000). It has been
reported that exercise-induced activation of AMPK controls malonyl-
CoA levels by coordinating the functions of MCD and ACC (Park et al.
2002).

Although PPAR agonists markedly reduce blood triglyceride levels
in diabetic animals (Chaput et al. 2000), to our knowledge their effect
on the regulation of malonyl-CoA has not been investigated in the
tissues of non-exercising pre-diabetic rats. In this study we investi-
gated the effect of rosiglitazone and fenofibrate on insulin resistance
and malonyl-CoA levels in the liver and skeletal muscles of Otsuka
Long–Evans Tokushima Fatty (OLETF) rats. These rats spontaneously
develop mild diabetes at 18 weeks of age and are pre-diabetic at
14 weeks of age with normal fasting glucose levels and high insulin
levels (Kawano et al. 1992, 1994). We treated 14-week-old pre-
diabetic OLETF rats fed with a normal or high-fat diet with
rosiglitazone or fenofibrate for 2 weeks and found that these agonists
stimulate MCD activity, decrease malonyl-CoA levels in the liver and
skeletal muscles, and improve insulin sensitivity.

Materials and methods

Materials

[1, 3 14C]malonyl-CoA was purchased from American Radiolabeled
Chemicals, Inc. (St. Louis, MO, USA), [14C]sodium bicarbonate from
Moravek Biochemicals (Brea, CA,USA), [γ-32P]ATP from Amersham
Biosciences (Piscataway, NJ, USA), and rat insulin RIA kit from Linco
Research, Inc. (St. Charles, MO, USA). TaqMan EZ RT-PCR Core
Reagents and the primers and probes of MCD and cyclophilin were
purchased from Applied Biosystems (Foster City, CA, USA). The
AMARAASAAALARRR (AMARA) peptide was synthesized by and
purchased from Peptron Inc. (Taejeon, Korea). High-fat diet was
purchased from BioGenomics, Inc. (Harlan, CA, USA). Whole blood
glucose analyzer was obtained from Johnson & Johnson (Milpitas, CA,
USA). Protease inhibitors, phosphatase inhibitors, and all other re-
agents were purchased from Sigma Chemical (St. Louis, MO, USA).

Animals and diet composition

Four-week-old male Long–Evans Tokushima Otsuka (LETO) rats
(n=20) and Otsuka Long–Evans Tokushima Fatty (OLETF) rats
(n=60) were donated by Otsuka Pharmaceuticals (Japan) and were
group housed until the experiment was completed. At 14 weeks of
age, the rats were randomly assigned to one of seven dietary
regimens: 1) LETO (n=20) standard rat diet, 2) OLETF (n=10)
standard rat diet, 3) OLETF (n=10) standard rat diet with rosiglita-
zone (4 mg/kg/d), 4) OLETF (n=10) standard rat diet with
fenofibrate (100 mg/kg/d), 5) OLETF (n=10) high-fat diet, 6)
OLETF (n=10) high-fat diet with rosiglitazone (4 mg/kg/d), 7)
OLETF (n=10) high-fat diet with fenofibrate (100 mg/kg/d). The
standard diet comprises approximately 3.6 kcal/g: 21% protein, 12.5%
fat, and 66.5% carbohydrates and the high-fat diet comprises
approximately 5.0 kcal/g: 21% protein, 66.5% fat, 12.5% carbohydrates
as described (Bi et al. 2007). All rats were kept in the Department of
Animal Experiment of Clinic Medical Research Center, Yonsei
University Medical College, under controlled conditions of 23±1 °C
and 12 h light:12 h dark cycle, and given free access to food and water
ad libitum. All rats were cared for as outline in the Guidelines of
Animal Experiments recommended by Korean Academy Sciences.

Body weight and oral glucose tolerance test

Food consumed was checked every day, and body weight was
checked every 3 days during the experiments. Oral glucose tolerance
tests (OGTT) were conducted at the beginning and end of each
experiment. Ratswere given glucose orally (2 g/kg) andblood samples
were collected from their tails 0, 30, 60, 90, 120 min later. Glucose
levels were measured with a glucose analyzer (Milpitas, CA, USA).

Tissue sampling and measurement of fat mass

After 2 weeks of feeding with the normal or high-fat diet in the
presence or absence of rosiglitazone or fenofibrate, animals were
anesthetized with isoflurane and sacrificed for tissue sampling. Blood
was collected by cardiac puncture for triglyceride (TG), total
cholesterol (TC), free fatty acid (FFA), and insulin assays. Abdominal
subcutaneous fat (SQ fat) and epididymal fat (epid fat) pads were
surgically removed through a mid-abdominal incision and the weight
of each dissected fat mass was recorded immediately. Skeletal muscles
(gastrocneminus), livers, and pancreas were immediately isolated,
freeze-clamped in liquid nitrogen, and stored at −80 °C until assays
were performed.

Serum lipids and insulin, and pancreatic insulin content measurement

Triglyceride, total cholesterol, and free fatty acid levels were
measured with infinity triglycerides reagent, infinity cholesterol
reagent, and the ACS-ACOD enzyme method (NEFA ZYME-S, Aiken,
Japan). To measure pancreatic insulin contents, pancreases were
homogenized with an electric homogenizer in 500 μl of acid ethanol
buffer (1.5 ml of 12 mol/L HCl in 100 ml of 70% ethanol) and extracted
overnight at 4 °C. Insulin levels in the serum and pancreatic extract
were measured with a rat RIA kit according to the manufacturer's
instructions.

Determination of malonyl-CoA levels

Malonyl-CoAwas extracted from frozen (−80 °C) skeletal muscles
and livers as previously described (King et al. 1988). The 6% perchloric
acid extract was maintained at a pH of 2–3. Malonyl-CoA was
measured with a modified high-performance liquid chromatography
(HPLC) procedure described previously (King et al. 1988; Saddik et al.
1993) on a Beckman System Gold with a UV detector 167. Each sample
(100 μl) was run through a pre-column cartridge (C18, size 3 cm,
7 μm) and a Microsorb short-one column (type C18, particle size 3 μm,
size 4.6×100 mm). Absorbance was set at 254 nm and flow rate at
1 ml/min. A gradient was initiated using two buffers: buffer A
consisted of 0.2 M NaH2PO4 (pH 5.0) and buffer B was a mixture of
0.25 M NaH2PO4 and acetonitrile (pH 5.0) in a ratio of 80:20 (v/v).
Buffers were filtered using filter pure, Nylon-66 filter membrane
(Pierce Chemical Co.). Initial conditions (97% buffer A, 3% buffer B)
were maintained for 2.5 min and were changed thereafter to 18%
buffer B over 5 min using Beckman's curve 3. At 15 min the gradient
was changed linearly to 37% buffer B over 3 min and subsequently 90%
buffer B over 17 min. At 42 min the compositionwas returned linearly
back to 3% buffer B over 0.5 min, and at 50 min column equilibration
was complete. Peaks were integrated by a Beckman System Gold
software package.

Determination of ACC activities

ACC activities were measured as described previously (Sakamoto
et al. 2000). Briefly, approximately 200 mg of frozen tissues were
homogenized using an electric homogenizer with a buffer containing
Tris–HCl (10 mM), mannitol (200 mM), NaF (50 mM), EDTA (1 mM),
2-mercaptoethanol (10 mM), pH 7.5, and three proteolytic enzyme
inhibitors (aprotinin, leupeptin, and antitrypsin, at a concentration of
5 mg/L). The homogenate was immediately centrifuged at 48,000 g
for 30 min at 4 °C. The fraction containing ACC and AMPK was pre-
cipitated from the supernatant by addition of 144 mg ammonium
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sulfate/ml and by stirring for 60 min on ice. The precipitate was
collected by centrifugation at 48,000 g for 30 min. The pellet was
dissolved in 10% of the original volume of the homogenate buffer and
centrifuged again to remove insoluble protein. The supernatant was
assayed for ACC and AMPK activity.

ACC activity was measured using the CO2 fixation method, as
described previously (Sakamoto et al. 2000). Briefly, 5 µl of the above
supernatant containing 20 µg of total protein was added to a reaction
mixture (final volume, 165 µl) containing tris acetate (60.6 mM), BSA
(1 mg/ml), 2-mercaptoethanol (1.32 µmol/l), ATP (2.21 mM), acetyl-
CoA (1.06 mM), magnesium acetate (5.0 mM), and NaHCO3
(18.08 mM). Samples were incubated at 37 °C for 10 min, and the
reaction was stopped by adding 25 µl of 10% perchloric acid. Samples
were centrifuged for 20 min at 3500 rpm, and 160 µl of supernatant
was placed in minivials and dried in a fume hood overnight. H2O
(100 µl), followed by scintillant, was added to the vials, and the vials
were counted. ACC activity was expressed as the amount of malonyl-
CoA produced/min/mg protein.

Determination of AMPK activities

AMPK activity was measured as previously described (Sakamoto
et al. 2000). Briefly, 2 µl of the supernatant prepared as described
above for the determination of ACC activity was added to a reaction
mixture composed of HEPES-NaOH (40 mM), NaCI (80 mM), glycerol
(8% wt/vol), EDTA (0.8 mM), AMARAASAAALARRR (AMARA) peptide
(200 µmol/L), dithiothreitol (DTT) (0.8 mM), [γ-32P]ATP (200 µmol/
l), MgCl2 (5 mM), and 0.18% Triton X-100. Samples were incubated in
the presence or absence of 200 µM AMP for 3 min at 30 °C. 15 µl of this
mixture was spotted on 1 cm2 phosphocellulose paper and the paper
was washed four times for 10 min each with 150 mM phosphoric acid,
followed by a 5 min acetone wash. The papers were then dried and
counted for radioactivity. AMPK activity was expressed as nmol of 32P
incorporated into the AMARA peptide/min/mg protein.

Determination of MCD activities

Approximately 300 mg of frozen tissues was homogenized in a
buffer of 0.1 M Tris–HCl (pH 8.0), 2 mM PMSF, 5 μM aprotinin, 5 μM
leupeptin, and 5 μM pepstatin A. 40 mM β-glycerophosphate, 40 mM
NaF, 4 mM NaPPi, and 1 mM Na3VO4 were added to inhibit
phosphatase activity. The homogenates were then centrifuged at
500 g for 10 min. Powdered (NH4)2SO4 was slowly added to the
supernatant with stirring until 40% (243 g/L of ammonium sulfate)
saturation was achieved. The mixture was stirred for 1 h on ice and
centrifuged at 14,000 g for 10 min. The supernatant from this spinwas
treated with additional (NH4)2SO4 until 55% (351 g/L of ammonium
sulfate) saturation was achieved. The mixture was recentrifuged at
14,000 g. The resultant pellet fraction was dissolved in 0.1 M Tris–HCl
(pH 8.0) and MCD activity was determined as described below.

The enzyme activity was assayed by measuring the amount of
14CO2 generated from [3-14C]malonyl-CoA, as previously described
(Goodwin and Taegtmeyer 1999) with the following modification.
Briefly, a reaction mixture of 10 μmol of Tris–HCl buffer (pH 8.0),
Table 1
Body weight and fat mass after 2-week treatment.

LETO Normal diet

Ctrl RSG

Food intake (g/d/rat) 26.7±0.3 30.9±0.7 28.7±1.8
BW (g) 362±15 438±29† 430±18
SQ fat (g) 4.8±0.3 8.6±0.6† 7.6±0.5
Epid fat (g) 4.1±0.1 5.7±0.5 5.4±0.3
Total fat (%) 2.5±0.4 3.2±0.7† 3.2±0.3

†, pb0.05, compared with normal control (LETO), ‡, Pb0.05, compared with normal diet fed
expressed as means±SEM of 10 rats in each group.
0.01 μmol of dithioerythritol (DTE), 0.02 μmol of [3-14C]malonyl-CoA
was incubated with enzyme in a total volume of 0.1 ml for 10 min at
37 °C. The 14CO2 generated by [3-14C] malonyl-CoA was trapped in
filter papers soaked with 2 N KOH and assayed by liquid scintillation
spectrometry. Enzyme activity is expressed as nmol/min/mg protein.

RNA extraction and real-time RT-PCR

Total RNA was extracted from frozen (−80 °C) tissues with TRIzol
Reagent (GIBCO BRL) according to the manufacturer's instructions.
Real-time RT-PCR was performed using an ABI PRISM 7700 Sequence
Detection System instrument and software (PE Applied Biosystems).
Primers and probes for MCD and cyclophilin were used as described
previously (Young et al. 2001). MCD primer/probe: forward 5′-
CGGCACCTTCCTCATAAAGC-3′, reverse 5′-GGGTATAGGTGACAGGCTGGA-
3′, probe 5′-FAM-AGTGGTCAAGGA GCTGCAGAAGGAGTTT-TAMRA-3′.
Cyclophilin primer/probe: forward 5′-CTGATGGCGAGCCCTTG-3′, reverse
5′-TCTGCTGTCTTTGGAACTTTGTC-3′, probe 5′-FAM-CGCGTCTGCTTCGAG-
CTGTTTGCA-TAMRA-3′. The level of transcripts for the constitutive
housekeeping gene product cyclophilin was measured in triplicate in
each sample to adjust for sample-to-sample differences in RNA
concentration. MCD mRNA expression was calculated with the compara-
tive CT (threshold cycle) method and reported as the ratio of MCD
transcripts per cyclophilin transcripts.

Statistical analysis

Data are presented as means±SEM. Statistically significant
differences between groups were calculated by Tukey's Multiple
Comparison Test of One-Way ANOVA. A value of pb0.05 is considered
significant.

Results

Effect on body weight, and fat mass

To examine the effects of PPARγ and α agonists on pre-diabetic
OLETF rats, we fed 14-week-old OLETF rats with normal or high-fat
diets and measured their body weight and fat mass after 2 weeks of
treatment with rosiglitazone or fenofibrate (Table 1). We found that
the body weights of all groups of OLETF rats were significantly higher
than those of LETO controls. Rosiglitazone and fenofibrate treatment
did not significantly affect the phenotype of rats fed a normal diet.
However, fenofibrate, but not rosiglitazone, significantly reduced body
weight and abdominal subcutaneous and epididymal fat mass, in rats
fed a high-fat diet.

Effect on blood lipids, cholesterol, insulin levels, and pancreatic
insulin content

We then measured the levels of blood lipids, total cholesterol, and
insulin in serum and in the pancreas in pre-diabetic rats after
treatment with rosiglitazone and fenofibrate (Table 2). Serum
triglycerides, free fatty acids, total cholesterol, insulin and pancreatic
High fat diet

FNF Ctrl RSG FNF

27.9±2.3 28.9±2.3 27.6±3.4 26.4±3.4
400±25 479±14‡ 473±22 394±13★

7.3±0.7 15.9±0.6‡ 17.5±1.4 8.4±0.8★

5.3±0.3 10.0±0.3‡ 9.6±0.9 5.4±0.4★

2.9±0.5 5.4±0.4‡ 5.7±0.8 3.5±0.5★

OLETF control, and ★, Pb0.05, compared with high fat diet fed OLETF control. Values are



Table 2
Blood chemistry and pancreatic insulin content after a 2-week treatment.

LETO Normal diet High fat diet

Ctrl RSG FNF Ctrl RSG FNF

TG (mg/dL) 43.7±3.4 97.4±7.7† 59.4±3.7⁎ 53.7±2.9⁎ 133.3±23.5‡ 59.0±10.8★ 75.8±8.8★

FFA μEq/L) 1023±135 1898±235 1357±186⁎ 880±99⁎ 2710±318‡ 1224±160★ 1638±27★

TC (mg/dL) 79.3±4.4 83.7±7.3 98.7±7.5 70.5±6.5 124.3±5.6‡ 91.3±2.7★ 76.8±5.4★

S. Ins(ng/mL) .73±0.08 1.17±0.06† 1.32±0.07 1.19±0.05 2.16±0.06‡ 1.89±0.09★ 1.87±0.04★

P. Ins (ng/mg) 4.8±0.7 5.7±0.5 6.8±1.3 6.7±2.0 7.5±1.3‡ 7.9±0.5 8.0±0.6

Blood were taken from rat's hearts when the rats were sacrificed and serums were separated by centrifugation. Pancreatic islet insulin was extracted using a buffer composed of 1.5%
hydrochloride and 70% alcohol. †, pb0.05, compared with normal control (LETO); ‡, pb0.05, compared with OLETF control fed a normal diet; ⁎, pb0.01 vs. normal diet fed OLETF
control; and ★, pb0.05 vs. high fat diet fed OLETF control. Values are means±SEM of 10 rats in each group.
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insulin content were elevated in all high fad diet groups of OLETF rats,
indicating insulin resistance and abnormalities in lipid metabolism. In
normal-diet groups, the levels of triglycerides and free fatty acids
were significantly reduced by treatment with either rosiglitazone or
fenofibrate. However, serum triglyceride, free fatty acid, and total
cholesterol levels, and insulin were significantly reduced in the
presence of either rosiglitazone or fenofibrate in high-fat diet groups,
suggesting a significant improvement in lipid metabolism and insulin
sensitivity.

Effects on oral glucose tolerance test

We next performed the oral glucose tolerance test (OGTT) (2 g/kg
body weight) on 16-week-old pre-diabetic OLETF rats treated with
rosiglitazone and fenofibrate. As shown in Fig. 1, both groups
developed impaired glucose tolerance. This impairment was more
Fig. 1. Results of the oral glucose tolerance test (OGTT). OGTT (2 g/kg body weight) was
performed after pre-diabetic OLETF rats were treated for 2weeks with rosiglitazone and
fenofibrate. A. OGTT in 16-week-old OLETF rats fed a normal diet. ⁎, pb0.05, treated
groups were compared with normal diet OLETF (ND-Ctrl) rats of the same age. B. OGTT
in 16-week-old OLETF rats fed a high-fat diet. ⁎, pb0.05, treated groups were compared
with high fat diet OLETF (HF-Ctrl) rats of the same age. Values are expressed asmeans±
SEM (n=10). ND, normal diet; HF, high fat; Ctrl, control; RSG, rosiglitazone; FNF,
fenofibrate; LETO, Long–Evans Tokushima Otsuka.
severe in the group fed the high-fat diet, despite the fact that these
rats still exhibited normal fasting glucose levels. However, treatment
of pre-diabetic OLETF rats with rosiglitazone or fenofibrate signifi-
cantly improved insulin sensitivity in both the normal (Fig. 1A) and
the high-fat (Fig. 1B) diet groups. Our results clearly show that PPAR-γ
and -α agonists can improve insulin sensitivity during the pre-
diabetic period even in the presence of a high-fat diet.

Effect on malonyl-CoA levels in skeletal muscle and liver

Since PPAR-γ and -α agonists significantly reduced serum levels of
triglycerides and free fatty acids in pre-diabetic rats fed either a
normal or a high-fat diet (Table 2), we investigated whether these
agonists affect the levels of malonyl-CoA in skeletal muscle and liver.
As shown in Fig. 2, malonyl-CoA levels were highly elevated in both
the skeletal muscle and livers of pre-diabetic OLETF rats compared to
control rats. This elevation was more significant in rats fed with a
high-fat diet, suggesting an abnormal regulation of malonyl-CoA in
the pre-diabetic OLETF rats. Malonyl-CoA levels in skeletal muscles of
Fig. 2. Malonyl-CoA levels in the skeletal muscle and livers of OLETF rats fed either
normal or high-fat diets. A. Malonyl-CoA levels in skeletal muscle. B. Malonyl-CoA levels
in liver. Values are expressed as means±SEM (n=10). †, pb0.05, vs. LETO; ‡, Pb0.01,
vs. OLETF controls in the normal-diet group; ⁎ and ★, pb0.01, vs. corresponding OLETF
control. Ctrl, control; RSG, rosiglitazone; FNF, fenofibrate.



Fig. 3. MCD and ACC activities in skeletal muscle. A. MCD activities. B. ACC activities.
Values aremeans±SEM (n=10), ⁎ and ★, pb0.001 vs. corresponding OLETF control; #,
pb0.001, vs. rosiglitazone treated group fed a high-fat diet. Ctrl, control; RSG,
rosiglitazone; FNF, fenofibrate.

Fig. 4. MCD and ACC activities in liver. Values are expressed as means±SEM (n=10).
A.MCD activities. ⁎, pb0.001,★, pb0.01, vs. corresponding OLETF control. B. ACC activities.
#, pb0.01, compared with OLETF controls in the normal-diet group. ‡, pb0.01 vs. normal
diet fed OLETF control; ★, pb0.01 vs. high fat diet fed OLETF control, and #, pb0.01, vs.
rosiglitazone-treated group fed a high-fat diet.

Fig. 5. AMPK activities in skeletal muscle and liver. A. AMPK activities in skeletal muscle.
B. AMPK activities in liver. Values are expressed as means±SEM (n=10).
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OLETF rats fed a normal diet were 25% lower in the rosiglitazone-
treated animals and 33% lower in the fenofibrate-treated animals. In
OLETF rats fed a high-fat diet, rosiglitazone treatment decreased
malonyl-CoA levels in skeletal muscles by 35% and fenofibrate
treatment by 43% (Fig. 2A). In OLETF rats fed a normal diet,
rosiglitazone treatment decreased malonyl-CoA levels in the liver by
24% and fenofibrate treatment by 27% (Fig. 2B). In the high-fat diet
group, rosiglitazone treatment reducedmalonyl-CoA levels in the liver
by 30% and fenofibrate treatment by 41% (Fig. 2B). Taken together, our
results clearly indicate that both rosiglitazone and fenofibrate can
reduce the levels of malonyl-CoA in skeletal muscle and liver in this
pre-diabetic rat model.

Effect on MCD and ACC activities

Since malonyl-CoA levels in tissues are regulated by MCD and ACC,
we measured the activities of these two enzymes in skeletal muscle.
As shown in Fig. 3A, rosiglitazone and fenofibrate significantly in-
creased MCD activity in rats fed either a normal or a high-fat diet
(Fig. 3A). Interestingly, MCD activity was more dramatically enhanced
by fenofibrate than by rosiglitazone in rats fed a high-fat diet.
However, ACC activity in skeletal musclewas not significantly changed
after treatment (Fig. 3B). These results suggest that rosiglitazone and
fenofibrate decrease malonyl-CoA levels at least in part by increasing
MCD activity in skeletal muscle in OLETF rats fed either a normal or a
high-fat diet.

We next examined the effect of rosiglitazone and fenofibrate on
MCD and ACC activities in the liver. We found that fenofibrate, but not
rosiglitazone, significantly increased the activity of MCD in OLETF rats
fed a normal diet. Both rosiglitazone and fenofibrate increased the
activity of MCD in rats fed a high-fat diet (Fig. 4A). In contrast to ACC
activity in rats fed a normal diet, ACC activity was elevated in rats fed a



Fig. 6. Expression levels of MCD mRNA in skeletal muscle and liver. The values are
compared to control (LETO) rats. Values are expressed as means±SEM (n=10).
A. Relative levels of MCD mRNA in skeletal muscle. ‡, pb0.01, vs. OLETF controls in the
normal-diet; ⁎, pb0.01, vs. corresponding OLETF control. B. Relative levels MCD mRNA
in liver, ⁎ and ★, pb0.01 vs. corresponding OLETF control and rosiglitazone treated
groups.
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high-fat diet. Rosiglitazone suppressed this elevated ACC activity by
38% and fenofibrate by 87% (Fig. 4B). These results suggested that the
decrease we observed in malonyl-CoA levels in the livers of pre-
diabetic rats fed a high-fat diet is due to both an increase in degra-
dation by MCD and a decrease in synthesis by ACC.

Effect on AMPK activities in skeletal muscle and liver

It has been previously reported that AMPK regulates MCD and ACC
activities under specific conditions, such as during exercise or the
electric stimulation of skeletal muscles (Park et al. 2002). To examine
whether AMPK regulates MCD and ACC activities in resting state in
pre-diabetic OLETF rats, we examined its activity in skeletal muscle
and liver. Surprisingly, the activity of AMPK in both tissues was
dramatically lower in this pre-diabetic rat model than in control rats
(Fig. 5). In addition, rosiglitazone and fenofibrate did not affect AMPK
activity in the tissues of OLETF rats regardless of diet. These results
suggest that the AMPK signaling network may be defective in the
skeletal muscles and livers of OLETF rats.

MCD mRNA expression in skeletal muscle and liver

PPARs are transcriptional regulators. Since PPAR agonists increase
MCD activity in both skeletal muscle and liver, we used real-time RT-
PCR to examinewhether they affect the transcription of MCD in OLETF
rats fed a normal or high-fat diet. As shown in Fig. 6A, the levels of
MCD mRNA in the skeletal muscles of OLETF rats were significantly
lower than that LETO rats and restored by fenofibrate, but not ro-
siglitazone. Interestingly, we observed that MCD mRNA levels were
significantly higher in rats fed a high-fat diet than in rats fed a normal
diet. This finding suggests that, consistent with previous reports,
increased availability of fatty acids may promote their utilization by
increasing the expression of MCD in skeletal muscles (Young et al.
2001). As shown in Fig. 6B, the levels of MCD mRNA in the livers of
OLETF rats are similar regardless of whether the rats are fed a normal
or a high-fat diet. As in skeletal muscle, fenofibrate, but not ro-
siglitazone, significantly increased the expression of MCD in the livers
of OLETF rats. Our data suggest that PPAR-α, but not PPAR-γ, agonists
stimulate the transcription of MCD in skeletal muscle and liver, and
that a high-fat diet alters this transcription in skeletal muscle.

Discussion

Clinically, rosiglitazone is used as an insulin-sensitizing drug in
type 2 diabetes (Lehmann et al. 1995) due to its ability to regulate
genes that control cellular energy homeostasis and insulin action in
muscle and liver, whereas fenofibrate is used for the treatment of
dyslipidemia mainly due to its ability to lower triglyceride levels
(Berger and Moller 2002). The role of these agonists of PPARs in
insulin resistance has been investigated extensively in diabetic
animals (Guerre-Millo et al. 2000; Kramer et al. 2001; Wang et al.
2001) and in patients with type 2 diabetes and insulin resistance
syndrome (Mudaliar and Henry 2001; Saltiel and Olefsky 1996).
However, a few studies have emphasized the pre-diabetic phase,
during which insulin resistance is already in place despite normal
blood glucose levels due to the hyper-secretion of insulin by
pancreatic β-cells.

In this study, we examined the effect of the specific agonists of
PPAR-γ and PPAR-α, rosiglitazone and fenofibrate, respectively, on
14-week-old OLETF rats fed for 2 weeks with either a normal or a
high-fat diet. OLETF rats spontaneously develop mild diabetes at
18 weeks of age and 14-week-old OLETF rats are pre-diabetic, but
have normal fasting glucose levels (Kawano et al. 1992, 1994). Our
results indicate that, in addition to their different effects on body
weight and fat mass (Table 1), rosiglitazone and fenofibrate
significantly improve the insulin resistance and reduce the levels
of triglycerides, free fatty acids, and total cholesterol in the serum of
these pre-diabetic animals (Table 2). Importantly, these agonists of
PPAR-γ and PPAR-α also significantly reduce the levels of malonyl-
CoA, a key regulator for fatty acid oxidation, in skeletal muscle and
liver.

In the liver, malonyl-CoA is important both as an intermediate in
the de novo synthesis of fatty acids and as an allosteric inhibitor of
CPT1, the enzyme that controls the transfer of long-chain fatty acyl-
CoAs into the mitochondria for oxidation. In contrast, malonyl-CoA
functions mainly as a regulator of CPT1 in skeletal muscle, where de
novo synthesis of fatty acids is minimal (Mcgarry 2002). Similar to
what has been observed in obese humans or those who have type 2
diabetes (Bandyopadhyay et al. 2006), we found that the concentra-
tions of malonyl-CoA in skeletal muscle and liver are highly elevated
in pre-diabetic rats fed a normal diet, and that this effect is exa-
cerbated by a high-fat diet. Increased malonyl-CoA levels may
promote the de novo synthesis of fatty acids in liver and inhibit the
oxidation of fatty acids in both liver and skeletal muscle, causing an
accumulation of triglycerides and fatty acids that contribute to insulin
resistance. Our data suggest that using PPAR-γ and PPAR-α agonists to
lower malonyl-CoA levels may be one way to improve insulin
resistance in pre-diabetic animals or humans.

Malonyl-CoA is synthesized by acetyl-CoA carboxylase (ACC)
(Thampy 1989) and degraded to acetyl-CoA and carbon dioxide by
malonyl-CoA decarboxylase (MCD) (Saha et al. 2000). In this study,
we characterized the activities of these two enzymes in non-
exercising, pre-diabetic OLETF rats. We found that MCD activities in
both skeletal muscle and liver were significantly increased after
2 weeks of rosiglitazone and fenofibrate treatment even in rats fed
a high-fat diet. In addition, we determined that the profound
activation of MCD by fenofibrate that we observed in this study
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was due to an increase in MCDmRNA levels. This finding is consistent
with our previous report that PPAR-α enhances MCD transcription
(Lee et al. 2004). Our data suggest that PPAR-γ and PPAR-α agonists
reduce malonyl-CoA levels in pre-diabetic OLETF by enhancing MCD
transcription.

In contrast to MCD, the effects of PPAR-γ and PPAR-α agonists on
ACC activity in liver differs from their effects in skeletal muscle.
Although ACC activity was not affected by either rosiglitazone or
fenofibrate in skeletal muscle, it was significantly elevated in the livers
of rats fed a high-fat diet. This increased ACC activity was reduced to
normal levels by rosiglitazone treatment and suppressed even further
by fenofibrate.

ACC is a cytosolic enzyme that catalyzes the carboxylation of
cytosolic acetyl-CoA to formmalonyl-CoA (Saha and Ruderman 2003).
Two principal isoforms have been identified: a 265 kDa protein
referred to as ACCα or ACC1, which is predominantly expressed in
lipogenic tissues such as liver and adipose tissue; and a 275–280 kDa
protein, ACCβ or ACC2, which, although it is present to some extent in
liver and other tissues (Bianchi et al. 1990; Kim 1997), is the major
isoform expressed in skeletalmuscle. ACCα and ACCβ are the products
of distinct genes and they have different affinities for their substrate,
cytosolic acetyl-CoA (Kim 1997). ACCα plays a major role in fatty acid
synthesis and ACCβ is important for fatty acid oxidation (Kim 1997;
Ruderman et al. 1999).

The fact that a high-fat diet increases ACC activity in the liver but
not the skeletal muscles of pre-diabetic OLETF rats, and that this
increase is abrogated by treatment with PPAR-γ and PPAR-α agonists,
suggests that these conditions specificallymodulate ACCα activity and
its ability to promote fatty acid synthesis. In particular, the dramatic
decrease in ACCα activity we observed in response to fenofibrate may
explain the significant reduction in body weight and fat mass in OLETF
rats fed with a high-fat diet.

Expression of ACCα is regulated by multiple hormones and
nutrient status mediated by three promoters and multiple tran-
scriptional factors, such as sterol regulatory element binding pro-
teins (SREBP1a and SREBP1c) and carbohydrate response element
binding protein (ChREBP), as well as by mRNA splicing (Barber
et al. 2005; Brownsey et al. 2006). In addition, its function is
regulated through posttranslational modification, including protein
maturation, allosteric regulation, multiple sites of phosphorylation,
and protein–protein interaction (Brownsey et al. 2006; Tong 2005).
Therefore, further studies are required to determine how this
PPAR-α agonist inhibits ACCα activity in the liver under these
conditions.

AMPK is a heterotrimeric protein kinase complex that acts as an
energy sensor, responding to a rise in AMP levels by increasing ATP-
generating pathways and reducing ATP-consuming pathways
(Hardie et al. 2003; Kahn et al. 2005). AMPK activation inhibits
fatty acid and cholesterol synthesis and gluconeogenesis in the liver
and stimulates fatty acid uptake and oxidation, glucose uptake, and
mitochondrial biogenesis in skeletal muscle (Kahn et al. 2005). It
regulates malonyl-CoA levels by inactivating ACC and activatingMCD
during exercise or the electric stimulation of skeletalmuscles (Hardie
and Carling 1997; Saha et al. 2000). It has been hypothesized that
dysregulation of the AMPK/malonyl-CoA fuel-sensing and signaling
network is a key factor in the development of insulin resistance
(Ruderman and Prentki 2004). Thiazolidinedione treatment report-
edly stimulates AMPK activity in cultured cells, rat liver, and adipose
tissues by increasing the ratio of AMP to ATP (Fryer et al. 2002; Saha
et al. 2004).

In contrast, we found that AMPK activity levels are barely
detectable in pre-diabetic OLETF rats, regardless of whether they
were fed with a normal or a high-fat diet. Furthermore, these low
basal levels were not affected by treatment with either rosiglitazone
or fenofibrate. Consistent with this observation, the activity of ACC–a
key target of AMPK activation–in skeletal muscle remained essentially
unchanged in rats fed either a normal or a high-fat diet. Our results
suggest that AMPK/malonyl-CoA signaling network is defective in this
pre-diabetic rat model, which may contribute to the dysregulation of
fatty acid metabolism in skeletal muscle and liver.

Conclusion

In this study, we demonstrate that rosiglitazone and fenofibrate
improve insulin sensitivity and reduce plasma triglyceride and free
fatty acid levels in pre-diabetic rats. This effect is likely due to a
reduction of malonyl-CoA levels caused by an increase inMCD activity.
In particular, fenofibrate stimulates the transcription of MCD by PPAR-
α. The fact that ACC and AMPK activities in skeletal muscle were not
affected by these agonists suggests a defect in the AMPK signaling
network in this diabetic rat model. Further studies will be required to
determine how MCD activity is stimulated by rosiglitazone and why
fenofibrate inhibits ACCα activity in the livers of rats fed a high-fat
diet. Our data strongly suggest that early intervention with PPAR
agonists during the pre-diabetic periodwill significantly improve fatty
acid metabolism and insulin sensitivity and, perhaps, prevent further
development of diabetes.
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