














Fig. 4. Induced overexpression of MPO enhanced sensitivity to PTL-induced apoptosis. K562 cells were transfected with wild-type MPO (K562/MPO),
mutant MPO (K562/R569W), and pCI empty control (K562/Control) cDNA construct using nucleofection as described under Materials and Methods.
After electroporation, stable transfectant clones were selected and used for further experiments. A, heavy (�) subunit and precursor MPO protein
expression in each transfected cell lines were evaluated using flow cytometry (left) and Western blot analysis (right). b1, each transfectant was exposed
to the indicated concentration of PTL for 24 h, and then the percentage of apoptotic cells was determined by flow cytometry. The histograms (b2, left)
and bar graphs (b2, right) show the percentage of sub-G1 populations measured by flow cytometry in K562 and K562/MPO cells 24 h after treatment
with 10 	M PTL. The disruption of mitochondrial membrane potential (
�m) was measured by DiOC6 incubation and flow cytometry analysis (b3,
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et al., 2001; Wen et al., 2002; Wang et al., 2006; Pajak et al.,
2008). ROS induces apoptosis in a variety of cancer cells by
stimulating proapoptotic signaling molecules, activating the
p53 protein pathway, or initiating the mitochondrial apopto-
sis pathway (Wen et al., 2002; Zhang et al., 2004a,b) in a
GSH-sensitive manner (Zhang et al., 2004b; Pajak et al.,
2008). Therefore, the identification and attenuation of mole-
cules that control the generation of ROS in leukemia cells
could enhance their susceptibility to PTL-induced apoptosis.

In this study, we demonstrated that PTL remarkably in-
duces the generation of ROS and apoptosis specifically in
both MPO-high leukemia cell lines and MPO-high primary
leukemic cells obtained from AML patients. However, PTL
failed to generate ROS or induce apoptosis in MPO-low leu-
kemia cells. Pretreatment of leukemia cells with NAC abro-
gated PTL-induced ROS generation, GSH depletion, and cell
death only in the MPO-high cells, suggesting that the gener-
ation of oxidant species is associated with PTL-induced cell
death in the MPO-high leukemia cells. The MPO-specific
inhibitor ABAH and the heme biosynthesis inhibitor ScAc
also significantly inhibited PTL-induced apoptosis in MPO-
high NB4 cells, whereas these MPO inhibitors did not affect
PTL-induced apoptosis in MPO-low U937 cells. MPO silenc-
ing with MPO-specific siRNA transfection significantly de-
creased the level of PTL-induced apoptosis only in MPO-high
NB4 cells in a dose-dependent manner. Furthermore, an
induced overexpression of wild-type MPO gene in K562 cells
led to a significant increase in the PTL-induced ROS gener-
ation, glutathione depletion, activation of caspase cascades,
and mitochondrial pathway-mediated cell death compared
with the overexpression in parental K562 cells. These find-
ings clearly indicate that PTL-induced ROS generation and

apoptosis are critically associated with MPO expression in
leukemia cells.

The specific ROS responsible for PTL-induced apoptosis in
MPO-high leukemia cells was not investigated in this study.
MPO is an endogenous lysosomal enzyme that removes H2O2

and catalyzes the formation of toxic hypochlorous acid
(HOCl) (Hampton et al., 1998; Klebanoff, 2005; Sawayama et
al., 2008). HOCl interacts with other small molecules to
produce various ROS, including hydroxyl radicals (�OH), sin-
glet oxygen (1O2), peroxynitrite (ONOO�), and ozone (O3)
(Hampton et al., 1998). Previous studies have demonstrated
that MPO-derived chlorinated oxidants and �OH play key
roles in inducing oxidative stress-mediated apoptosis in my-
eloid leukemia cells that are treated with EGCG (Nakazato
et al., 2007), with ROS responsible for triggering apoptosis. It
was suggested that H2O2 produced in the presence of PTL is
converted to HOCl by MPO. However, HOCl was not found to
be responsible for directly inducing apoptosis as MPO-in-
duced apoptosis was blocked by an O2

. scavenger and an �OH
scavenger in MPO-positive leukemia cells (Nakazato et al.,
2007). It can be suggested that a reaction between HOCl with
O2

. may result in the formation of a hydroxy radical that could
directly induce apoptosis of MPO-positive leukemia cells.

NF-�B is a transcription factor that plays a key role in
regulating cell proliferation, apoptosis, stress responses, and
cell signaling pathways (Hayden and Ghosh, 2008; Baud and
Karin, 2009). It was shown that PTL potentially inhibits
NF-�B activity by inhibiting I�B kinase complex, resulting in
sustained cytoplasmic retention of NF-�B (Bork et al., 1997;
Suvannasankha et al., 2008). Because NF-�B is aberrantly
activated in the CD34�CD38� LSC population and is asso-
ciated with resistance to chemotherapy in AML (Guzman et

left), and the cytoplasmic translocation of cytochrome c and Smac/DIABLO protein examined by Western blot analysis (b3, right). The cleavage of
caspases-8, -9, -3, and PARP was examined in two cell lines 24 h after PTL treatment using Western blot analysis (b4, left). K562 and K562/MPO cells
were exposed to 10 	M PTL for 24 h in the presence or absence of the caspase inhibitor z-VAD-fmk, after which the percentage of apoptotic cells was
determined by flow cytometry (b4, right). K562 and K562/MPO cells were cultured with 10 	M PTL for 5 h in the presence or absence of prior
incubation with 1 mM NAC, after which intracellular ROS generation (C, top and bottom) and GSH depletion (D) were measured using flow cytometry.
E, K562 and K562/MPO cells were treated with 10 	M PTL for 24 h, and then Western blot analysis was conducted using the appropriate antibodies.
Columns, mean of three independent experiments; Bars, S.D. �, P � 0.05; ��, P � 0.01.

TABLE 1
PTL-induced apoptosis of primary AML cells and normal CD34-positive bone marrow cells according to MPO expression

ID Sex/Age FAB Classification MPO*
Apoptosis

Control*** PTL(10 	M)**

% %

AML cases
1 F/39 M1 18.4 0.3 3.5
2 M/39 M4 9.7 0.4 1.1
3 M/31 M2 4.1 0.8 0.1
4 M/69 M2 6.6 0.7 1.0
5 M/28 M2 48.2 0.6 44.2
6 F/33 M0 59.9 0.7 45.2
7 F/59 M1 66.0 0.1 45.6
8 M/65 M1 46.0 0.7 42.3
9 M/53 M4 46.7 0.8 43.0
10 F/25 M4 70.5 0.1 46.6

Healthy donors
11 M/46 3.7 2.1 9.3
12 M/53 8.8 5.6 7.1
13 F/49 1.0 3.4 8.9
14 F/54 0.1 3.4 9.5

* MPO(%), percentage of MPO-positive cells in the total mononuclear cells.
** After treatment of primary AML cells or normal CD34-positive bone marrow cells with 10 	M PTL for 24 h, the proportion of apoptotic cells was evaluated using flow

cytometry.
*** Control, DMSO.
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al., 2001), it is possible that PTL could be used as an agent to
preferentially eradicate LSC. However, we found that PTL
inhibits NF-�B only in the MPO-high leukemia cells. Like-
wise, PTL-induced down-regulation of a variety of NF-�B-
regulated antiapoptotic molecules, such as Bcl-xL, Mcl-1, the
XIAP, and survivin (Khoshnan et al., 2000; Taguchi et al.,
2006), were documented only in the MPO-high leukemia
cells. PTL-induced truncation of the BH3-only protein Bid
(tBID) and induction of the proapoptotic targets PUMA and
Bak as well as phosphorylation of p-JNK were also observed
selectively in the MPO-high leukemia cells.

LSC usually exists in a quiescent state and is therefore
unlikely to respond to standard antileukemia chemothera-
peutic agents that preferentially eradicate actively cycling
cells (Holyoake et al., 1999; Graham et al., 2002; Guan et al.,
2003; Guzman et al., 2005). The persistence of LSC after

chemotherapy may be a major factor contributing to relapse
(Jordan and Guzman, 2004; van Rhenen et al., 2005). For
these reasons, development of novel therapeutic agents that
specifically target the LSC population without affecting nor-
mal hematopoietic stem cells is therefore crucial (Guzman et
al., 2005). Because NF-�B is constitutively activated in the
LSC population (Guzman et al., 2001), PTL can be considered
a LSC-specific therapeutic agent. These primitive AML cells
may be more sensitive to changes in oxidative stress than
normal hematopoietic stem cells, and the resultant increase
in ROS may contribute to AML-specific cell death (Guzman
et al., 2005). As MPO was considered a crucial determinant of
PTL-induced apoptosis in leukemia cells, we evaluated MPO
expression in the primary AML cells with respect to CD34
and CD38 antigen coexpression. MPO was highly expressed
in the CD34�CD38� leukemia cells obtained from the MPO-

Fig. 5. Differential sensitivity of primary AML cells to PTL-induced apoptosis according to MPO expression. A, constitutive MPO activity of primary
leukemia cells obtained from MPO-high(hi) AML (n � 6), MPO-low(lo) AML (n � 4) cases as well as CD34-positive normal bone marrow cells (n � 4)
was measured using human MPO enzyme immunometric assay. Primary MPO-high and MPO-low AML cases were arbitrarily defined according to
the fraction of leukemic blasts expressing MPO as described under Materials and Methods. B–D, primary MPO-high AML cells, MPO-low AML cells,
and CD34-positive normal bone marrow cells were treated with 10 	M PTL for 24 h, and then the fraction of apoptotic cells (B) and intracellular ROS
generation (C) were evaluated by flow cytometry (top and bottom), and GSH depletion (D) was examined using luminescence spectrometer. Columns,
mean of three independent experiments; Bars, S.D.
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high AML cases. In contrast, MPO expression was very low
in the CD34�CD38� leukemia cells obtained from MPO-low
AML cases. PTL-induced apoptosis of CD34�CD38� LSC
candidates was significantly higher in MPO-high AML com-
pared with MPO-low AML cases. This finding suggests that
PTL has a selective effect on MPO-high CD34�CD38� LSC.
PTL-induced apoptosis was negligible in the CD34� normal
bone marrow cells in which MPO expression was very low.

Taken together, MPO molecule is demonstrated to be func-
tionally related to PTL-induced apoptosis, ROS generation,
GSH depletion, and the down-regulation of various antiapop-
totic molecules, such as NF-�B in leukemia cells and
CD34�CD38� LSC candidates. Therefore, the level of MPO
expression within AML cells may be a potential marker for
predicting the sensitivity of leukemia cells and LSC to PTL-
induced cell death. Our findings indicate that PTL treatment
can potentially be considered as a promising targeted ther-

apy for leukemia bulk and LSC in MPO-high AML cells. In
addition, as conventional chemotherapeutic agents may in-
duce NF-�B activation in leukemia cells, PTL can be com-
bined with several common antileukemia drugs to overcome
chemoresistance and enhance therapeutic responses.
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