Cited 0 times in

Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85

Authors
 Kyung-Don Kang ; Yong Seok Cho ; Su-Il Seong ; Ohsuk Kwon ; Ji Hyung Chung ; Sang Ki Rhee ; Kyo Yeol Hwang ; Jae Yeon Lee ; Young Shik Park ; Ji Hye Song 
Citation
 Journal of Microbiology, Vol.49(3) : 431~440, 2011 
Journal Title
 Journal of Microbiology 
ISSN
 1225-8873 
Issue Date
2011
Abstract
1-Deoxynojirimycin (DNJ), a D-glucose analogue with a nitrogen atom substituting for the ring oxygen, is a strong inhibitor of intestinal α-glucosidase. DNJ has several promising biological activities, including its antidiabetic, antitumor, and antiviral activities. Nevertheless, only limited amounts of DNJ are available because it can only be extracted from some higher plants, including the mulberry tree, or purified from the culture broth of several types of soil bacteria, such as Streptomyces sp. and Bacillus sp. In our previous study, a DNJ-producing bacterium, Bacillus subtilis MORI, was isolated from the traditional Korean fermented food Chungkookjang. In the present study, we report the identification of the DNJ biosynthetic genes in B. subtilis MORI 3K-85 strain, a DNJ-overproducing derivate of the B. subtilis MORI strain generated by γ-irradiation, xhe genomic DNA library of B. subtilis MORI 3K-85 was constructed in Escherichia coli, and clones showing α-glucosidase inhibition activity were selected. After DNA sequencing and a series of subcloning, we were able to identify a putative Operon which consists of gabT1, yktc1, and gutB1 genes predicted to encode putative transaminase, phosphatase, and oxidoreductase, respectively. When a recombinant plasmid containing this Operon sequence was transformed into an E. coli strain, the resulting transformant was able to produce DNJ into the culture medium. Our results indicate that the gabT1, yktc1, and gutB1 genes are involved in the DNJ biosynthetic pathway in B. subtilis MORI, suggesting the possibility of employing these genes to establish a large-scale microbial DNJ overproduction system through genetic engineering and process optimization
URI
http://ir.ymlib.yonsei.ac.kr/handle/22282913/93706
DOI
10.1007/s12275-011-1238-3
Appears in Collections:
1. 연구논문 > 5. Research Institutes > Cardiovascular Product Evaluation Center
Yonsei Authors
사서에게 알리기
  feedback
Link
 http://link.springer.com/article/10.1007%2Fs12275-011-1238-3
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse