Cited 0 times in

102 3

Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice.

Authors
 이종은 ; 조성래 ; 한경화 ; 강성웅 ; 나동욱 ; 남정모 ; 박윤길 ; 박은숙 ; 이원택 
Citation
 Developmental Medicine and Child Neurology, Vol.53(4) : 327~333, 2011 
Journal Title
 Developmental Medicine and Child Neurology 
ISSN
 0012-1622 
Issue Date
2011
Abstract
AIM: Constraint-induced movement therapy (CIMT) has emerged as a promising therapeutic strategy for improving affected upper limb function in children with hemiplegic cerebral palsy (CP). However, little is known about the changes in the brain that are induced by CIMT. This study was designed to investigate these changes and behavioural performance after CIMT intervention in mice with neonatal hypoxic-ischemic brain injury. METHOD: We utilized the neonatal hypoxic-ischemic brain injury model established in mice pups. Three weeks after the injury, the mice were randomly assigned to the following three groups: the control group (n = 15), the enriched-environment group (n = 17), and the CIMT with an enriched-environment group (CIMT-EE, n = 15). 5-bromo-2-deoxyuridine (BrdU) was injected daily to label proliferating cells during the 2 weeks of intervention. RESULTS: The CIMT-EE group showed better fall rate in the horizontal ladder rung walking test (mean 5.4%, SD 3.6%) than either the control (mean 14.3%, SD 7.3%; p = 0.001) or enriched-environment (mean 12.4%, SD 7.7%; p = 0.010) groups 2 weeks after the end of intervention. The CIMT-EE group also showed more neurogenesis (mean 7069 cells/mm³, SD 4017 cells/mm³) than either the control group (mean 1555 cells/mm³, SD 1422 cells/mm³; p < 0.001) or enriched-environment group (mean 2994 cells/mm³, SD 3498 cells/mm³; p = 0.001) in the subventricular zone. In the striatum, neurogenesis in the CIMT-EE group (mean 534 cells/mm³, SD 441 cells/mm³) was greater than in the control group (mean 95 cells/mm³, SD 133 cells/mm³; p = 0.001). INTERPRETATION: There was CIMT-EE enhanced neurogenesis in the brain along with functional benefits in mice after early hypoxic-ischemic brain injury. This is the first study to demonstrate the effects of CIMT on neurogenesis and functional recovery after experimental injury to an immature brain.
URI
http://ir.ymlib.yonsei.ac.kr/handle/22282913/92762
DOI
10.1111/j.1469-8749.2010.03877.x
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Yonsei Biomedical Research Center
1. 연구논문 > 1. College of Medicine > Dept. of Anatomy
1. 연구논문 > 1. College of Medicine > Dept. of Preventive Medicine
1. 연구논문 > 1. College of Medicine > Dept. of Rehabilitation Medicine
Yonsei Authors
사서에게 알리기
  feedback
Link
 http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2010.03877.x/abstract
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse