Cited 0 times in

Epithelial Na+ channel proteins are mechanotransducers of myogenic constriction in rat posterior cerebral arteries.

Authors
 Eok-Cheon Kim ; Duck-Sun Ahn ; Young-Ho Lee ; Mihwa Lim ; Soo-In Yeon 
Citation
 Experimental Physiology, Vol.97(4) : 544~555, 2012 
Journal Title
 Experimental Physiology 
ISSN
 0958-0670 
Issue Date
2012
Abstract
It has been suggested that mechanosensitive ion channels initiate myogenic responses in vessels; however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although previous reports have suggested that epithelial Na(+) channel (ENaC) proteins are mechanotransducers in arteries, experimental evidence demonstrating that ENaC proteins are mechanotransducers are not fully elucidated. The goal of the present study was to determine whether the ENaC is a mechanotransducer for the myogenic response by providing supporting evidence in the rat posterior cerebral artery (PCA). We measured the effect of ENaC inhibition on the pressure-induced myogenic response, Ca(2+) concentration and 20 kDa myosin light chain (MLC(20)) phosphorylation. We detected expression of βENaC and γENaC subunits in rat PCA by Western blots and immunofluorescence. Inhibition of ENaCs with amiloride, ethyl isopropyl amiloride or benzamil blocked the myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with βENaC and γENaC small interfering RNA. The myogenic response was inhibited by elimination of external Na(+), which was replaced with N-methyl-d-glucamine. Amiloride and nifedipine inhibited the pressure-induced increase in Ca(2+) concentration. Finally, MLC(20) increased when the intraluminal pressure was raised, and the pressure-induced increase in MLC(20) phosphorylation was inhibited by pretreatment with amiloride, and in arteries transfected with βENaC or γENaC small interfering RNA. Our results suggest that ENaCs may play an important role as mechanosensitive ion channels initiating pressure-induced myogenic responses in rat PCA.
URI
http://ir.ymlib.yonsei.ac.kr/handle/22282913/90282
DOI
10.1113/expphysiol.2011.062232
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Physiology
Yonsei Authors
사서에게 알리기
  feedback
Files in This Item:
T201201084.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse