Cited 0 times in

Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis

 Yong-Wan Kim ; Dimpy Koul ; W.K. Alfred Yung ; Ken Aldape ; Jonas S. Almeida ; Jing Wang ; Jun Yao ; Pablo R. Freire ; Agda Karina Lucio-Eterovic ; Se Hoon Kim 
 Neuro-Oncology, Vol.15(7) : 829~839, 2013 
Journal Title
Issue Date
Background The Cancer Genome Atlas (TCGA) project is a large-scale effort with the goal of identifying novel molecular aberrations in glioblastoma (GBM). Methods Here, we describe an in-depth analysis of gene expression data and copy number aberration (CNA) data to classify GBMs into prognostic groups to determine correlates of subtypes that may be biologically significant. Results To identify predictive survival models, we searched TCGA in 173 patients and identified 42 probe sets (P = .0005) that could be used to divide the tumor samples into 3 groups and showed a significantly (P = .0006) improved overall survival. Kaplan-Meier plots showed that the median survival of group 3 was markedly longer (127 weeks) than that of groups 1 and 2 (47 and 52 weeks, respectively). We then validated the 42 probe sets to stratify the patients according to survival in other public GBM gene expression datasets (eg, GSE4290 dataset). An overall analysis of the gene expression and copy number aberration using a multivariate Cox regression model showed that the 42 probe sets had a significant (P < .018) prognostic value independent of other variables. Conclusions By integrating multidimensional genomic data from TCGA, we identified a specific survival model in a new prognostic group of GBM and suggest that molecular stratification of patients with GBM into homogeneous subgroups may provide opportunities for the development of new treatment modalities.
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Pathology
Yonsei Authors
사서에게 알리기
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.