31 68

Cited 0 times in

Development of Inclined Applicators for Flattened Beam Intraoperative Radiotherapy

DC Field Value Language
dc.contributor.author박광우-
dc.date.accessioned2024-03-22T05:51:44Z-
dc.date.available2024-03-22T05:51:44Z-
dc.date.issued2023-08-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/198258-
dc.description.abstractA 3D-printed applicator for intraoperative radiation therapy (IORT) using the INTRABEAM system has been introduced, designed to protect normal tissue, expand indications, and assess its effectiveness in various intraoperative settings. The study involved designing and creating inclined applicators at 0° and 45° angles, which were capable of producing flattened and unflattened beams and shielding non-target areas from radiation. The applicator was evaluated based on dose uniformity, percentage depth dose, leakage, and dose rate. The findings showed that the applicator provided a uniform beam at various depths (1.23 to 1.30 for the flattened beam and 1.25 to 1.32 for the unflattened beam) and effectively shielded against leakage, with no leakage dose measured at 1 mm from the surface. Additionally, the dose rates after 3 min of irradiation for flattened and unflattened beams were 51.0 and 52.9 cGy for 0° and 48.5 and 54.8 cGy for 45° applicators, respectively. This suggests that the applicator can efficiently deliver IORT while minimizing exposure to normal tissues, particularly in treating chest and abdominal lesions near or on critical organs. The applicator has undergone dose calibration and has moved forward to clinical application. © 2023 by the authors.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.relation.isPartOfAPPLIED SCIENCES-BASEL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleDevelopment of Inclined Applicators for Flattened Beam Intraoperative Radiotherapy-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorJeong Heon Kim-
dc.contributor.googleauthorSohyun Ahn-
dc.contributor.googleauthorKwangwoo Park-
dc.contributor.googleauthorRena Lee-
dc.contributor.googleauthorJin Sung Kim-
dc.identifier.doi10.3390/app13169099-
dc.contributor.localIdA01432-
dc.relation.journalcodeJ03706-
dc.identifier.eissn2076-3417-
dc.subject.keywordIORT-
dc.subject.keywordinclined applicator-
dc.subject.keywordleakage dose-
dc.subject.keyworduniformity-
dc.subject.keywordoutput calibration-
dc.contributor.alternativeNamePark, Kwang Woo-
dc.contributor.affiliatedAuthor박광우-
dc.citation.volume13-
dc.citation.number16-
dc.citation.startPage9099-
dc.identifier.bibliographicCitationAPPLIED SCIENCES-BASEL, Vol.13(16) : 9099, 2023-08-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.