0 300

Cited 0 times in

Feasibility of a 64-Channel Scintillation Fiber System for Real-Time Monitoring of Dwell Positions and Dwell Times of High-Dose-Rate Brachytherapy Sources

Authors
 Na Hye Kwon  ;  Jinsung Kim  ;  Ju Hye Kim  ;  Sang Hyoun Choi 
Citation
 IEEE ACCESS, Vol.10 : 730-740, 2022-01 
Journal Title
IEEE ACCESS
Issue Date
2022-01
Abstract
A 64-channel scintillation fiber-based real-time monitoring system (SFRMS) was developed and evaluated to verify the dwell position and dwell time of the radioactive source in high-dose-rate brachytherapy. The measurement system consists of 64 sensors installed around a tandem applicator. The distal end of the readout system was fiber-optically connected to the measurement system. The data readout system consisted of a photomultiplier tube and a measurement and automation explorer. The SFRMS accuracy was evaluated in terms of dwell position, output linearity, and dwell time using an afterloader with a 192 Ir source. Additionally, a Gafchromic EBT3 film was inserted into the applicator to compare fiber measurements. Furthermore, a clinical treatment plan and silicon-based anthropomorphic phantom were utilized to evaluate the accuracy of the dwell positions and dwell times of the source in a situation mimicking a real treatment. The measured output signals from each sensor were fit with Gaussian and inverse-square functions to determine the exact source dwell positions. The difference in dwell position between the plans and the estimated data was −0.63 ± 0.25 mm for the Gaussian fitting and 0.72 ± 0.26 mm for the inverse-square fitting. The difference in dwell time between the plans and the estimated data was within 0.1 sec. For the measurements of the clinical plan on the silicon-based anthropomorphic phantom, the difference in dwell position between the plans and the estimated data was less than 0.88 ± 0.29 mm for the Gaussian fitting and less than 0.85 ± 0.36 mm for the inverse-square fitting. The SFRMS can accurately detect source dwell positions and dwell times and provide real-time output.
Full Text
https://ieeexplore.ieee.org/document/9654203
DOI
10.1109/ACCESS.2021.3136255
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers
Yonsei Authors
Kim, Dong Wook(김동욱) ORCID logo https://orcid.org/0000-0002-5819-9783
Kim, Jinsung(김진성) ORCID logo https://orcid.org/0000-0003-1415-6471
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/187958
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links