218 363

Cited 0 times in

Spatial Changes in the Atrial Fibrillation Wave-Dynamics After Using Antiarrhythmic Drugs: A Computational Modeling Study

DC Field Value Language
dc.contributor.author권오석-
dc.contributor.author김태훈-
dc.contributor.author박제욱-
dc.contributor.author박희남-
dc.contributor.author유희태-
dc.contributor.author정보영-
dc.contributor.author임병현-
dc.contributor.author진제-
dc.date.accessioned2021-12-28T17:19:45Z-
dc.date.available2021-12-28T17:19:45Z-
dc.date.issued2021-09-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/187049-
dc.description.abstractBackground: We previously reported that a computational modeling-guided antiarrhythmic drug (AAD) test was feasible for evaluating multiple AADs in patients with atrial fibrillation (AF). We explored the anti-AF mechanisms of AADs and spatial change in the AF wave-dynamics by a realistic computational model. Methods: We used realistic computational modeling of 25 AF patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal AF) reflecting the anatomy, histology, and electrophysiology of the left atrium (LA) to characterize the effects of five AADs (amiodarone, sotalol, dronedarone, flecainide, and propafenone). We evaluated the spatial change in the AF wave-dynamics by measuring the mean dominant frequency (DF) and its coefficient of variation [dominant frequency-coefficient of variation (DF-COV)] in 10 segments of the LA. The mean DF and DF-COV were compared according to the pulmonary vein (PV) vs. extra-PV, maximal slope of the restitution curves (Smax), and defragmentation of AF. Results: The mean DF decreased after the administration of AADs in the dose dependent manner (p < 0.001). Under AADs, the DF was significantly lower (p < 0.001) and COV-DF higher (p = 0.003) in the PV than extra-PV region. The mean DF was significantly lower at a high Smax (≥1.4) than a lower Smax condition under AADs. During the episodes of AF defragmentation, the mean DF was lower (p < 0.001), but the COV-DF was higher (p < 0.001) than that in those without defragmentation. Conclusions: The DF reduction with AADs is predominant in the PVs and during a high Smax condition and causes AF termination or defragmentation during a lower DF and spatially unstable (higher DF-COV) condition.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherFrontiers Research Foundation-
dc.relation.isPartOfFRONTIERS IN PHYSIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleSpatial Changes in the Atrial Fibrillation Wave-Dynamics After Using Antiarrhythmic Drugs: A Computational Modeling Study-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentBioMedical Science Institute (의생명과학부)-
dc.contributor.googleauthorInseok Hwang-
dc.contributor.googleauthorJe-Wook Park-
dc.contributor.googleauthorOh-Seok Kwon-
dc.contributor.googleauthorByounghyun Lim-
dc.contributor.googleauthorJisu Lee-
dc.contributor.googleauthorZe Jin-
dc.contributor.googleauthorHee-Tae Yu-
dc.contributor.googleauthorTae-Hoon Kim-
dc.contributor.googleauthorBoyoung Joung-
dc.contributor.googleauthorHui-Nam Pak-
dc.identifier.doi10.3389/fphys.2021.733543-
dc.contributor.localIdA06119-
dc.contributor.localIdA01085-
dc.contributor.localIdA04574-
dc.contributor.localIdA01776-
dc.contributor.localIdA02535-
dc.contributor.localIdA03609-
dc.relation.journalcodeJ02868-
dc.identifier.eissn1664-042X-
dc.identifier.pmid34630153-
dc.subject.keywordantiarrhythmic drug-
dc.subject.keywordatrial fibrillation-
dc.subject.keywordcomputational modeling-
dc.subject.keyworddominant frequency-
dc.subject.keywordspatial changes-
dc.contributor.alternativeNameKwon, Oh-Seok-
dc.contributor.affiliatedAuthor권오석-
dc.contributor.affiliatedAuthor김태훈-
dc.contributor.affiliatedAuthor박제욱-
dc.contributor.affiliatedAuthor박희남-
dc.contributor.affiliatedAuthor유희태-
dc.contributor.affiliatedAuthor정보영-
dc.citation.volume12-
dc.citation.startPage733543-
dc.identifier.bibliographicCitationFRONTIERS IN PHYSIOLOGY, Vol.12 : 733543, 2021-09-
Appears in Collections:
1. College of Medicine (의과대학) > BioMedical Science Institute (의생명과학부) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.