257 639

Cited 5 times in

Sp1-Induced FNBP1 Drives Rigorous 3D Cell Motility in EMT-Type Gastric Cancer Cells

DC Field Value Language
dc.contributor.author김재우-
dc.contributor.author김태현-
dc.contributor.author정재호-
dc.contributor.author황성순-
dc.contributor.author윤보경-
dc.date.accessioned2021-09-29T01:08:56Z-
dc.date.available2021-09-29T01:08:56Z-
dc.date.issued2021-06-
dc.identifier.issn1661-6596-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/184220-
dc.description.abstractCancer is heterogeneous among patients, requiring a thorough understanding of molecular subtypes and the establishment of therapeutic strategies based on its behavior. Gastric cancer (GC) is adenocarcinoma with marked heterogeneity leading to different prognoses. As an effort, we previously identified a stem-like subtype, which is prone to metastasis, with the worst prognosis. Here, we propose FNBP1 as a key to high-level cell motility, present only in aggressive GC cells. FNBP1 is also up-regulated in both the GS subtype from the TCGA project and the EMT subtype from the ACRG study, which include high portions of diffuse histologic type. Ablation of FNBP1 in the EMT-type GC cell line brought changes in the cell periphery in transcriptomic analysis. Indeed, loss of FNBP1 resulted in the loss of invasive ability, especially in a three-dimensional culture system. Live imaging indicated active movement of actin in FNBP1-overexpressed cells cultured in an extracellular matrix dome. To find the transcription factor which drives FNBP1 expression in an EMT-type GC cell line, the FNBP1 promoter region and DNA binding motifs were analyzed. Interestingly, the Sp1 motif was abundant in the promoter, and pharmacological inhibition and knockdown of Sp1 down-regulated FNBP1 promoter activity and the transcription level, respectively. Taken together, our results propose Sp1-driven FNBP1 as a key molecule explaining aggressiveness in EMT-type GC cells.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.publisherINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleSp1-Induced FNBP1 Drives Rigorous 3D Cell Motility in EMT-Type Gastric Cancer Cells-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Biochemistry and Molecular Biology (생화학-분자생물학교실)-
dc.contributor.googleauthorBo Kyung Yoon-
dc.contributor.googleauthorNahee Hwang-
dc.contributor.googleauthorKyu-Hye Chun-
dc.contributor.googleauthorYoseob Lee-
dc.contributor.googleauthorTatiana Patricia Mendes Duarte-
dc.contributor.googleauthorJae-Won Kim-
dc.contributor.googleauthorTae-Hyun Kim-
dc.contributor.googleauthorJae-Ho Cheong-
dc.contributor.googleauthorSungsoon Fang-
dc.contributor.googleauthorJae-Woo Kim-
dc.identifier.doi10.3390/ijms22136784-
dc.contributor.localIdA00865-
dc.contributor.localIdA01081-
dc.contributor.localIdA03717-
dc.contributor.localIdA05443-
dc.relation.journalcodeJ01133-
dc.identifier.eissn1422-0067-
dc.identifier.pmid34202606-
dc.subject.keywordEMT-
dc.subject.keywordFNBP1-
dc.subject.keywordSp1-
dc.subject.keywordcell motility-
dc.subject.keywordgastric cancer-
dc.contributor.alternativeNameKim, Jae Woo-
dc.contributor.affiliatedAuthor김재우-
dc.contributor.affiliatedAuthor김태현-
dc.contributor.affiliatedAuthor정재호-
dc.contributor.affiliatedAuthor황성순-
dc.citation.volume22-
dc.citation.number13-
dc.citation.startPage6784-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.22(13) : 6784, 2021-06-
Appears in Collections:
1. College of Medicine (의과대학) > BioMedical Science Institute (의생명과학부) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Biochemistry and Molecular Biology (생화학-분자생물학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Surgery (외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.