265 448

Cited 17 times in

Patient-Specific Phantomless Estimation of Bone Mineral Density and Its Effects on Finite Element Analysis Results: A Feasibility Study

Authors
 Young Han Lee  ;  Jung Jin Kim  ;  Gwun Jang 
Citation
 COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, Vol.2019 : 4102410, 2019 
Journal Title
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE
ISSN
 1748-670X 
Issue Date
2019
MeSH
Adult ; Aged ; Algorithms ; Bone Density* ; Elastic Modulus ; Feasibility Studies ; Female ; Femur/diagnostic imaging ; Finite Element Analysis ; Humans ; Imaging, Three-Dimensional ; Lumbar Vertebrae/diagnostic imaging ; Male ; Middle Aged ; Patient-Specific Modeling/statistics & numerical data* ; Pelvic Bones/diagnostic imaging ; Phantoms, Imaging ; Regression Analysis ; Retrospective Studies ; Tomography, X-Ray Computed
Abstract
Objectives: This study proposes a regression model for the phantomless Hounsfield units (HU) to bone mineral density (BMD) conversion including patient physical factors and analyzes the accuracy of the estimated BMD values.

Methods: The HU values, BMDs, circumferences of the body, and cross-sectional areas of bone were measured from 39 quantitative computed tomography images of L2 vertebrae and hips. Then, the phantomless HU-to-BMD conversion was derived using a multiple linear regression model. For the statistical analysis, the correlation between the estimated BMD values and the reference BMD values was evaluated using Pearson's correlation test. Voxelwise BMD and finite element analysis (FEA) results were analyzed in terms of root-mean-square error (RMSE) and strain energy density, respectively.

Results: The HU values and circumferences were statistically significant (p < 0.05) for the lumbar spine, whereas only the HU values were statistically significant (p < 0.05) for the proximal femur. The BMD values estimated using the proposed HU-to-BMD conversion were significantly correlated with those measured using the reference phantom: Pearson's correlation coefficients of 0.998 and 0.984 for the lumbar spine and proximal femur, respectively. The RMSEs of the estimated BMD values for the lumbar spine and hip were 4.26 ± 0.60 (mg/cc) and 8.35 ± 0.57 (mg/cc), respectively. The errors of total strain energy were 1.06% and 0.91%, respectively.

Conclusions: The proposed phantomless HU-to-BMD conversion demonstrates the potential of precisely estimating BMD values from CT images without the reference phantom and being utilized as a viable tool for FEA-based quantitative assessment using routine CT images.
Files in This Item:
T201901597.pdf Download
DOI
10.1155/2019/4102410
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Lee, Young Han(이영한) ORCID logo https://orcid.org/0000-0002-5602-391X
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/169985
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links