1 897

Cited 78 times in

Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes

Authors
 Seok-Min Kang  ;  Soyeon Lim  ;  Heesang Song  ;  Woochul Chang  ;  Sunju Lee  ;  Sang-mee Bae  ;  Ji Hyung Chung  ;  Hakbae Lee  ;  Ho-Gyoung Kim  ;  Deok-Hyo Yoon  ;  Tae Woong Kim  ;  Yangsoo Jang  ;  Jae-Mo Sung  ;  Nam-Sik Chung  ;  Ki-Chul Hwang 
Citation
 EUROPEAN JOURNAL OF PHARMACOLOGY, Vol.535(1-3) : 212-219, 2006 
Journal Title
EUROPEAN JOURNAL OF PHARMACOLOGY
ISSN
 0014-2999 
Issue Date
2006
MeSH
Allopurinol/pharmacology* ; Animals ; Animals, Newborn ; Calcium/metabolism* ; Calcium-Transporting ATPases/metabolism ; Cell Hypoxia ; Cells, Cultured ; Flow Cytometry ; Free Radical Scavengers/pharmacology ; Male ; Microscopy, Confocal ; Myocardial Reperfusion Injury/physiopathology ; Myocardium/enzymology ; Myocardium/metabolism* ; Myocardium/pathology ; Myocytes, Cardiac/drug effects* ; Myocytes, Cardiac/enzymology ; Myocytes, Cardiac/metabolism ; Oxygen/pharmacology ; Protein Kinase C/metabolism ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species/metabolism* ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; Signal Transduction/drug effects ; Xanthine Oxidase/antagonists & inhibitors ; Xanthine Oxidase/metabolism
Keywords
Allopurinol ; Xanthine oxidase ; Ischemia-reperfusion ; Reactive oxygen species production ; Ca2+ overload
Abstract
Myocardial oxidative stress and Ca2+ overload induced by ischemia-reperfusion may be involved in the development and progression of myocardial dysfunction in heart failure. Xanthine oxidase, which is capable of producing reactive oxygen species, is considered as a culprit regarding ischemia-reperfusion injury of cardiomyocytes. Even though inhibition of xanthine oxidase by allopurinol in failing hearts improves cardiac performance, the regulatory mechanisms are not known in detail. We therefore hypothesized that allopurinol may prevent the xanthine oxidase-induced reactive oxygen species production and Ca2+ overload, leading to decreased calcium-responsive signaling in myocardial dysfunction. Allopurinol reversed the increased xanthine oxidase activity in ischemia-reperfusion injury of neonatal rat hearts. Hypoxia-reoxygenation injury, which simulates ischemia-reperfusion injury, of neonatal rat cardiomyocytes resulted in activation of xanthine oxidase relative to that of the control, indicating that intracellular xanthine oxidase exists in neonatal rat cardiomyocytes and that hypoxia-reoxygenation induces xanthine oxidase activity. Allopurinol (10 μM) treatment suppressed xanthine oxidase activity induced by hypoxia-reoxygenation injury and the production of reactive oxygen species. Allopurinol also decreased the concentration of intracellular Ca2+ increased by enhanced xanthine oxidase activity. Enhanced xanthine oxidase activity resulted in decreased expression of protein kinase C and sarcoendoplasmic reticulum calcium ATPase and increased the phosphorylation of extracellular signal-regulated protein kinase and p38 kinase. Xanthine oxidase activity was increased in both ischemia-reperfusion-injured rat hearts and hypoxia-reoxygenation-injured cardiomyocytes, leading to reactive oxygen species production and intracellular Ca2+ overload through mechanisms involving p38 kinase and extracellular signal-regulated protein kinase (ERK) via sarcoendoplasmic reticulum calcium ATPase (SERCA) and protein kinase C (PKC). Xanthine oxidase inhibition with allopurinol modulates reactive oxygen species production and intracellular Ca2+ overload in hypoxia-reoxygenation-injured neonatal rat cardiomyocytes.
Full Text
http://www.sciencedirect.com/science/article/pii/S0014299906000173
DOI
10.1016/j.ejphar.2006.01.013
Appears in Collections:
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Yonsei Biomedical Research Center (연세의생명연구원) > 1. Journal Papers
Yonsei Authors
Kang, Seok Min(강석민) ORCID logo https://orcid.org/0000-0001-9856-9227
Lee, Sun Ju(이선주)
Lim, So Yeon(임소연)
Jang, Yang Soo(장양수) ORCID logo https://orcid.org/0000-0002-2169-3112
Chang, Woo Chul(장우철)
Chung, Nam Sik(정남식)
Hwang, Ki Chul(황기철)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/110957
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links