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Abstract: To investigate the dominant metabolic type of triple-negative breast cancer (TNBC) and evaluate its clinical 
implication through analysis of protein expression related to glycolysis, glutaminolysis, and mitochondrial oxidative 
phosphorylation. Tissue samples from 129 patients with TNBC who underwent mastectomy due to invasive breast 
cancer from 2000 to 2005 were prepared for tissue microarray. By immunohistochemical staining of the tissue 
microarrays, the markers of glycolysis-related proteins (Glut-1, CAIX, MCT4), glutaminolysis-related proteins (GLS1, 
GDH, ASCT2), and mitochondrial enzymes (ATP synthase, SDHA and SDHB) were analyzed. Based on the results, the 
metabolic phenotypes were defined based on positivity for more than two of three markers for each phenotype as 
follows: glycolysis type (Glut-1, CAIX and MCT4), glutaminolysis type (GLS1, GDH and ASCT2) and mitochondrial type 
(ATP synthase, SDHA and SDHB). The percentages of samples with metabolic phenotypes of tumor and stroma of 
TNBC were as follows: for tumor, mitochondrial type (85.3%) > glutaminolysis type (67.4%) > glycolysis type (63.0%); 
and for stroma, glutaminolysis type (37.2%) > glycolysis type (16.3%) > mitochondrial type (14.0%). The most com-
mon metabolic phenotype of TNBC was glycolysis type for basal-like type and non-glycolysis type for non-basal-like 
type (p=0.047). The correlation between glutaminolysis and mitochondrial type was statistically significant in both 
tumor and stroma (p<0.001). In conclusion, tumor cells of TNBC express glycolysis and mitochondrial metabolism-
related proteins. Glycolysis type is the most common phenotype of basal-like type, and reversely, non-glycolysis type 
is the most common phenotype of non basal-like type.
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Introduction

Breast cancer is one of the most heteroge-
neous tumors in terms of clinical behavior, out-
come and treatment response. Consistent 
efforts are necessary to classify heteroge-
neous breast cancer. One approach has been 
gene profiling studies, which classify breast 
cancer into five subtypes with distinct molecu-
lar signatures and clinical implications: normal 
breast-like, luminal A, luminal B, HER-2, and 
basal-like phenotypes [1, 2]. Aside from these 
five subtypes, breast cancer negative for estro-
gen receptor (ER), progesterone receptor (PR) 
and HER-2 is defined as triple-negative breast 
cancer (TNBC) [3]. As TNBC is negative for 
these receptors, there is no effective targeted 
therapy, and the tumor is heterogeneous. TNBC 
can be classified into basal-like (39-54%), 

molecular apocrine (25-39%), or claudin-low 
(7-14%) based on gene profiling [4]. The general 
characteristics of TNBC include high histologic 
grade, increased mitosis, tumor necrosis, 
aggressive tumor behavior, and poor prognosis 
[5-8], which are very similar to the features of 
tumors with high metabolic activity. The crucial 
components of tumor metabolism include gly-
colysis, glutaminolysis, and mitochondrial oxi-
dative phosphorylation [9], and the important 
proteins for each metabolic component are 
summarized in Table 1. Previous studies have 
reported that the dominant metabolism of 
tumors can vary according to the tumor type [9, 
10]. As TNBC is a heterogeneous tumor, vari-
ability in dominant metabolism is expected, but 
few studies have been conducted. The objec-
tive of this study was to investigate the domi-
nant metabolic type of TNBC through the analy-
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sis of protein expression associated with 
glycolysis, glutaminolysis and mitochondrial 
oxidative phosphorylation and to elucidate the 
implications of our findings. 

Materials and methods

Patient selection

The subjects of this study included patients 
with TNBC who underwent mastectomy after 
the diagnosis of breast cancer in Yonsei 
University Severance Hospital from January 
2000 to December 2005. The patients who 
received hormone therapy or chemotherapy 
prior to the surgery were excluded. This study 
was approved by the Institutional Review Board 
of Yonsei University Severance Hospital. TNBC 
was defined as ER-, PR- and HER-2-negative as 
determined by immunohistochemistry (IHC) 
and by fluorescence in situ hybridization (FISH). 
A cut-off value of 1% or more positively stained 
nuclei was used to define ER and PR positivity 
[11]. HER-2 staining was analyzed according to 
the American Society of Clinical Oncology 
(ASCO)/College of American Pathologists (CAP) 
guidelines using the following categories: 0=no 
immunostaining; 1+=weak incomplete membra-
nous staining, less than 10% of tumor cells; 
2+=complete membranous staining, either uni-
form or weak in at least 10% of tumor cells; and 
3+=uniform intense membranous staining in at 
least 30% of tumor cells [12]. HER-2 immunos-
taining was considered positive when strong 

(3+) membranous staining was observed, 
whereas cases with 0 to 1+ were regarded as 
negative. The cases showing 2+ HER-2 expres-
sion were evaluated for HER-2 amplification by 
FISH. All the cases were retrospectively revi-
ewed by a breast pathologist (Koo JS), and his-
tological analysis was conducted with hema-
toxylin and eosin (H&E)-stained slides. The 
histological grade was assessed using the 
Nottingham grading system [13]. Clinicopa-
thologic parameters evaluated in each case 
included patient age at initial diagnosis, lymph 
node metastasis, tumor recurrence, distant 
metastasis, and patient survival. 

Tissue microarray

On H&E-stained slides of tumors, a representa-
tive area was selected, and the corresponding 
spot was marked on the surface of the paraffin 
block. Using a biopsy needle, the selected area 
was punched out, and a 3-mm tissue core was 
placed into a 6 × 5 recipient block. The tissue 
of the invasive tumor was extracted. More than 
two tissue cores were extracted to minimize the 
extraction bias. Each tissue core was assigned 
with a unique tissue microarray location num-
ber that was linked to a database containing 
other clinicopathologic data. 

Immunohistochemistry

The antibodies used for immunohistochemistry 
in this study are shown in Table 2. All the immu-

Table 1. Key proteins in cancer metabolism
Category Function 
Glycolysis-related
    Glut-1 Transports glucose into cells
    CAIX Neutralizes lactate-induced acidification during glycolysis 
    MCT4 Transports lactate produced by glycolysis out of cells 
Glutaminolysis-related
    GLS1 Converts glutamine to glutamate 
    GDH Converts glutamate to α-ketoglutarate
    ASCT2 Transports glutamine into cells
Mitochondrial metabolism-related
    ATP synthase Synthesizes ATP from ADP in mitochondria 
    SDHA A component of respiratory complex II in mitochondria; oxidates succinate to 

fumarate during the citric acid cycle 
    SDHB A component of respiratory complex II in mitochondria; oxidates succinate to 

fumarate during the citric acid cycle
CAIX, carbonic anhydrase IX, MCT, monocarboxylate transporter, GLS, glutaminase, GDH, Glutamate dehydrogenase, ASCT2, 
ASC-like Na(+)-dependent neutral amino acid transporter, SDH, Succinate dehydrogenase.
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nohistochemical assays were conducted with 
formalin-fixed, paraffin-embedded tissue sec-
tions. Briefly, 5-μm-thick sections were obtained 
with a microtome, transferred onto adhesive 
slides, and dried at 62°C for 30 minutes. After 
incubation with primary antibodies, immunode-
tection was performed with biotinylated anti-
mouse immunoglobulin, followed by peroxi-
dase-labeled streptavidin using a labeled 
streptavidin biotin kit with 3,3’-diaminobenzi-
dine chromogen as the substrate. The primary 
antibody incubation step was omitted in the 
negative control. Slides were counterstained 
with Harris hematoxylin. 

Interpretation of immunohistochemical stain-
ing

All immunohistochemical markers were asse-
ssed by light microscopy. The IHC stain results 
for androgen receptor (AR), cytokeratin (CK) 
5/6, interleukin (IL)-8, signal transducer and 
activator of transcription (STAT)-1 and gamma-
glutamyltransferase (GGT)-1 were considered 
positive when more than 10% of the tumor cells 
were stained. The IHC stain results for epider-
mal growth factor receptor (EGFR), claudin-3, 
claudin-4, claudin-7 and E-cadherin were clas-
sified into negative, weak, moderate and 

Table 2. Clone, dilution, and source of antibodies used
Antibody Clone Dilution Company
Molecular phenotype-related 
    Basal-like-related
        Cytokeratin 5/6 D5/16B4 1:50 DAKO, Glostrup, Denmark
        EGFR EGFR.25 1:50 Novocastra, Newcastle, UK
    Claudin-low-related
        Claudin 3 Polyclonal 1:50 Abcam, Cambridge, UK
        Claudin 4 Polyclonal 1:100 Abcam, Cambridge, UK
        Claudin 7 Polyclonal 1:100 Abcam, Cambridge, UK
        E-cadherin 36B5 1:100 Novocastra, Newcastle, UK
    Molecular apocrine-related
        Androgen receptor AR441 1:50 DAKO, Glostrup, Denmark
        GGT1 IgG2A 1:50 Abcam, Cambridge, UK
    Immune-related
        STAT1 Polyclonal 1:100 Abcam, Cambridge, UK
        IL-8 807 1:50 Abcam, Cambridge, UK
    Proliferation-related
        Ki-67 MIB-1 1:150 DAKO, Glostrup, Denmark
Metabolic phenotype-related
    Glycolysis-related
        Glut-1 SPM498 1:200 Abcam, Cambridge, UK
        CAIX Polyclonal 1:100 Abcam, Cambridge, UK
        MCT4 Polyclonal 1:100 Santa Cruz, CA, USA
    Glutaminolysis-related
        GLS1 Polyclonal 1:50 Abcam, Cambridge, UK
        GDH Polyclonal 1:100 Abcam, Cambridge, UK
        ASCT2 Polyclonal 1:100 Abcam, Cambridge, UK
    Mitochondrial metabolism-related
        ATP synthase 15H4C4 1:100 Abcam, Cambridge, UK
        SDHA 2E3GC12FB2AE2 1:100 Abcam, Cambridge, UK
        SDHB 21A11AE7 1:100 Abcam, Cambridge, UK
EGFR, epidermal growth factor receptor, GGT1, gamma-glutamyltransferase 1, STAT1,  Signal Transducers and Activators of 
Transcription1, IL, interleukin, CAIX, carbonic anhydrase IX, MCT, monocarboxylate transporter, GLS, glutaminase, GDH, Gluta-
mate dehydrogenase, ASCT2, ASC-like Na(+)-dependent neutral amino acid transporter, SDH, Succinate dehydrogenase.
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Table 3. Clinicopathologic features according to subtype of TNBC

Parameter Total N=129 (%) Basal-like type 
n=54 (%)

Molecular apocrine type 
n=11 (%)

Claudin-low type 
n=8 (%)

Immune-related type 
n=6 (%)

Mixed type 
n=28 (%)

Null type 
n=22 (%) P-value 

Age (years, mean±SD) 48.5±12.5 47.0±11.3 51.3±15.4 49.8±8.2 52.3±18.7 49.3±12.9 48.4±13.4 0.843

Histologic grade 0.396

    I 3 (2.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (7.1) 1 (4.5)

    II 37 (28.7) 16 (29.6) 6 (54.5) 3 (37.5) 1 (16.7) 7 (25.0) 4 (18.2)

    III 89 (69.0) 38 (70.4) 5 (45.5) 5 (62.5) 5 (83.3) 19 (67.9) 17 (77.3)

Tumor stage 0.550

    T1 49 (38.0) 24 (44.4) 5 (45.5) 3 (37.5) 1 (16.7) 9 (32.1) 7 (31.8)

    T2 78 (60.5) 29 (53.7) 5 (45.5) 5 (62.5) 5 (83.3) 19 (67.9) 15 (68.2)

    T3 2 (1.6) 1 (1.9) 1 (9.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Nodal stage 0.950

    N0 85 (65.9) 40 (74.1) 6 (54.5) 5 (83.3) 5 (83.3) 17 (60.7) 12 (54.5)

    N1 34 (26.4) 10 (18.5) 4 (36.4) 3 (37.5) 1 (16.7) 8 (28.6) 8 (36.4)

    N2 7 (5.4) 3 (5.6) 1 (9.1) 0 (0.0) 0 (0.0) 2 (7.1) 1 (4.5)

    N3 3 (2.3) 1 (1.9) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.6) 1 (4.5)

Central acellular zone 0.216

    No 98 (76.0) 37 (68.5) 11 (100.0) 6 (75.0) 6 (100.0) 21 (75.0) 17 (77.3)

    Yes 31 (24.0) 17 (31.5) 0 (0.0) 2 (25.0) 0 (0.0) 7 (25.0) 5 (22.7)

Central necrotic zone 0.874

    No 120 (93.0) 50 (92.6) 11 (100.0) 7 (87.5) 6 (100.0) 26 (92.9) 20 (90.9)

    Yes 9 (7.0) 4 (7.4) 0 (0.0) 1 (12.5) 0 (0.0) 2 (7.1) 2 (9.1)

Central fibrotic zone 0.346

    No 103 (79.8) 40 (74.1) 11 (100.0) 6 (75.0) 6 (100.0) 22 (78.6) 18 (81.8)

    Yes 26 (20.2) 14 (25.9) 0 (0.0) 2 (25.0) 0 (0.0) 6 (21.4) 4 (18.2)

Lymphocytic infiltration 0.035

    No 97 (75.2) 40 (74.1) 8 (72.7) 7 (87.5) 2 (33.3) 19 (67.9) 21 (95.5)

    Yes 32 (24.8) 14 (25.9) 3 (27.3) 1 (12.5) 4 (66.7) 9 (32.1) 1 (4.5)

Tumor cell discohesiveness 0.096

    No 120 (93.0) 52 (96.3) 8 (72.7) 7 (87.5) 6 (100.0) 27 (96.4) 20 (90.9)

    Yes 9 (7.0) 2 (3.7) 3 (27.3) 1 (12.5) 0 (0.0) 1 (3.6) 2 (9.1)

Tumor margin 0.294

    Expanding 110 (85.3) 48 (88.9) 8 (72.7) 7 (87.5) 6 (100.0) 25 (89.3) 16 (72.7)

    Infiltrative 19 (14.7) 6 (11.1) 3 (27.3) 1 (12.5) 0 (0.0) 3 (10.7) 6 (27.3)

Apocrine differentiation 0.031

    No 105 (81.4) 46 (85.2) 5 (45.5) 7 (87.5) 4 (66.7) 23 (82.1) 20 (90.9)

    Yes 24 (18.6) 8 (14.8) 6 (54.5) 1 (12.5) 2 (33.3) 5 (17.9) 2 (9.1)

Ki-67 LI (%, mean±SD) 28.1±23.4 33.5±24.8 6.0±4.8 27.3±27.8 38.6±27.5 29.5±22.1 21.6±17.3 0.006

LI, labeling index; TNBC, triple-negative breast carcinoma.
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Table 4. Metabolic phenotypes according to subtype of TNBC

Parameter Total N=129 (%) Basal-like type 
n=54 (%)

Molecular apocrine type 
n=11 (%)

Claudin-low type 
n=8 (%)

Immune-related type 
n=6 (%)

Mixed type 
n=28 (%)

Null type 
n=22 (%) P-value 

Tumoral phenotype 0.301
    Glycolysis type 69 (53.5) 34 (63.0) 4 (36.4) 4 (50.0) 3 (50.0) 16 (57.1) 8 (36.4)
    Non-glycolysis type 60 (46.5) 20 (37.0) 7 (63.6) 4 (50.0) 3 (50.0) 12 (42.9) 14 (63.6)
Stromal phenotype 0.385
    Glycolysis type 21 (16.3) 10 (18.5) 0 (0.0) 1 (12.5) 0 (0.0) 7 (25.0) 3 (13.6)
    Non-glycolysis type 108 (83.7) 44 (81.5) 11 (100.0) 7 (87.5) 6 (100.0) 21 (75.0) 19 (86.4)
Tumoral phenotype 0.496
    Glutaminolysis type 87 (67.4) 37 (68.5) 5 (45.5) 5 (65.5) 3 (50.0) 21 (75.0) 16 (72.7)
    Non-glutaminolysis type 42 (32.6) 17 (31.5) 6 (54.5) 3 (37.5) 3 (50.0) 7 (25.0) 6 (27.3)
Stromal phenotype 0.545
    Glutaminolysis type 48 (37.2) 17 (31.5) 4 (36.4) 5 (62.5) 3 (50.0) 12 (42.9) 7 (31.8)
    Non-glutaminolysis type 81 (62.8) 37 (68.5) 7 (63.6) 3 (37.5) 3 (50.0) 16 (57.1) 15 (68.2)
Tumoral phenotype 0.303
    Mitochondrial type 110 (85.3) 48 (88.9) 8 (72.7) 7 (87.5) 4 (66.7) 26 (92.9) 17 (77.3)
    Non-mitochondrial type 19 (14.7) 6 (11.1) 3 (27.3) 1 (12.5) 2 (33.3) 2 (7.1) 5 (22.7)
Stromal phenotype 0.577
    Mitochondrial type 18 (14.0) 10 (18.5) 2 (18.2) 0 (0.0) 0 (0.0) 4 (14.3) 2 (9.1)
    Non-mitochondrial type 111 (86.0) 44 (81.5) 9 (81.8) 8 (100.0) 6 (100.0) 24 (85.7) 20 (90.9)
TNBC, triple-negative breast carcinoma.
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intense expression. The cases with moderate 
or intense expression were considered posi-
tive. The assessment of immunohistochemical 
staining of metabolism-related proteins was 
based on the product of the proportion of 
stained cells and the immunostaining intensity. 
The grades of the proportion of stained cells 
were 0: negative, 1: <30% of positive cells, and 
2: ≥30% of positive cells, while the grades of 
immunostaining intensity were 0: negative, 1: 
weak, 2: moderate, and 3, strong. The product 
of the proportion of stained cells and the immu-
nostaining intensity was judged as negative for 
0-1, weakly positive for 2-4, and highly positive 
for 5-6. Results for Ki-67 were scored by count-
ing the positively stained nuclei and expressing 
this number as a percentage of the total tumor 
cell number [Ki-67 labeling index (LI)].

Molecular classification of TNBC according to 
IHC

According to the results of IHC, TNBC was sub-
classified into basal-like type (CK5/6-positive 
and/or EGFR-positive), molecular apocrine type 
(AR-positive and/or GGT-1-positive), claudin-low 
type (claudin 3-, claudin 4-, claudin 7-negative 
and/or E-cadherin-negative), immune-related 
type (IL-8-negative and stromal STAT1-positive), 
mixed type (two or more types), and null type 
(none of these).

Metabolic classification of TNBC according to 
IHC

Metabolic phenotypes were classified as fol-
lows, based on the expression of metabolism-
related proteins: glycolysis type (positive for 
two or more of Glut-1, CAIX and MCT-4), gluta-
minolysis type (positive for two or more of 
GLS1, GDH and ASCT2), and mitochondrial type 
(positive for two or more of ATP synthase, SDHA 
and SDHB).

Statistical analysis

Data were processed using SPSS for Windows, 
version 12.0 (SPSS Inc., Chicago, IL, USA). 
Student’s t and Fisher’s exact tests were used 
to examine any difference in continuous and 
categorical variables, respectively. The limit for 
statistical significance was set at P=0.05. 
Kaplan-Meier survival curves and log-rank sta-
tistics were employed to evaluate time to tumor 
metastasis and time to survival. Multivariate 
regression analysis was performed using Cox 
proportional hazards model.

Results

Clinicopathologic characteristics of TNBC

The most common type of TNBC was basal-like 
type (54%), followed by molecular apocrine type 
(11%), claudin-low type (8%), and immune-relat-

Figure 1. A heat map of immunohistochemical results of metabolism-related proteins according to the molecular 
subtype of TNBC. T tumor, S stroma, Red positive, Green negative.
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ed type (6%). In addition, there was mixed type 
(28%) and null type (22%). Lymphocytic infiltra-

immunohistochemical results formetabolism-
related proteins  is shown in Figure 1.

Figure 2. Immunohistochemical expression of metabolism-related proteins in basal-like and non-basal-like TNBC. 
The expression of glycolysis-related proteins is high in basal-like type, while the expression is low in non-basal-like 
type.

Table 5. Comparison of metabolic phenotypes between basal-
like type and non-basal-like type 

Parameter Basal-like type 
n=79 (%)

Non-basal-like 
type n=50 (%) p-value

Tumoral phenotype 0.047
    Glycolysis type 48 (60.8) 21 (42.0)
    Non-glycolysis type 31 (39.2) 29 (58.0)
Stromal phenotype 0.148
    Glycolysis type 16 (20.3) 5 (10.0)
    Non-glycolysis type 63 (79.7) 45 (90.0)
Tumoral phenotype 0.565
    Glutaminolysis type 55 (69.6) 32 (64.0)
    Non-glutaminolysis type 24 (30.4) 18 (36.0)
Stromal phenotype 0.455
    Glutaminolysis type 27 (34.2) 21 (42.0)
    Non-glutaminolysis type 52 (65.8) 29 (58.0)
Tumoral phenotype 0.077
    Mitochondrial type 71 (89.9) 39 (78.0)
    Non-mitochondrial type 8 (10.1) 11 (22.0)
Stromal phenotype 0.191
    Mitochondrial type 14 (17.7) 4 (8.0)
    Non-mitochondrial type 65 (82.3) 46 (92.0)

tion was highest in the immune-
related type and lowest in the null 
type (p=0.035), while apocrine dif-
ferentiation was most commonly 
observed in the molecular apocrine 
type but rarely in the null type 
(p=0.031). Ki-67 labeling index was 
highest in immune-related type and 
lowest in molecular apocrine type 
(p=0.006, Table 3).

Metabolic phenotypes according to 
molecular subtype of TNBC

The analysis of metabolic pheno-
types of tumor and stroma based on 
molecular subtypes of TNBC sug-
gested no statistically significant dif-
ference, but tumors of basal-like 
type showed a higher ratio of glycol-
ysis type, while tumors of molecular 
apocrine type and null type showed 
a higher ratio of non-glycolysis type, 
and stroma of claudin-low type 
showed a higher ratio of glutaminol-
ysis type (Table 4). A heat map of 
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Table 6. Clinicopathologic characteristics according to the metabolic phenotype in tumor and stroma

Parameter

Tumoral phenotype Stromal phenotype Tumoral phenotype Stromal phenotype Tumoral phenotype Stromal phenotype
Glycoly-
sis type 
n=69 (%)

Non-
glyco-
lysis type 
n=60 
(%)

P-val-
ue*

Glycoly-
sis type

Non-gly-
colysis 
type

P-val-
ue*

Glutami-
nolysis 
type

Non-
glutami-
nolysis 
type

P-val-
ue*

Glutami-
nolysis 
type

Non-
glutami-
nolysis 
type

P-val-
ue*

Mito-
chondrial 
type

Non-
mito-
chondrial 
type

P-val-
ue*

Mito-
chondrial 
type

Non-
mitoch-
ondrial 
type

P-val-
ue*

Age (years) 4.926 2.166 2.838 1.452 3.144 4.464

    ≤35 12 (17.4) 12 (20.0) 2 (9.5) 22 (20.4) 18 (20.7) 6 (14.3) 6 (12.5) 18 (22.2) 22 (20.0) 2 (10.5) 4 (22.2) 20 (18.0)

    >35 57 (82.6) 48 (80.0) 19 (90.5) 86 (79.6) 69 (79.3) 36 (85.7) 42 (87.5) 63 (77.8) 88 (80.0) 17 (89.5) 14 (77.8) 91 (82.0)

Histologic 
grade

0.120 4.806 2.550 6.000 1.074 2.550

    I/II 15 (21.7) 25 (41.7) 7 (33.3) 33 (30.6) 25 (28.7) 15 (35.7) 15 (31.3) 25 (30.9) 37 (33.6) 3 (15.8) 7 (38.9) 33 (29.7)

    III 54 (78.3) 35 (58.3) 14 (66.7) 75 (69.4) 62 (71.3) 27 (64.3) 33 (68.8) 56 (69.1) 73 (66.4) 16 (84.2) 11 (61.1) 78 (70.3)

Tumor stage 5.136 0.894 2.670 0.234 0.054 0.222

    T1 27 (39.1) 22 (36.7) 11 (52.4) 38 (35.2) 31 (35.6) 18 (42.9) 24 (50.0) 25 (30.9) 47 (42.7) 2 (10.5) 11 (61.1) 38 (34.2)

    T2/T3 42 (60.9) 38 (63.3) 10 (47.6) 70 (64.8) 56 (64.4) 24 (57.1) 24 (50.0) 56 (69.1) 63 (57.3) 17 (89.5) 7 (38.9) 73 (65.8)

Nodal stage 0.102 4.812 1.416 3.408 3.612 4.734

    N0 52 (75.4) 33 (55.0) 13 (61.9) 72 (66.7) 54 (62.1) 31 (73.8) 30 (62.5) 55 (67.9) 71 (64.5) 14 (73.7) 11 (61.1) 74 (66.7)

    N1/N2/N3 17 (24.6) 27 (45.0) 8 (38.1) 36 (33.3) 33 (37.9) 11 (26.2) 18 (37.5) 26 (32.1) 39 (35.5) 5 (26.3) 7 (38.9) 37 (33.3)

Lymphocytic 
infiltration

5.034 1.676 0.792 5.004 6.000 1.428

    Absent 51 (73.9) 46 (76.7) 18 (85.7) 79 (73.1) 69 (79.3) 28 (66.7) 37 (77.1) 60 (74.1) 83 (75.5) 14 (73.7) 16 (88.9) 81 (73.0)

    Present 18 (26.1) 14 (23.3) 3 (14.3) 29 (26.9) 18 (20.7) 14 (33.3) 11 (22.9) 21 (25.9) 27 (24.5) 5 (26.3) 2 (11.1) 30 (27.0)

Tumor cell 
discohesive-
ness

0.072 2.124 2.826 4.356 6.000 6.000

    No  68 (98.6) 52 (86.7) 21 (100) 99 (91.7) 82 (94.3) 38 (90.5) 44 (91.7) 76 (93.8) 102 (92.7) 18 (94.7) 17 (94.4) 103 (92.8)

    Yes  1 (1.4) 8 (13.3) 0 (0.0) 9 (8.3) 5 (5.7) 4 (9.5) 4 (8.3) 5 (6.2) 8 (7.3) 1 (5.3) 1 (5.6) 8 (7.2)

Tumor 
margin

0.282 4.422 2.562 6.000 6.000 1.824

    Expanding 63 (91.3) 47 (78.3) 19 (90.5) 91 (84.3) 76 (87.4) 34 (81.0) 41 (85.4) 69 (85.2) 94 (85.5) 16 (84.2) 14 (77.8) 96 (86.5)

    Infiltrative 6 (8.7) 13 (21.7) 2 (9.5) 17 (15.7) 11 (12.6) 8 (19.0) 7 (14.6) 12 (14.8) 16 (14.5) 3 (15.8) 4 (22.2) 15 (13.5)

Apocrine dif-
ferentiation

4.926 3.252 3.786 3.870 4.524 6.000

    No 57 (82.6) 48 (80.0) 16 (76.2) 89 (82.4) 72 (82.8) 33 (78.6) 38 (79.2) 67 (82.7) 90 (81.8) 15 (78.9) 15 (83.3) 90 (81.1)

    Yes 12 (17.4) 12 (20.0) 5 (23.8) 19 (17.6) 15 (17.2) 9 (21.4) 10 (20.8) 14 (17.3) 20 (18.2) 4 (21.1) 3 (16.7) 21 (18.9)

Ki-67 LI (%, 
mean±SD)

29.9±23.6 26.1±23.1 2.142 31.7±19.1 27.4±24.1 2.664 26.6±22.9 31.2±24.3 1.812 33.8±25.6 24.8±21.4 0.204 29.2±23.4 21.9±22.8 1.272 29.9±23.1 27.8±23.5 4.374

*p-value was adjusted by Bonferroni correction.
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When the metabolic phenotype of TNBC was 
investigated between basal-like type and non-
basal-like type, a difference in glycolysis status 
was observed; the glycolysis type was higher in 
the basal-like type of tumor, while non-glycoly-
sis type was higher in the non-basal-like type 
(p=0.047). In the mitochondrial type of tumor, 
basal-like type was more frequent than non-
basal-like type (p=0.077, Table 5).

Correlation of metabolic phenotypes in tumor 
and stroma

The analysis of metabolic phenotypes of tumor 
and stroma suggested significant correlation 
between glycolysis and mitochondrial type of 
stroma (p<0.001), glutaminolysis and mito-
chondrial type of stroma (p<0.001), and gluta-
minolysis and mitochondrial type of tumor 
(p<0.001) (Figure 2).

Clinicopathologic characteristics according to 
the metabolic phenotype in tumor and stroma

The analysis of correlation between metabolic 
phenotypes of tumor and stroma and clinico-
pathologic characteristics suggested that 
tumor cell discohesiveness was increased, 
though not statistically significant, in non-gly-

colysis type (p=0.072), and the mitochondrial 
type of tumor showed lower T stage (p=0.054, 
Table 6).

The analysis of correlation between metabolic 
phenotypes and disease-free survival (DFS) 
and overall survival (OS) found no statistically 
significant factors (Table 7).

Discussion

In this study, we investigated the expression 
patterns of proteins related to cancer metabo-
lism including glycolysis, glutaminolysis and 
mitochondrial metabolism. The analysis of met-
abolic phenotypes based on surrogate IHC sug-
gested that the most common metabolic phe-
notype of TNBC are mitochondrial type (85.3%), 
followed by glutaminolysis type (67.4%), and 
glycolysis type (63.0%). The well-known 
Warburg effect [14] involves a metabolic shift 
from mitochondrial oxidative phosphorylation 
to aerobic glycolysis. In this study, cancer cells 
of TNBC showed a higher ratio of mitochondrial 
type to glycolysis type. A previous study report-
ed that the predominant energy metabolism 
takes different forms such as glycolysis or oxi-
dative phosphorylation depending on tumor 

Table 7. Univariate analysis of the metabolic phenotypes in TNBC and disease-free survival or overall 
survival by log-rank test

Parameter Number of patients/
recurrence/death 

Disease-free survival Overall survival
Mean survival 

(95% CI) months P-value Mean survival 
(95% CI) months P-value

Tumoral phenotype 0.636 0.126
    Glycolysis type 69/6/4 94 (89-100) 97 (93-102)
    Non-glycolysis type 60/7/9 91 (84-98) 89 (81-96)
Stromal phenotype 0.421 0.463
    Glycolysis type 21/1/1 63 (59-66) 64 (62-65)
    Non-glycolysis type 108/12/12 92 (87-98) 93 (88-98)
Tumoral phenotype 0.377 0.721
    Glutaminolysis type 87/10/9 91 (85-98) 92 (86-98)
    Non-glutaminolysis type 42/3/4 95 (89-101) 93 (86-100)
Stromal phenotype 0.144 0.470
    Glutaminolysis type 48/2/3 94 (89-99) 92 (87-98)
    Non-glutaminolysis type 81/11/10 91 (84-97) 92 (87-98)
Tumoral phenotype 0.435 0.455
    Mitochondrial type 110/10/10 94 (89-99) 94 (89-99)
    Non-mitochondrial type 19/3/3 84 (71-98) 86 (74-97)
Stromal phenotype 0.847 0.774
    Mitochondrial type 18/2/2 73 (63-82) 74 (65-82)
    Non-mitochondrial type 111/11/11 93 (88-98) 94 (89-98)



Metabolism in triple-negative breast cancer

310	 Int J Clin Exp Pathol 2014;7(1):301-312

cell type [9]. As for breast cancer, there have 
been varying reports on the predominant ener-
gy metabolism, from oxidative phosphorylation 
[15] to glycolysis and oxidative phosphorylation 
[16]. A gene signature study also reported a 
high correlation between glycolysis- and oxida-
tive-phosphorylation-related signature and pro-
liferation [17]. As TNBC is a representative of 
highly aggressive tumors with proliferative 
activity, both glycolysis and oxidative phosphor-
ylation of cancer cell metabolism could be 
expected, which is supported by the results of 
this study. In this study, there was no significant 
difference in metabolic phenotype based on 
molecular subtype by surrogate IHC. However, 
this could result from the difficulties in accu-
rate analysis due to the limited numbers of 
each subtype, suggesting that an extended 
study is required with larger numbers of sam-
ples. When TNBC is classified into basal-like 
type and non-basal-like type, however, the ratio 
of glycolysis type was higher in basal-like type 
of tumor, while that of non-glycolysis type was 
higher in non-basal-like type. It was reported 
that the expression of glycolysis-related pro-
teins such as Glut-1, CAIX and MCT4 was higher 
in the basal-like phenotype of breast cancer 
[18-20], which is consistent with the results of 
this study. It should be noted that the metabolic 
phenotype was observed in the stroma and 
was not limited to the tumor. The most common 
metabolic phenotype of stroma was glutami-
nolysis type (37.2%), followed by glycolysis type 
(16.3%) and mitochondrial type (14.0%). Based 
on the molecular subtypes, non-glycolysis type 
was observed in all stroma of molecular apo-
crine type, while non-mitochondrial type was 
observed in those of claudin-low type, and non-
glycolysis type and non-mitochondrial type 
were observed in those of immune-related 
type. These results imply that there are differ-
ent profiles for the molecular subtypes, but this 
finding should be interpreted with caution due 
to the limited numbers of each subtype. The 
interaction between tumor and stroma plays an 
important role in the growth and progression of 
tumors. The interaction can also be important 
in view of metabolism. One of the hypotheses 
about metabolic interaction between tumor 
and stroma in breast cancer is the reverse 
Warburg effect [21]. This theory can be sum-
marized as follow: breast cancer cells generate 
reactive oxygen species (ROS) such as nitric 
oxide (NO), which serve as oxidative stress to 

stromal cells through HIF-1α and NF-κB, lead-
ing to glycolysis, autophagy (mitophagy), and 
mitochondrial dysfunction. The ketone bodies 
and lactate produced by glycolysis in stromal 
cells enter the cancer cells and effectively pro-
duce ATP by oxidative phosphorylation in the 
mitochondria, contributing to the survival and 
growth of the cancer cells. Therefore, stromal 
cells show glycolysis type, while tumor cells 
show mitochondrial type in the reverse Warburg 
effect theory. In addition, a metabolic interac-
tion for glutamine metabolism in the tumor and 
stroma is suggested. This vicious cycle can be 
described as follows: ammonia, a byproduct of 
tumor cell glutaminolysis, diffuses into the stro-
ma where it induces autophagy, followed by 
generation of glutamine as a product of autoph-
agy activity, which is transported back to tumor 
cells [22-26]. Glutamine uptake molecules and 
glutaminase are mainly expressed in cancer 
cells, while the expression of glutamine synthe-
tase is mostly observed in stromal cells [26]. 
We also found various metabolic phenotypes of 
the stroma as well as tumor, which require fur-
ther studies. In the analysis of correlation 
between metabolic phenotypes of tumor and 
stroma, we found significant correlation 
between glutaminolysis type and mitochondrial 
type of both tumor and stroma. As 
α-ketoglutarate generated by glutaminolysis 
can be used as a mitochondrial substrate, a 
relationship between glutaminolysis and mito-
chondrial enzymes could be expected [27] and 
was demonstrated in this study.

In this study, metabolic activity was evaluated 
based on the expression of metabolism-related 
proteins, but more accurate evaluation can be 
obtained through the investigation of metabolic 
flux. However, the metabolic flux cannot be 
measured using paraffin-embedded human tis-
sue samples, and thus the expression of 
metabolism-related proteins was measured by 
IHC as a surrogate method. Such metabolic 
phenotypes of TNBC can be clinically implicat-
ed as a possible targeted therapy. As TNBC is 
negative for all ER, PR and HER-2, there are no 
efficient targeted therapies at present. 
Glycolysis inhibitors, glutamine metabolism 
inhibitors, and other metabolism-related pro-
teins are under preclinical study as possible 
targeted therapies [28, 29]. Therefore, meta-
bolic phenotypes may play a crucial role in 
future targeted therapies. In conclusion, TNBC 
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shows the expression of both glycolysis- and 
mitochondrial metabolism-related proteins in 
tumor cells with higher ratios of glycolysis type 
in basal-like type tumors and non-glycolysis 
type in non-basal-like type tumors.
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