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Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear 
receptor superfamily; members of which play key roles in the control of body me-
tabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thia-
zolidinediones, are widely used in the treatment of metabolic syndromes and type 
2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the 
treatment of T2DM, they also cause unwanted side effects. Thus, understanding the 
molecular mechanisms governing the transcriptional activity of PPARγ is of prime 
importance in the development of new selective drugs or drugs with fewer side ef-
fects. Recent advancements in molecular biology have made it possible to obtain a 
deeper understanding of the role of PPARγ in body homeostasis. The transcriptional 
activity of PPARγ is subject to regulation either by interacting proteins or by modi-
fication of the protein itself. New interacting partners of PPARγ with new functions 
are being unveiled. In addition, post-translational modification by various cellular 
signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this 
review, we will summarize recent advancements in our understanding of the post-
translational modifications of, and proteins interacting with, PPARγ, both of which 
affect its transcriptional activities in relation to adipogenesis.
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INTRODUCTION

Structure and function of peroxisome proliferator-activated receptors
Peroxisome proliferator-activated receptors (PPARs) are known to be lipid sen-
sors, and their ligands are used in the treatment of type 2 diabetes mellitus (T2DM) 
and other metabolic syndromes. PPARs are a family of nuclear receptors that act 
as transcription factors, controlling the genes involved in energy homeostasis.1 
PPARs share a high degree of structural homology with other types of nuclear hor-
mone receptors.2 PPARs comprise a DNA-binding domain (DBD), an agonist-in-
dependent activation domain (AF-1), and an agonist-dependent activation domain 
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and glycerol kinase (GyK).24-31 
However, the activation of PPARγ results in the repres-

sion of the genes encoding leptin, tumor necrosis factor-α 
(TNF-α), and interleukin-6.32-35 PPARγ decreases serum 
free fatty acid level and increases the number of small adi-
pocytes, with a concomitant decrease in the number of 
large adipocytes in white adipose tissue (WAT). In addition 
to the role of PPARγ in adipose tissue, PPARγ directly acti-
vates the genes of the glucose-sensing apparatus in the liver 
and pancreatic β-cells. TZDs increase the expression of the 
genes encoding glucokinase (LGK and βGK) and glucose 
transporter 2 (GLUT2) in the liver36,37 and pancreatic β-cells, 
respectively (see Table 1 for summary).38,39 The transcrip-
tional activity of PPARγ is subject to control at various lev-
els; i.e., via modification of the receptor itself or interac-
tions with other proteins. 

In this review, we will limit our discussion to the regula-
tion of PPARγ activity by various interacting proteins includ-
ing coregulators, and by post-translational modifications 
(PTMs) that result in transcriptional regulation of PPARγ 
target genes.

INTERACTING PROTEINS 
MODULATING TRANSCRIPTIONAL 

ACTIVITIES OF PPARγ

The transcriptional activity of PPARγ is principally modu-
lated by agonists, which recruit either coactivators or core-
pressors. In general, ligand-bound PPARγ recruits coactiva-
tors, whereas ligand-free PPARγ is bound to corepressors. 
These coregulators function as histone-modifying enzymes 
or bridging groups between the basal transcriptional ma-
chinery and PPARγ.40 Moreover, additional proteins are re-
cruited to these coregulators that may affect tissue-specific 
activities of PPARγ. 

Coactivators of PPARγ

Coactivators with histone acetyltransferase activity
Ligand-bound PPARγ undergoes conformational changes, 
providing contact sites for LXXLL motifs that are present in 
coactivators such as p160/steroid receptor coactivator-1 
(SRC-1) and p300/CREB-binding protein (CBP).41 These 
coactivators have intrinsic histone acetyltransferase activities, 
which enhance the transcriptional activities of PPARγ. Mem-
bers of the p160/SRC-1 family including SRC-1 (also known 

(AF-2), which contains the ligand-binding domain (LBD). 
PPARs heterodimerize with the retinoid X receptor (RXR)-α 
and activate the transcription of target genes by binding to 
the PPAR response element (PPRE).

The PPAR family has three isoforms; PPARα, γ, and β/δ. 
PPARα is expressed mainly in the liver, heart, kidney, brown 
adipose tissue (BAT), and skeletal muscle,3 and participates 
in fatty acid oxidation (β-and ω-oxidation).4 The PPARβ/δ 
isoform is expressed ubiquitously and is involved in fatty 
acid oxidation in muscle.5 PPARγ is expressed predominant-
ly in adipose tissue and plays key roles in lipogenesis and 
adipocyte differentiation. It also stimulates glucose oxida-
tion and decreases plasma free fatty acid level.5 PPARγ 
consists of two isotypes; PPARγ1 is expressed in adipocytes, 
skeletal muscle, liver, and heart, whereas PPARγ2 is mostly 
found in adipose tissue.6 PPARγ2 plays a more important 
role than does PPARγ1 in adipogenesis.7 

Physiological significance of PPARγ
PPARγ was first identified as a trans-acting factor binding 
to a gene encoding a fat-specific enhancer of aP2 (adipo-
cyte-specific fatty acid binding protein).8 Homozygous 
PPARγ knockout mice exhibit an embryonic lethal pheno-
type due to placental dysfunction. Heterozygous PPARγ 
deficient mice are resistant to high-fat diet-induced insulin 
resistance due to adipocyte hypertrophy and increased leptin 
expression.9 The ectopic expression of PPARγ was found to 
enhance the differentiation of preadipocytes into adipo-
cytes, with PPARγ acting as an essential factor for differen-
tiation.10 In addition, PPARγ is known to block the clonal 
expansion that occurs via mitosis, an essential stage of adi-
pocyte differentiation.11,12

Thiazolidinediones (TZDs) are a class of compounds that 
function as ligands of PPARγ. These compounds improve 
insulin sensitivity in vivo and have been introduced as ther-
apeutic agents for the treatment of T2DM.13,14 TZDs in-
crease the expression of PPARγ and its transcriptional ac-
tivity in adipose tissue, resulting in the upregulation of the 
expression of genes involved in the metabolism of lipids, 
carbohydrates, steroids, and amino acids.15-17 TZDs increase 
insulin sensitivity by upregulating the expression of multi-
ple genes, such as adiponectin, Cbl-associated protein, in-
sulin receptor substrate 2, and glucose transporter 4.18-23 
TZDs also promote fatty acid storage and lipid metabolism, 
such as fatty acid translocase (CD36), perilipin, fatty acid 
binding protein 4 (Fabp4/aP2), lipoprotein lipase, acyl-CoA 
synthase, phosphoenol pyruvate carboxykinase (PEPCK), 
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a critical metabolic determinant in the development of obe-
sity and insulin resistance.42 

CBP/p300 indirectly increases the transcriptional activity 
of PPARγ through its interaction with PGC-1α. The dock-
ing of PGC-1α to PPARγ induces a conformational change 
in PGC-1α that promotes the binding of SRC-1 and CBP/
p300.45 SRC-1 is also required for a functional interaction 
between CBP/p300 and PPARγ.43 CBP/p300 not only binds 
to the AF-2 domain of PPARγ in a ligand-dependent manner 
but also binds directly to the AF-1 domain in a ligand-inde-
pendent manner,46 increasing the transcriptional activities of 
PPARγ46 and thereby inducing adipogenesis in NIH3T3 fi-
broblasts.47 The recruitment of PPARγ along with CBP/
p300 to the aP2 gene promoter results in adipocyte differ-
entiation.48 

TRAP mediator complex 
The thyroid hormone receptor-associated protein (TRAP) 
complex was first discovered in yeast and shown to be es-
sential for RNA polymerase II-dependent transcription. 
TRAPs were first purified by affinity chromatography from 
cells overexpressing the thyroid hormone receptor. They 
are components of the TRAP/vitamin D receptor-interact-
ing protein (DRIP)/activator-recruited cofactor/Mediator 
(Med) complex, functioning as mediators between RNA 
polymerase II and CBP/p300 or p160/SRC.49 TRAPs also 

as NcoA-1), SRC-2 (also known as TIF2, GRIP-1, or NcoA-
2), and SRC-3 (also known as p/CIP, ACTR, RAC-3, AIB-1, 
or TRAM-1), belong to this category.42 SRC-1 knockout 
(KO) mice showed increased WAT mass and a decrease in 
the expression of genes involved in thermogenesis in brown 
adipose tissue (BAT). These KO mice also showed de-
creased expression of the genes encoding uncoupling protein 
(UCP-1), PPARγ coactivator-1 (PGC-1α), and acyl-CoA oxi-
dase, as well as those encoding enzymes involved in fatty 
acid oxidation.42 LXXLL motifs in SRC-1 interact directly 
with the AF-2 domain of PPARγ, recruiting CBP, which is 
required for PPARγ function.43 SRC2-/- mice exhibit increased 
insulin sensitivity and are resistant to the development of 
obesity. These mice show increased lipolysis and decreased 
fatty acid uptake and storage which are related to the reduc-
tion of PPARγ activity.42 When SRC-3 is deficient, core-
pressors such as nuclear receptor co-repressor (NCoR) and 
nuclear receptor interacting protein 1 (NRIP1 or RIP140) are 
recruited to the PPRE of the UCP1 gene, resulting in a de-
crease in its transcription.44 SRC-3 and SRC-1 double KO 
mice are resistant to high-fat diet-induced obesity, due to 
the decreased expression of PPARγ target genes.44 PGC-1α 
activates PPARγ by increasing the binding of SRC-1 both in 
vivo and in vitro,45 whereas SRC-2 attenuates the formation 
of the PGC-1α-PPARγ complex by competing with SRC-1.42 
This study suggests that the ratio of SRC-2/SRC-1 could be 

Table 1. Selected PPARγ Target Genes Involved in Metabolism
Genes PPARγ effect Organ/cell type Metabolic effects Reference
Adiponectin Upregulation Adipocyte Decrease in atherogenesis 18
CAP Upregulation Adipocyte Improved insulin sensitivity 20
IRS2 Upregulation Adipocyte Anti-diabetic effect 21
GLUT4 Upregulation Adipocyte Glucose uptake 22, 23
CD36 Upregulation Adipocyte Fatty acid uptake 29
aP2 Upregulation Adipocyte Lipid oxidation 25
LPL Upregulation Adipocyte, muscle Decrease in triglyceride 23, 30
ACS Upregulation Adipocyte Decrease in triglyceride 31

PCK2 Upregulation Adipocyte, muscle Decrease in triglyceride
Increase in lipid oxidation 23-25

GyK Upregulation Adpocyte Decrease in free fatty acid 26
Perilipin Upregulation Aipocyte Decrease in free fatty acid 27, 28
Leptin Downregulation Adipocyte Improved insulin sensitivity 32, 33
TNF-α Downregulation Adipocyte, liver Improved insulin sensitivity 32, 34, 35
IL-6 Downregulation Adipocyte, liver Improved insulin sensitivity 32, 34, 35
GK Upregulation Liver, pancreatic β-cell Improved glucose homeostasis 37, 38
GLUT2 Upregulation Liver, pancreatic β-cell Increase in glucose sensing 36, 39

PPARγ, peroxisome proliferator-activated receptor gamma; CAP, Cbl-associated protein; IRS2, insulin receptor substrate 2; GLUT4, glucose transporter 4; 
LPL, lipoprotein lipase; GyK, glycerol kinase; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; GLUT2, glucose transporter 2; CD36, fatty acid translocase; 
ACS, acetyl-CoA synthetase; PCK2, phosphoenolpyruvate carboxykinase 2; GK, glucokinase.
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coregulator complexes may contribute to adipogenesis. 
Transcriptional regulation by PPARγ during adipogenesis 
critically depends on the SWI/SNF complex, which plays a 
key role in the formation of preinitiation complexes.56

BAF60c2 (a BAF of 60 kDa, subunit 2) is also known to 
interact with the LBD of PPARγ. The N-terminal of BAF60c 
binds to the C-terminal of PPARγ, and the C-terminal of 
BAF60c interacts with the N-terminal of PPARγ in a li-
gand-independent manner. BAF acts as an anchor between 
SWI/SNF complexes and PPARγ. BAF60c increases the 
transcriptional activity of PPARγ in the presence of ligand 
but does not affect adipocyte differentiation.59

Other interacting proteins
ADP-ribosylation factor (ARF6), a key regulator of the aP2 
gene, is a novel transcription factor that is purified from 
BAT.60 ARF6 binding sites are present in the aP2 and PEPCK 
gene promoters.25,61 The PPARγ/RXRα heterodimer inter-
acts with ARF6 during adipogenesis.60 

Menin, encoded by the multiple endocrine neoplasia type 
1 (MEN1) tumor suppressor gene, is involved in activation 
of gene transcription as a component of the mixed-lineage 
leukemia (MLL) 1/MLL2 (also known as KMT2A/B) pro-
tein complexes, and exhibits methyltransferase (HMT) ac-
tivity.62 Ectopic expression of menin increases the transcrip-
tion of PPARγ target genes, and knock down of menin 
inhibits the differentiation of 3T3L1 preadipocytes into ma-
ture adipocytes. Menin interacts directly with the AF-2 do-
main of PPARγ and enhances PPARγ-mediated transcrip-
tional activities in a ligand-dependent fashion. Menin 
increases histone H3K4 methylation in the PPARγ target 
gene, Fabp4, through a direct interaction with the AF-2 do-
main of PPARγ.62 

Multiprotein bridging factor-1 (MBF-1) is a cofactor that 
was first identified in Bombyx mori (Bm). It has been shown 
to interact with LXRα or PPARγ, and stimulate their ligand-
dependent transcriptional activities.63 MBF-1 does not have 
either histone acetyltransferase or methyltransferase activi-
ty but interacts with transcription factor IID (TFIID). MBF-
1 acts as a bridging protein between PPARγ and TFIID, in-
creasing the transcriptional activity of PPARγ. Since MBF-
1 is also known to interact with LXRα and liver receptor 
homolog 1 (LRH-1), a detailed investigation of the role of 
MBF-1 is important to understand its function in the con-
text of lipid metabolism. The central domain of MBF-1 is 
necessary and critical for interaction with LRH-1, LXRα, 
and PPARγ.64

interact with nuclear receptors, such as the vitamin D re-
ceptor (VDR), retinoic acid receptor α (RARα), RXRα, 
PPARα, and PPARγ, in a ligand-dependent manner.50 Both 
TRAP220 and TRAP100 interact with PPARγ through 
their respective LXXLL motifs.50 

TRAP220 is also referred to as the PPAR-binding protein/ 
DRIP205/Med1 subunit of the TRAP complex, functioning 
as a bridging protein between various mediator complexes 
and nuclear receptors.51 TRAP220-/- mice are embryonically 
lethal at day 11.5, suggesting that TRAP is essential for de-
velopment. The ligand-dependent transcriptional activity of 
PPARγ is decreased in TRAP220-/- mouse embryonic fibro-
blasts (MEFs).51 TRAP220-/- MEF cells were not able to in-
duce adipogenic genes via PPARγ. The PPARγ2-TRAP220 
interaction is essential for adipogenesis52 and increases 
PPARγ-mediated transactivation of the promoter reporter 
construct.53 Although PPARγ acts by forming heterodimers 
with RXRα, treatment with the cognate PPARγ- and RXRα- 
selective ligands results in the recruitment of different co-
activators. RXRα-specific ligands recruit SRC-1/p160 to 
PPARγ-RXR, whereas PPARγ ligands recruit TRAP220, 
but not SRC-1/p160.54 

Regulation of PPARγ is achieved by the combinatorial 
actions of the coactivator and its ligands. Ligand-mediated 
selective recruitment of the coactivator may be responsible 
for fine-tuning of target gene expression.

The switching/sucrose nonfermenting (SWI/SNF) chroma-
tin remodeling complex
The mating type SWI/SNF complex is an ATP-dependent 
chromatin remodeling enzyme that activates transcription 
by promoting the access of transcription factors to their 
cognate binding sites.55 The core components of the com-
plex include either the Brg1 or Brm ATPases and several 
Brg1/Brm-associated factors (BAFs). Brg1 and/or Brm can 
interact with a number of different transcriptional regulato-
ry proteins.56 For example, CCAAT-enhancer binding pro-
tein alpha (C/EBPα), a critical factor for adipogenesis, is 
known to interact with hBrm.57

The Brg1/Brm-associated factors (BAFs) family is an ac-
cessory subunit of the SWI/SNF complex, acting as a con-
nector between transcription factors and SWI/SNF com-
plexes.49 BAF180 binds PPARγ-RXRα. The factor contains 
six bromodomains that bind selectively to acetylated histone 
tails, an important protein modification for targeting the co-
regulator complex to chromatin.58 In addition, the presence 
of Brg1 and Brm in the PPARγ promoter suggests that these 



Modulation of PPARγ Activity

Yonsei Med J   http://www.eymj.org   Volume 54   Number 3   May 2013 549

PPARγ acts as a master regulator of adipogenesis upregu-
lating the aP2 and GyK genes. However, aP2 expression is 
increased in mature adipocytes whereas that of the GyK 
gene is not. PPARγ-mediated induction of GyK requires the 
recruitment of the PPARγ ligand and PGC-1α to PPARγ to 
replace corepressors with coactivators. In contrast, aP2 gene 
expression by PPARγ does not require its ligands. Differen-
tial regulation of target genes by ligands may determine the 
selective recruitment of coregulators.80 The interaction be-
tween PGC-1α and PPARγ induces a conformational change 
in PGC-1α, facilitating the recruitment of SRC-1 and CBP/
p300.45 Although PGC-1α is known to interact with various 
nuclear receptors, PGC-1α is an essential cofactor for the 
transactivation of PPARγ, acting as a hub linking nutrition-
al and hormonal signals to energy metabolism.81

Corepressors of PPARγ

Nuclear receptor co-repressor (NCoR) and silencing 
mediator of retinoid and thyroid hormone receptor (SMRT)
The PPARγ antagonist T0070907 covalently binds to PPARγ 
at Cys313 in helix 3, and was shown to decrease PPARγ activ-
ity in a cell-based reporter assay. T0070907 blocks the re-
cruitment of the coactivator and promotes the recruitment 
of NCoR to PPARγ.82 In the absence of ligand, NCoR and 
silencing mediator of retinoid and thyroid hormone recep-
tor (SMRT) are recruited to PPARγ, resulting in a decrease 
in its transcriptional activity. In cells treated with piogli-
tazone, SMRT and NCoR dissociate from PPARγ. In addi-
tion, treatment with siRNA against SMRT and NCoR in-
creased adipogenesis and the accumulation of lipid droplets 
in 3T3L1 adipocytes.83 

NAD-dependent deacetylase sirtuin-1 (SIRT1) is known to 
be responsible for calorie restriction and mobilizing WAT. 
SIRT1 activation by resveratrol decreases fat accumulation in 
differentiated adipocytes. SIRT1 represses PPARγ transcrip-
tional activity by recruiting NCoR and SMRT.84 Since a re-
duction in fat accumulation is sufficient to extend life span 
in mice,85 the role of SIRT1 in fat mobilization constitutes a 
possible molecular pathway connecting calorie restriction 
to life extension.84 

Adipocyte-specific NCoR knockout (AKO) mice exhibit 
an increase in the expression of PPARγ-responsive genes 
and a decrease in cyclin-dependent kinase (Cdk5)-mediated 
PPARγ Ser273 phosphorylation, resulting in constitutive ac-
tivation of these genes. Although AKO mice show an in-
crease in adiposity, they also exhibit improved systemic in-

PPARγ and thromboxane synthase (TXS) are expressed 
in macrophages; therefore, they may be involved in athero-
genesis. PPARγ binds to nuclear factor E2-related factor 2 
(NRF2), which results in decreasing TXS gene expression 
by preventing the binding of NRF2 to the TXS gene. The 
suppression of TXS gene expression by PPARγ was in-
creased by treatment with15-deoxy-Δ12,14-prostaglandin J2  
and troglitazone.65 TXS is increased in an inflammatory 
model of hydronephrosis, which is characterized by infiltra-
tion of macrophages into the kidney, and produces throm-
boxane.66,67 Thromboxane inhibitors are shown to suppress 
the progression of experimental diabetic nephropathy in 
rats68 and ameliorate microalbuminuria in patients with 
T2DM.69 Hence, PPARγ ligands could be used as drugs for 
treating renal complications of T2DM.

PPAR-interacting protein (PRIP, also known as RAP250/ 
ASC-2/TRBP/NRC) is expressed in the reproductive organs 
(testis, prostate, and ovary) and identified as a novel, direct 
interacting coactivator of PPARγ, RXRα, PPARα, RARα, es-
trogen receptor (ER), and thyroid hormone receptor β.70,71 
Knock out of PRIP resulted in embryonic lethality and vas-
cular dysfunction of the placenta.72 PRIP-/- MEFs exhibit re-
pression of the transcriptional activity of RXRα rather than 
PPARγ activity. Although PRIP was isolated in the yeast 
two-hybrid screen using PPARγ as a bait, PRIP has a pref-
erence for RXRα over its heterodimeric partner, PPARγ.73

PPARγ-DBD interacting protein 1 (PDIP1) was isolated 
using the yeast two-hybrid system with the DBD and hinge 
regions of human PPARγ as bait. Two isoforms (α and β) of 
the PDIP1 gene are generated by alternative splicing. PDIP1 
α and β increase the PPARγ-mediated transactivation of the 
PPRE, and treatment with PDIP1 siRNA significantly re-
duced the transcriptional activity of PPARγ. Because PDIP1 
shows an expression pattern similar to that of CBP and 
TRAP220 during adipocyte differentiation, it might be in-
volved in PPARγ-mediated adipogenesis.74

PGC-1α also binds to DBD and hinge regions of PPARγ 
in a ligand-independent fashion, similar to PDIP.75 PGC-1α 
was isolated from a BAT cDNA library and has been shown 
to increase the transcriptional activity of PPARγ on the UCP-
1 gene. UCP-1 increases mitochondrial DNA content and 
β-oxidation.75 PGC-1α-deficient mice exhibit a reduced num-
ber of mitochondria and lower respiratory capacity, and fail 
to maintain core body temperature following exposure to 
cold.76 Overexpression of PGC-1α in WAT resulted in phe-
notypic changes into BAT.77,78 This phenotypic change pro-
vides a defense mechanism against obesity.79 In adipocytes, 
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dogenous activator of PPARγ.99 However, a contradictory 
report states that SHP represses the transcriptional activity 
of PPARγ and does not interact with PPARγ.100 SHP de-
creases LGK gene expression by inhibiting the transcrip-
tional activity of LXRα and PPARγ via interaction with 
their common partner, RXRα. Thus, SHP may play a role 
in fine-tuning glucose homeostasis.100 The diverse functions 
of PPARγ cofactors are summarized in Table 2.

REGULATION OF PPARγ ACTIVITY 
BY POST-TRANSLATIONAL 

MODIFICATION

Phosphorylation 
Phosphorylation of nuclear receptors is one of the principal 
modifications determining their transcriptional activities. 
Adipocyte differentiation is inhibited by growth factors101-103 
and cytokines,104-106 which are known to phosphorylate 
PPARγ through their respective signaling pathway (Fig. 1). 
The site of phosphorylation is Ser112 in the N-terminal trans-
activation domain (AF-1), which is well conserved among 
species ranging from fish to man.107,108 Ser112 phosphoryla-
tion by mitogen-activated protein kinase (MAPK) results in 
a decrease in transcriptional activity and adipogenesis.109-112 
MAPK is activated by extracellular signal-regulated kinase 
1/2 (ERK1/2) that is stimulated by growth factors such as 
epidermal growth factor, platelet-derived growth factor, 
transforming growth factor-β, insulin, or the prostaglandin 
PGF2α.109,110,113-116 Phosphorylation of Ser112 by other signals 
including stress (UV, anisomysin) is mediated by c-Jun N-
terminal kinase 1/2 and p38.107,113

Insulin plays a key role in adipogenesis.109 Although pre-
adipocytes express a limited number of insulin receptors, the 
cells require insulin or insulin-like growth factor-1 for opti-
mal differentiation.117,118 After maturation, large numbers of 
insulin receptors are expressed, transmitting insulin signals 
for the induction of lipogenic genes.119,120 Although insulin is 
a pivotal player in adipogenesis, Ras/MAPK activation by 
insulin represses PPARγ activity109 as shown in the growth 
factor-induced phosphorylation of PPARγ at Ser112. 

Specifically, downstream tyrosine kinase-1 (Dok1), a 
multi-site adapter molecule in insulin receptor signaling,121-123 
acts as a negative regulator of MAPK.124-126 In mice fed a 
high-fat diet, Dok1 expression is markedly increased in 
WAT. A lower mass of WAT is seen in Dok1-deficient mice 
than in wild-type mice, and the level of PPARγ phosphory-

sulin sensitivity and glucose tolerance, and decreased adi-
pose tissue inflammation. These studies suggest that the 
dominant function of adipocyte NCoR is to transrepress 
PPARγ and promote Cdk5-mediated PPARγ phosphoryla-
tion, similar to the effects of TZDs.86 

Other interacting proteins
RIP140 is a liver protein that interacts with the AF-2 do-
main of PPARγ and also with PPARγ. BRL49653, a PPARγ 
ligand, strengthens the interaction between PPARγ and 
RIP140.87,88 Because RIP140 is generally known to inhibit 
nuclear receptor activity through competition with SRC-1, 
transrepression of PPARγ by RIP140 occurs indirectly.88 Al-
though RIP140 inhibits the transcriptional activity of PPARγ, 
it does not affect adipogenesis. However, RIP140 KO mice 
showed increased UCP1 gene expression and resistance to 
high-fat diet-induced obesity and hepatic steatosis.89 

The forkhead transcription factor Foxo1 was identified as 
a PPARγ-interacting protein that disrupts the binding of 
PPARγ to the target gene. In addition, PPARγ plays a nega-
tive role in the transactivation of Foxo1, suggesting that 
there is a reciprocal interaction between these factors. Ecto-
pic expression of the constitutively active form of Foxo1 in 
preadipocytes prevents adipogenesis and heterozygous 
Foxo1 KO mice are less susceptible to diet-induced insulin 
resistance.90 

The retinoblastoma protein (Rb) plays a negative role 
during mitotic clonal expansion in the cell cycle by increas-
ing the transactivation of C/EBP.91,92 PPARγ has been 
shown to interact directly with Rb in 3T3L1 adipocytes, re-
cruiting histone deacetylase HDAC3 which attenuates ad-
ipogenic gene expression. Dissociation of the PPARγ-Rb-
HDAC3 complex by phosphorylation of Rb or inhibition of 
HDAC3 activity resulted in the activation of PPARγ.93 

Lipin1 is known to be expressed in adipose tissue.94 The 
null mice of lipin1 show lipodystrophy with severely re-
duced adipose tissue mass.95 Lipin1 is increased in the later 
stages of adipocyte differentiation and increases transcrip-
tional activity of PPARγ2 through direct protein-protein in-
teraction.96

Small heterodimer partner (SHP) is an atypical orphan 
nuclear receptor that inhibits gluconeogenesis by interact-
ing with Foxo1, hepatocyte nuclear factor 4, or C/EBPα.97,98 
SHP is also known to increase PPARγ activity by interact-
ing with PPARγ in a ligand-independent manner. SHP 
competes with NCoR for binding to the DBD/hinge region 
of PPARγ. It has been suggested that SHP may act as an en-
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activity.128,129 Trichothiodystrophy (TTD) is a rare autoso-
mal recessive disease caused by mutations in the xeroder-
ma pigmentosum (XP) group-D (XPD) gene. The clinical 
manifestations include immature sexual development, men-
tal retardation, skeletal abnormalities, and dwarfism. A num-
ber of patients with TTD exhibit a lack of subcutaneous fat 
tissue mass. XPD helicase is a subunit of the transcription 

lation was increased by ERK.127 These data suggest that an 
increase in Dok1 gene expression caused by a high-fat diet 
inhibits the insulin-mediated activation of Ras/MAPK sig-
naling, resulting in increased PPARγ activity.127

In contrast to the MAPK-mediated phosphorylation of 
Ser112, the cyclin-dependent kinases Cdk7 and Cdk9 phos-
phorylate the same Ser112 in PPARγ and increase PPARγ 

Table 2. List of Regulatory Factors for PPARγ Activity 
Role Coregulators Metabolic effects Reference

Coactivators

SRC-1 Essential for functional interaction between CBP/p300 and PPARγ 43

PGC-1α

Increases the binding of SRC-1 and CBP/p300 to PPARγ
Increases the transcriptional activity of PPARγ on the UCP-1 gene
Plays a role in maintaining the number of mitochondria, respiratory capacity, body tem 
  perature in BAT

45, 75, 76

CBP/p300

Binds to the AF-2 domain of PPARγ (ligand-dependent)
Binds to the AF-1 domain to PPARγ (ligand-independent)
Induces adipogenesis in NIH3T3 cells 
Increases aP2 gene expression

46-48

TRAP220 Increases PPARγ transcriptional activity 
Essential for PPARγ-mediated adipogenesis 51, 52

BAF60c2 Interacts with LBD of PPARγ
Does not affect adipocyte differentiation 59

AFR6 Regulates the expression of aP2 and PEPCK gene
Interacts with PPARγ/RXRα during adipogenesis 25, 60, 61

Menin Increases histone H3K4 methylation at the PPARγ target gene, Fabp4
Directly interacts with the PPARγ AF-2 domain 62

MBF-1 Acts as a bridging protein between PPARγ and TFIID 64
NRF2 Decreases TXS gene expression by forming complex with PPARγ 65

PRIP Critical for embryonic development and survival
Represses the transcriptional activity of RXRα 73

PDIP Increases the PPARγ-mediated transactivation 74

SHP Compete with NCoR in binding to the DBD/hinge region of PPARγ
Endogenous activator of PPARγ 99

Lipin1 Increases the transcriptional activity of PPARγ 96

Corepressor

NCoR Decreases the transcriptional activity of PPARγ 83, 86

SMRT

Decreases adipogenesis and lipid accumulation
Interacts with PPARγ and increases the ability of PPARγ to associate with Cdk5 
Increase adiposity and exhibit improved insulin sensitivity and glucose tolerance in 
  adipocyte specific NCoR knock out (AKO) mice

83, 86

Sirt1 Decreases lipid accumulation in differentiated adipocytes
Represses transcriptional activity of PPARγ by recruiting NCoR and SMRT 84

RIP140 Decreases the transcriptional activity of PPARγ by competing with SRC-1
Does not affect adipocyte differentiation 88, 89

Foxo1 Disrupts binding of PPARγ to the target genes 90
Rb Recruits histone deacetylase HDAC3 and decreases the expression of adipogenic genes 93
SHP Represses the PPARγ/RXRα transactivation by interacting with RXRα 100

PPARγ, peroxisome proliferator-activated receptor gamma; SRC-1, steroid receptor coactivator-1; PGC-1α, PPARγ coactivator-1; CBP, CREB-binding protein; 
TRAP, thyroid hormone receptor-associated protein; BAF, Brg1/Brm-associated factor; MBF-1, multiprotein bridging factor-1; NRF2, nuclear factor E2-
related factor 2; PRIP, PPAR-interacting protein; PDIP, PPARγ-DBD interacting protein; SHP, small heterodimer partner; NCoR, nuclear corepressor; SMRT, 
silencing mediator of retinoid and thyroid hormone receptor; Rb, retinoblastoma protein; SHP, small heterodimer partner; DBD, DNA-binding domain; UCP, 
uncoupling protein; BAT, brown adipose tissue; AF-1, agonist-independent activation domain; AF-2, agonist-dependent activation domain; LBD, ligand-
binding domain; PEPCK, phosphoenol pyruvate carboxykinase; RXR, retinoid X receptor; TFIID, transcription factor IID; TXS, thromboxane synthase; Cdk5, 
cyclin-dependent kinase;  ARF6, ADP-ribosylation factor; RIP140, receptor-interacting protein 140.
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creasing adipogenesis.137,138 These compounds are known to 
block the phosphorylation of Ser273 by Cdk5137,138 and can 
therefore potentially be used as therapeutic drugs for T2DM 
without causing weight gain and fluid retention, which are 
major side effects of full agonist-antidiabetic drugs. 

It is worth note that strong PPARγ activators are not nec-
essary to increase insulin sensitivity. Understanding the reg-
ulation of Ser273 phosphorylation in PPARγ could provide a 
hint for the development of drugs to treat T2DM that have 
fewer side effects.138 

Sumoylation
SUMOylation is one of the post-translational modifications 
responsible for regulating the stability, nuclear-cytosolic dis-
tribution, and activity of transcription factors. Small ubiqui-
tin-like modifier (SUMO) family proteins (SUMO-1, -2, and 
-3 in mammals) affect the interaction between target proteins 
and their substrates or the DNA that they bind. SUMO binds 
to proteins by forming isopeptide bonds between the C-ter-
minal glycine residue of SUMO and the ε-amino group of a 
lysine in the target protein.139,140 Currently, a number of tran-
scription factors including nuclear receptors, such as 
PPARs,141,142 LXR,143 glucocorticoid receptor,144 androgen re-
ceptor,145 and RXRα146 are known to be SUMOylated.

Selective modulation of the transcriptional activity of 
PPARγ by SUMOylation is now beginning to be under-
stood.142,147 The transcriptional activities of PPARγ isoforms 
in the presence or absence of ligands are regulated by SU-
MOylation.142 PPARγ2 is SUMOylated by protein inhibitor 
of activated STAT 1 (PIAS1) or PIASx, belonging to the 

factor IIH (TFIIH) complex bridging the core-TFIIH [con-
taining particular form of xeroderma pigmentosum B 
(XPB) helicase] subcomplex and the Cdk-activating kinase  
containing Cdk7.130 When the C-terminus of XPD is mutat-
ed, XPD helicase cannot perform nucleotide excision re-
pair.131 In the process of transcription, Cdk7 in the TFIIH 
complex phosphorylates the C-terminal domain of the larg-
est subunit of RNA polymerase II132 and nuclear receptors 
such as ER, VDR, and RARα.133-136 PPARγ phosphorylation 
by Cdk7 is decreased in XPD patients.128 The activity of a 
PPARγ promoter reporter was rescued by PPARγ-112S→E, a 
constitutively active form of PPARγ, in fibroblasts isolated 
from patients with TTD.128

In addition, Cdk9, a component of positive transcription 
elongation factor b, has been shown to participate in adipo-
genesis by directly interacting with PPARγ and phosphory-
lating Ser112.129 Overexpression of Cdk9 in 3T3L1 cells in-
creased adipogenesis, whereas inhibition of Cdk9 by specific 
Cdk inhibitors or a dominant-negative Cdk9 mutant inhibit-
ed adipogenesis.129 These data suggest that the transcrip-
tional activity of PPARγ is either activated or inhibited de-
pending on the types of kinases involved. 

In the adipose tissues of mice fed a high-fat diet, phos-
phorylation of Ser273 by Cdk5 results in a reduction of adi-
ponectin gene expression, without affecting adipogenesis.137 
Cdk5-mediated phosphorylation of PPARγ is blocked by 
full agonists such as rosiglitazone or partial agonists such as 
MRL24 or SR1664.137,138

Partial agonists, like MRL24 and SR1664, have been 
shown to have excellent anti-diabetic activity without in-

Fig. 1. Modulation of PPARγ activity by phosphorylation. Positions of phosphorylation sites in PPARγ and the implicated signaling path-
ways are indicated. Ser112 phosphorylation by growth factors, cytokines, and stress signals are related to decreased PPARγ activity, 
whereas phosphorylation by Cdk7 and Cdk9 is related to increased PPARγ activity. Obesity or high-fat diet-mediated phosphorylation of 
PPARγ at Ser273 is related to decreased insulin sensitivity. AF-1 and 2, activation function 1 and 2, respectively; Cdk5, 7 and 9, cyclin-de-
pendent kinase 5, 7 and 9, respectively; DBD, DNA binding domain; Dok1, downstream of tyrosine kinase-1; ERK1/2, extracellular signal-
regulated kinase 1/2; HFD, high fat diet; JNK, c-Jun N-terminal kinase; LBD, ligand binding domain; MAPK, mitogen-activated protein ki-
nase; p38, p38 MAP kinase; Rosi, rosiglitasone; PPARγ, peroxisome proliferator-activated receptor gamma.

ERK1/2

MAPK

p38, JNK

Cdk7
Cdk9

DBD LBD/AF-2

Dok1 Cdk5

Cytokines

UV, stress

1 138 203 279 505

Ser112 Ser273

Growth factors
Obesity HFD

Rosi
MRL24
SB1664

AF-1 Hinge



Modulation of PPARγ Activity

Yonsei Med J   http://www.eymj.org   Volume 54   Number 3   May 2013 553

Ubiquitination
The ubiquitin-proteasome system (UPS) is responsible for 
the degradation of a variety of intracellular proteins includ-
ing transcription factors.153,154 Ubiquitin is well conserved 
between species, binding to target proteins in a sequential 
manner through the actions of three different cascading en-
zymes: an ubiquitin-activating enzyme (E1), an ubiquitin-
conjugating enzyme (E2), and an ubiquitin protein ligase 
(E3).155 The polyubiquitinated proteins are recognized and 
degraded by the 26S proteasome.156 The role of the UPS 
with respect to transcriptional regulation is well document-
ed.157 In the nucleus of adipocytes, the PPARγ2 protein lev-
el is decreased by the action of TZDs.158 Degradation oc-
curs in a ubiquitin-dependent manner in the AF-2 domain 
of PPARγ.159 However, the AF-1 domains of PPARγ1 and 
PPARγ2 are degraded by the REGγ proteasome, a type of 
proteasome that degrades the target substrate in an ubiquitin 
and ATP-independent fashion.159-161 

Degradation of PPARγ is also regulated by interferon-γ 
(IFN-γ) in adipocytes. Transcription of PPARγ is decreased 
by IFN-γ-activated STAT signaling.162 When Ser112 of 
PPARγ, which is known to be phosphorylated by ERK1/2, 
was replaced with Ala, degradation of the protein was de-
creased. In addition, U1026, an inhibitor of ERK1/2, de-
creased IFN-γ-induced PPARγ degradation.163 However, 
ERK1/2 is not known to be activated by IFN-γ or TZDs; 
thus, it is assumed that there might be an indirect relationship 
between the phosphorylation and ubiquitination of PPARγ.163

TNF-α is well known for its role in insulin resistance.164 
Degradation of PPARγ is promoted by TNF-α in adipo-
cytes. Treatment of adipocytes with TNF-α and cyclohexi-
mide yielded a 44-kDa sized fragment of PPARγ, which is 
also seen in the WAT or BAT of diabetic rats. However, the 
molecular link between this fragment and PPARγ degrada-
tion is not known.165 Proteasome-dependent PPARγ degrada-
tion is increased by resveratrol, a potent activator of SIRT1; 
however, the mechanism of SIRT1 requires further investi-
gation.84,166

PERSPECTIVE

Regulation of PPARγ activity may be achieved through the 
interrelationship between agonists, PTM, and coregulators, 
rather than by the simple action of individual activators or 
inhibitors. Agonists can induce either coregulator exchange 
or PTM; the mechanisms of which require further study. 

PIAS family, regardless of its ligand. PPARγ2 is SUMOylat-
ed at Lys107 in the AF-1 domain, and at Lys395 in the AF-2 
domain (equivalent to Lys77 and Lys365 of PPARγ1, respec-
tively). SUMOylation of PPARγ2 at Lys107 negatively regu-
lates the transcriptional activity of PPARγ2, because the 
107K→R mutation showed increased transcriptional activi-
ty.142 This observation is further supported by a promoter re-
porter assay performed using the variant PPARγ2 107K→R in 
NIH3T3 fibroblasts.148,149 Furthermore, fibroblast growth 
factor21 (FGF21)-KO mice exhibit impaired insulin sensi-
tivity in adipocytes and reduced fat mass and adipocyte size. 
This phenomenon occurs because PPARγ2-induced adipo-
genesis is inhibited by SUMOylation in WAT. These results 
indicate that FGF21 is a key regulator of PPARγ2 in the con-
text of SUMOylation.150 In addition, the transcriptional activi-
ty of PPARγ2 is increased by overexpressing SUMO1/sen-
trin/SMT3-specific peptidase 2 (SENP2), a SUMO-specific 
protease, in C2C12 myotubes.147 Interestingly, the inhibi-
tion of PPARγ2 transcriptional activity by SUMOylation is 
augmented when PPARγ2 is phosphorylated at Ser112.148,149 
This indicates an interrelationship between the SUMOylation 
and phosphorylation of PPARγ2.

The SUMOylation of PPARγ1 at Lys365 (equivalent to 
Lys395 of PPARγ2) is important in the regulation of inflamma-
tory gene expression. This SUMOylation mediates the trans-
repression of inflammatory genes like inducible nitric oxide 
synthase (iNOS) and TNF-α, which are regulated by nuclear 
factor kappa B in macrophages.151,152 In the basal state, iNOS 
gene is repressed by TBL1/TBLR1/HDAC3/NCoR complex. 
Treatment of lipopolysaccharide (LPS) resulted in the remov-
al of HDAC3/NCoR from the complex in a TBL1/TBLR1 
and Ubc5-dependent fashion, allowing activation of iNOS 
gene.148 When RAW264.7 macrophages or primary cultured 
macrophages were treated with LPS and rosiglitazone, 
PPARγ1 was found to be SUMOylated on Lys365 by Ubc9, 
which forms a complex with NCoR/HDAC3 on the promot-
ers of the iNOS gene. Thus, the formation of the NCoR/
HDAC3/SUMOylated PPARγ1 complex inhibits the ubiqui-
tination of NCoR/HDAC3, resulting in the repression of the 
iNOS and TNF-α genes.151,152 

Ligand-dependent SUMOylation of PPARγ1 therefore di-
rectly represses the promoters of inflammatory genes by stabi-
lizing the NCoR and HDAC3 complexes. This mechanism 
demonstrates that the role of Lys365 SUMOylation of PPARγ1 
is different from that of Lys107 SUMOylation of PPARγ2 in 
that Lys365 SUMOylation of PPARγ1 represses the expression 
of inflammatory genes in the presence of ligand.
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