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ONLINE CLINICAL INVESTIGATIONS

External Validation of Deep Learning-Based 
Cardiac Arrest Risk Management System 
for Predicting In-Hospital Cardiac Arrest in 
Patients Admitted to General Wards Based 
on Rapid Response System Operating and 
Nonoperating Periods: A Single-Center Study
OBJECTIVES: The limitations of current early warning scores have prompted 
the development of deep learning-based systems, such as deep learning-
based cardiac arrest risk management systems (DeepCARS). Unfortunately, 
in South Korea, only two institutions operate 24-hour Rapid Response System 
(RRS), whereas most hospitals have part-time or no RRS coverage at all. 
This study validated the predictive performance of DeepCARS during RRS 
operation and nonoperation periods and explored its potential beyond RRS 
operating hours.

DESIGN: Retrospective cohort study.

SETTING: In this 1-year retrospective study conducted at Yonsei University 
Health System Severance Hospital in South Korea, DeepCARS was compared 
with conventional early warning systems for predicting in-hospital cardiac arrest 
(IHCA). The study focused on adult patients admitted to the general ward, with 
the primary outcome being IHCA-prediction performance within 24 hours of the 
alarm.

PATIENTS: We analyzed the data records of adult patients admitted to a general 
ward from September 1, 2019, to August 31, 2020.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Performance evaluation was con-
ducted separately for the operational and nonoperational periods of the RRS, 
using the area under the receiver operating characteristic curve (AUROC) as 
the metric. DeepCARS demonstrated a superior AUROC as compared with 
the Modified Early Warning Score (MEWS) and the National Early Warning 
Score (NEWS), both during RRS operating and nonoperating hours. Although 
the MEWS and NEWS exhibited varying performance across the two periods, 
DeepCARS showed consistent performance.

CONCLUSIONS: The accuracy and efficiency for predicting IHCA of DeepCARS 
were superior to that of conventional methods, regardless of whether the RRS 
was in operation. These findings emphasize that DeepCARS is an effective 
screening tool suitable for hospitals with full-time RRS, part-time RRS, and even 
those without any RRS.

KEYWORDS: artificial intelligence; clinical deterioration; deep learning; early 
warning score; heart arrest; hospital rapid response team
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The Rapid Response System (RRS) is a method 
for screening patients who have an increased 
risk for unexpected clinical deterioration. 

Vital signs frequently become abnormal in the several 
hours preceding cardiac arrest, which could promote 
critical adverse events (1, 2). However, the use of an 
RRS to identify significant abnormal vital sign values 
from numerous in-hospital patients proves challeng-
ing. To decrease RRS burden and detection failure 
rate for patients with deteriorating status, several early 
warning scores (EWSs), known as track-and-trigger 
systems (TTSs), have been devised (3). The Modified 
Early Warning Score (MEWS) and the National Early 
Warning Score (NEWS) are the most commonly 
implemented EWS but have common limitations of 
low sensitivity and high false alarms, hampering effi-
cient RRS activation (4–6).

Deep learning-based artificial intelligence (AI) 
could be useful for analyzing sequential data of vital 
signs and for identifying patients with progressively 
deteriorating clinical conditions even before the med-
ical staff becomes aware of an emergent situation. The 
deep learning-based cardiac arrest risk management 
system (DeepCARS), was first developed in 2018 and 
was approved for use as a medical device in 2021 by 
the Ministry of Food and Drug Safety of South Korea. 
DeepCARS accurately predicts patient deterioration, 
with a low false-alarm rate, in the general ward and 
surpasses the conventional EWSs (7–9). Among 47 

institutions that enrolled in the Korean government’s 
RRS pilot program, described below, 13 have success-
fully implemented DeepCARS as a basal and main 
EWS, replacing conventional EWSs.

Many hospitals have since realized the advantages 
of using an RRS for improving patient safety. The pilot 
program for expanding the RRS was initiated by the 
Korean Health Insurance Review and Assessment 
Service and the Ministry of Health and Welfare in 
May 2019. The Ministry of Health and Welfare has 
started providing daily health insurance fees for inpa-
tients in RRS-operating hospitals with more than 
300 beds. However, this support remains insufficient 
to enable 24-hour RRS operation and maintenance. 
Approximately 3200 general hospitals, including 45 
tertiary hospitals, operate nationwide in South Korea, 
but only two institutions officially operate a 24-hour 
RRS.

With a view to facilitating the development of a 
complementary system for use in healthcare institu-
tions with part-time access to an RRS, we validated the 
performance of DeepCARS for predicting in-hospital 
cardiac arrest (IHCA) during RRS operational and 
nonoperational periods. Furthermore, we explored the 
potential of DeepCARS for identifying patients who 
experience health deterioration outside of the RRS op-
erating hours.

MATERIALS AND METHODS

Study Design

We conducted this 1-year, retrospective, single-center 
cohort study from September 1, 2019, to August 31, 
2020, at the Yonsei University Health System Severance 
Hospital, a tertiary academic hospital with 2454 beds, 
in the Republic of Korea. All adult patients (≥ 18 yr 
old) admitted to the general ward during the study pe-
riod were eligible for study inclusion. We excluded data 
from patients with admission dates outside the study 
period, or if admission occurred within 24 hours be-
fore study completion only if they did not experience 
IHCA or an unplanned general ward-to-ICU transfer 
(UIT), or when no vital signs were recorded 24-hour 
pre-IHCA or pre-UIT, or no vital signs were recorded 
throughout the study period (Additional File Fig. S1, 
http://links.lww.com/CCM/H464).

The primary outcome of interest was IHCA (defined 
as the “cessation of cardiac activity, confirmed by the 
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absence of a detectable pulse, unresponsiveness, and 
apnea,” from the “in-hospital Utstein style” consensus 
guidelines of the American Heart Association, which 
was followed by resuscitation attempts) (10). We 
compared the predictive performance of DeepCARS 
with that of the conventional EWSs for predicting 
the primary outcome within 24 hours of the alarm. 
Assessments were conducted according to whether the 
RRS was operational or nonoperational.

RRS Operation and Characteristics of Yonsei 
University Hospital

The WhoEver Saves One Life SAVEs World entire is 
the part-time RRS in our hospital and was first imple-
mented in February 2019. A dedicated team of spe-
cialist physicians (four intensivists and five nurses) 
was exclusively assigned to the RRS team that would 
operate from 06:00 to 22:00 on nonholiday weekdays 
and from 07:00 to 12:00 on Saturdays. During the op-
erating period, the RRS included one physician and 
two nurses. The physician would evaluate patients 
who were either detected by the RRS screening tools 
or were identified by ward medical staff. Nurses 
monitored patients in general wards using screening 
tools, NEWS, and single-parameter TTS (SPTTS). 
During the RRS nonoperational period, the central-
ized screening system was also nonoperational. Even 
when the centralized screening system was nonoper-
ational, NEWS and SPTTS continued to be generated 
and recorded. However, due to the limited availability 
of the clinical team, patient screening was almost en-
tirely the responsibility of the physician and nurse. All 
patients for whom the RRS activated an alarm, who 
were transferred from the general ward to the ICU, 
or who suffered IHCA in the general ward during the 
preceding 30 days were reviewed during the monthly 
RRS conference.

Medical personnel composition in the hospital 
varies temporally. The nursing staff have a rotational 
schedule of three shifts per day, as follows: day shift 
(06:00–14:00), evening shift (14:00–22:00), and night 
shift (22:00–06:00). During night shifts, the number 
of the nursing staff decreases by 20–25% relative to 
the number present during day shifts. This nursing 
staff shortage, combined with the absence of a central-
ized screening system, complicates patient screening. 
Most hospital physicians work from 08:00 to 18:00. 

Therefore, the nighttime responsibility mainly falls on 
less-experienced doctors, such as resident trainees.

Data Collection and Preprocessing

We collected data on age, sex, IHCA occurrence, and 
five time-stamped vital signs (systolic blood pressure, 
diastolic blood pressure, heart rate [HR], respiratory 
rate [RR], and body temperature [BT]) recorded dur-
ing hospitalization, the ICU transfer time, surgery time, 
and the do-not-resuscitate (DNR) status. Erroneous 
values with extreme deviations from the vital-specific 
normal ranges and non-numeric values were treated as 
missing values.

UIT definition varies across reports (11–15). In our 
study, UIT was defined as unanticipated ICU admis-
sion for both medical and surgical patients. For non-
surgical admission, UIT was considered as a transfer 
that could not be postponed for 24 hours without 
adverse effects. In contrast, surgical UIT admission 
was defined as when the patient was transferred to 
the ICU before surgery or operating room transfer. 
These criteria align with a recent multinational study 
on UIT (13).

Ethical Considerations

This study was strictly observational and was con-
ducted based on anonymity. The ethics committee 
and institutional review board of Yonsei University 
Hospital approved the study (approval number and 
date: 2-2021-1353 and November 16, 2021) and waived 
the need for obtaining informed consent due to the 
minimal risk using data collected for routine clinical 
practice. The study was conducted in accordance with 
the ethical standards of the responsible committee on 
human experimentation and the Helsinki Declaration 
of 1975.

Deep Learning-Based Cardiac Arrest Risk 
Management System

DeepCARS uses only four classic vital signs (HR, BP, 
BT, and RR) (16), age, and the recorded time of each 
vital sign, and outputs risk scores on a scale of 0–100. 
A higher value denotes an augmented propensity for 
the occurrence of IHCA. The detailed architecture of 
DeepCARS has been described previously (8, 17).
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Performance Evaluation and Statistical Analysis

Question 1: What is the Accuracy of DeepCARS as 
Compared With Conventional EWSs in Predicting 
IHCA Both During and Outside of RRS Operating 
Hours?. We assessed predictive performance using the 
area under the receiver operating characteristic curve 
(AUROC). To observe the relationship between sen-
sitivity and specificity at different cutoff values, we 
plotted the receiver operating characteristic curve. 
Additionally, we calculated the F1-score (2 × [precision 
× recall]/[precision + recall]), that is, the harmonic 
mean of precision and recall, which provides a holistic 
view of a models’ performance, taking into account 
both its ability to identify positive cases accurately 
and to avoid making incorrect positive predictions. 
Additionally, we determined the positive-predictive 
value (PPV = true positive/[true positive + false posi-
tive]), negative-predictive value (NPV = true negative/
[true negative + false negative]), sensitivity (true pos-
itive/[true positive + false negative]), specificity (true 
negative/[true negative + false positive]), and daily 
alarm rate (14, 15). In real clinical practice, an alarm 
would be considered appropriate if it resulted in active 
intervention, such as deciding a DNR status, or ICU 
transfer. We expanded the definition of true positives 
for PPV (termed PPV+) by including DNR prescrip-
tions and UIT in addition to cardiopulmonary resus-
citation. We created a graph illustrating the trends of 
PPV+, sensitivity, and F-measure. Evaluations were 
performed separately for different subgroups, stratified 
first by whether the RRS was operational, to ascertain 
the consistency of performance, and second by altera-
tions of prediction window.

Question 2: Does DeepCARS Generate Fewer 
Total Alarms than Conventional Methods During 
RRS Operating and Nonoperating Periods, Without 
Compromising Sensitivity?. To assess the alarm per-
formance during both RRS operating and nonop-
erating periods, we segregated the operating and 
nonoperating times for each hospitalized patient. We 
calculated the daily alarm rate by computing the av-
erage number of alarms during each time window, di-
viding this by the total number of beds and the time 
window, and multiplying the result by 1000. We com-
pared alarm performance by plotting the daily alarm–
sensitivity curve, demonstrating the relationship 
between cutoff values and the daily alarm–sensitivity 
dyad tendency.

Question 3: What is the Impact of Subsequent 
Alarms on the Performance of DeepCARS?. During 
the period when the RRS is nonoperational, availa-
bility of clinical resources, such as nursing staff, RRT 
teams, and dashboard systems, is limited. Therefore, 
discovering an efficient method to harness DeepCARS 
to ensure enhanced PPV without requiring additional 
training is desirable. We hypothesized that main-
tenance of consistently high triggering scores with 
DeepCARS would serve as an indicator of a substantial 
risk of cardiac arrest. Simultaneously, given the diffi-
culty in meeting the conditions for such an event, this 
approach could potentially lead to an improvement 
in PPV. Instead of altering the DeepCARS algorithm, 
we conducted a retrospective data analysis. We found 
that subsequent alarms could effectively improve the 
PPV, making them particularly useful during the RRS 
nonoperating hours. We evaluated the effectiveness by 
measuring the PPV+, the percentage of IHCA patients 
who were identified, F-measure, and daily alarms as 
the number of subsequent alarms increased.

Additionally, we plotted the cumulative percentage 
of patients experiencing IHCA by accumulating the 
percentage of IHCA patients for whom the DeepCARS 
presented an alert within 24 hours before IHCA onset. 
As the MEWS and NEWS exhibited distinct specifici-
ties at identical cutoff values, we selected the MEWS 
to represent the conventional EWSs. Furthermore, we 
conducted a subgroup analysis by subdividing the pe-
riod into smaller segments, such as day, evening, and 
nighttime, with consideration of nurses’ rotational 
work shifts.

RESULTS

Baseline Characteristics

During the 12-month study period from November 1, 
2019, to August 31, 2020, we analyzed 95,607 patient 
admissions, basic demographics, and five routinely 
collected physiologic variables, generating more than 
3,221,077 data records from a single study center. A 
total of 228 IHCA, 907 DNR orders, and 1994 UIT 
occurred during the study period.

The data records were divided into two groups based 
on the RRS operating and nonoperating hours. The dif-
ference in baseline characteristics of the data was com-
parable for the two groups (Table 1). However, distinct 
intergroup differences were observed for the following 
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items. The interval of vital sign measurement was 
longer during RRS nonoperating times than during 
RRS operating times (6.42 hr vs. 4.07 hr). Furthermore, 
the number of IHCA patients per 1000 admissions was 
higher during the RRS nonoperating times (2.27 vs. 
1.98). Furthermore, as shown in the severity distribu-
tion graph (Additional File Fig. S2, http://links.lww.
com/CCM/H464), higher NEWS, MEWS, and SPTTS 
were more prevalent during RRS nonoperating times. 

We then plotted the cumulative percentage of alarms 
as the MEWS and NEWS values increased and found 
that the graph slope became steeper with higher NEWS 
and MEWS values.

Question 1. Performance in Predicting IHCA

As shown in Figure 1, DeepCARS outperformed 
MEWS, NEWS, and SPTTS in predicting IHCA. 

TABLE 1.
Baseline Characteristics

Characteristics 

Entire Period 
Operating Time 

of RRS 
Nonoperating 
Time of RRS 

p September 1, 2019, to August 31, 2020

Number of total admissions, n 95,607 95,087 67,614

Number of data records, n 3,221,077 2,191,242 1,040,25  

Age, yr, mean ± sd 57.49 ± 16.16 57.57 ± 16.16 57.96 ± 16.15 < 0.001

Male, sex, % (n) 48.87 (46,728) 48.95 (46,552) 48.94 (33,095) 0.586

Length of stay, mean ± sd 6.81 ± 12.30 — — —

Variables, mean ± sd

  SBP (mm Hg) 123.86 ± 18.93 124.36 ± 18.89 122.84 ± 18.96 < 0.001

  DBP (mm Hg) 75.68 ± 12.17 75.99 ± 12.09 75.05 ± 12.32 < 0.001

  HR (/min) 81.48 ± 16.84 80.69 ± 16.40 82.99 ± 17.56 < 0.001

  RR (/min) 19.18 ± 3.03 18.99 ± 3.18 19.58 ± 2.61 < 0.001

  BT (°C) 37.03 ± 0.50 36.99 ± 0.49 37.08 ± 0.50 < 0.001

  Interval of vital sign measurement (hr) 5.28 ± 3.16 4.07 ± 2.27 6.32 ± 4.85 < 0.001

Vital signs within 24 hr before cardiac arrest, mean ± sd

  SBP (mm Hg) 113.69 ± 29.02 115.01 ± 28.64 111.55 ± 29.50 < 0.01

  DBP (mm Hg) 68.97 ± 18.53 69.37 ± 18.35 68.32 ± 18.81 0.173

  HR (/min) 103.15 ± 29.40 101.91 ± 30.3 105.19 ± 27.73 < 0.01

  RR (/min) 22.78 ± 7.30 22.48 ± 7.15 23.27 ± 7.53 < 0.05

  BT (°C) 37.09 ± 0.76 37.06 ± 0.77 37.14 ± 0.74x < 0.05

Number of admissions

  During weekend 64,616 — 64,616  

  During day time 92,567 92,567 —  

  During evening time 86,050 86,050 —  

  During night time 47,089 — 47,089  

Number of admissions with outcomes, n

  In-hospital cardiac arrest/1,000 admissions 228 (2.38) 189 (1.98) 184 (2.27) —

  Do-not-resuscitate/1,000 admissions 907 (9.48) 778 (8.18) 856 (1.26) —

  Unplanned ICU transfer/1,000 admissions 1,994 (20.85) 1,892 (19.89) 931 (13.76) —

BT = body temperature, DBP = diastolic blood pressure, HR = heart rate, RR = respiratory rate, RRS = Rapid Response System, SBP = 
systolic blood pressure.
Dashes for number of admissions with outcomes indicate p values for are all less than 0.001.

http://links.lww.com/CCM/H464
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Not only did DeepCARS outperform conventional 
EWSs in the analysis of the entire dataset (AUROC: 
0.889 vs. 0.807 for MEWS vs. 0.774 for NEWS), but it 
also outperformed them during both RRS operating 
(AUROC: 0.878 vs. 0.814 for MEWS vs. 0.767 for 
NEWS) and nonoperating periods (AUROC: 0.892 
vs. 0.794 for MEWS vs. 0.820 for NEWS). Although 
the AUROC of DeepCARS remained consistent 
across RRS operating and nonoperating periods, 
the predictive performance of MEWS and NEWS 
differed between the two periods. Furthermore, 
the precision–recall graph (Fig. 2) showed that 
DeepCARS demonstrated a higher PPV+ (solid line) 
and F-measure at most corresponding sensitivity 
points during both RRS operating and nonoperat-
ing periods. The results of other metrics are shown 
in Additional File Tables S1–S4 (http://links.lww.
com/CCM/H464).

Figure 3 illustrates the predictive performance 
based on the prediction window timeline, ranging 
from 24 hours to 1 hour before the primary event. It 
demonstrates that the performance improved for all 
EWSs as the prediction window narrowed. However, 

DeepCARS consistently outperformed the other con-
ventional EWSs across all prediction windows, regard-
less of whether the RRS was operational. Specifically, 
in the 1-hour prediction window, the AUROC curve 
for DeepCARS increased to 0.939 and 0.942 during 
RRS operating and nonoperating periods, respectively.

Question 2. Alarm Performance

In terms of alarm performance, DeepCARS had a 
lower alarm rate at all corresponding sensitivity values 
than those of other EWSs (Fig. 4). This result was 
consistent across RRS operating and nonoperating 
periods. Specifically, assuming a daily alarm rate of 
conventional EWSs as 100%, the daily alarm rate was 
reduced by more than half at all main cutoff values of 
MEWS, NEWS, and SPTTS.

Question 3. Impact of Subsequent Alarm

To increase the PPV, particularly during the RRS 
nonoperating time, an additional rule—that of a 
subsequent alarm—was added to the existing alarm 

Figure 1. Comparison of predictive performance of deep learning-based cardiac arrest risk management system (DeepCARS) and the 
conventional Early Warning Score both during Rapid Response System (RRS) operating and nonoperating hours. AUROC = area under 
the receiver operating characteristic curve, AUPRC = area under the precision–recall curve, MEWS = Modified Early Warning Score, 
NEWS = National Early Warning Score, Sen = sensitivity, Spec =specificity, SPTTS = Single-Parameter Track-and-Trigger System.

http://links.lww.com/CCM/H464
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Figure 3. Predictive performance based on varying prediction time. AUROC = area under the receiver operating characteristic curve, 
DeepCARS = deep learning-based cardiac arrest risk management system, MEWS = Modified Early Warning Score, NEWS = National 
Early Warning Score, RRS = Rapid Response System.

Figure 2. Precision–recall graph of deep learning-based cardiac arrest risk management system (DeepCARS) and Conventional Early 
Warning Scores. The solid line indicates the positive-predictive value. The dashed line indicates the F-measure. PPV = Positive-Predictive 
Value, MEWS = Modified Early Warning Score, NEWS = National Early Warning Score, RRS = Rapid Response System, SPTTS = 
Single-Parameter Track-and-Trigger System.
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standard. When the number of subsequent alarms 
increased, the PPV (solid line) increased to a cer-
tain level and then decreased (Fig. 5A). Similarly, the 
F-measure (dashed line) increased as the number of 
subsequent alarms increased and started to decrease 
faster than the PPV. For the F-measure, a cutoff value 
of 99 with three consequent alarms had the highest 
value (23.35%). The results obtained during the RRS 
operating period were similar to those obtained dur-
ing the RRS nonoperating period (Fig. 5B), except 
that the optimal number (6–8) of subsequent alarms 
was higher.

Early Prediction Performance

We constructed a plot of the cumulative percentage of 
IHCA patients versus the prediction time. Additional 
File Figure S4 (http://links.lww.com/CCM/H464) 
shows that DeepCARS consistently detected more 
IHCA patients at all time points than MEWS. The 
mean prediction time for MEWS was 10.71, whereas 
that of DeepCARS was 13.34, indicating DeepCARS 
predicted IHCA onset by 3 hours earlier than MEWS, 
on average.

Subgroup Analysis

We assessed the performance of DeepCARS, MEWS, 
and NEWS across different periods (day, evening, and 
night on weekdays and weekends) by analyzing the co-
hort (Additional File Fig. S5, http://links.lww.com/
CCM/H464). DeepCARS demonstrated consistent 
and superior performance compared with conven-
tional EWSs across all periods. In contrast, MEWS 
and NEWS performance was unstable across different 
periods, with the AUROC of MEWS fluctuating from 
0.806 to 0.759. A similar tendency was observed for 
NEWS.

DISCUSSION

To our knowledge, no previous study has undertaken 
performance validation of an AI-based cardiac arrest 
prediction system in a center with a part-time RRS, by 
comparing performance during the RRS operating and 
nonoperating periods. Vital signs are crucial predic-
tors of IHCA. Yet, vital sign data collected during RRS 
operating and nonoperating periods varied in terms 
of measurement frequency and interval, for various 
reasons, including the intention to avoid disturbing 

alarm ratedaily alar msensitivitycuto�method
100%349. 30.64783MEWS
47.04  164. 30.64780.8657DCARS
100%2040.51554MEWS
29.07  59. 30.51550.9395DCARS
100%117. 80.35095MEWS
18.42  21. 70.35090.9735DCARS
100%182. 50.51913NEWS
33.15  60. 50.51910.9385DCARS
100%62. 70.33884NEWS
32.06  20. 10.33880.9752DCARS
100%26. 90.23 65NEWS
36.06  9. 70.23 60.9875DCARS
100%102. 50.45181SPTTS
40.20  41. 20.45180.9545DCARS

alarm ratedaily alar msensitivitycuto�method
100%492. 60.62 83MEWS
55.68  274. 30.62 80.8806DCARS
100%264. 90.50 84MEWS
41.49  109. 90.50 80.9415DCARS
100%147. 20.35 25MEWS
28.60  42. 10.35 20.9734DCARS
100%274. 40.493NEWS
36.33  99. 70.490.9458DCARS
100%87. 10.31 34NEWS
36.51  31. 80.31 30.9792DCARS
100%35. 60.21 85NEWS
46.91  16. 70.21 80.9888DCARS
100%155. 40.42 91SPTTS
45.30  70. 40.42 90.9588DCARS

alarm rateDaily alar msensitivitycuto�method
100%362. 10.683MEWS
49.74  180. 10.680.8842DCARS
100%2310.52 74MEWS
23.85  55. 10.52 70.9525DCARS
100%123. 70.355MEWS
17.70  21. 90.350.9779DCARS
100%163. 40.56 63NEWS
41.98  68. 60.56 60.9438DCARS
100%66. 90.38 14NEWS
39.46  26. 40.38 10.9741DCARS
100%30. 60.26 55NEWS
45.42  13. 90.26 50.9857DCARS
100%93. 70.48 81SPTTS
50.27  47. 10.48 80.9582DCARS

A  Entire period Operating time of RRS Non-operating time of RRSB C

Figure 4. Comparison of the alerting performance (alarms) of deep learning-based cardiac arrest risk management system 
(DeepCARS) and conventional early warning system both during Rapid Response System (RRS) operating and nonoperating periods. 
MEWS = Modified Early Warning Score, NEWS = National Early Warning Score, SPTTS = Single-Parameter Track-and-Trigger System.
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the patient’s sleep or burdening the medical staff with 
unnecessary alarms when the RRS is nonoperational. 
Therefore, curiosity about the predictive power of the 
DeepCARS during these periods prompted the cur-
rent study. Consequently, we assessed the ability of 
DeepCARS to predict patient deterioration and IHCA 
within 24 hours during both RRS operating and non-
operating periods and compared this ability with that 
of conventional EWSs. We found that DeepCARS out-
performed conventional EWSs in predicting IHCA in 
both periods, with consistent AUROCs across RRS op-
erating and nonoperating periods.

AI techniques have been used in several studies to 
predict adverse events in patients, mainly in the ICU 
setting, by using continuous vital signs and numerous 
diagnostic tests (18–22). However, only a few studies 
have specifically focused on patients with deteriorat-
ing status in general wards, and have mostly relied on 
machine learning algorithms using a large number 
of variables, including demographics, vital signs, and 
laboratory test results (23, 24). In contrast, we previ-
ously demonstrated that deep-learning techniques 
are more effective than conventional EWSs (7, 8). 
Furthermore, previous investigations (7, 8, 17, 25, 26) 
did not examine the ability of AI to predict IHCA by 

distinguishing between the RRS operating and non-
operating periods. In this study, we explored the use 
of deep learning-based AI techniques for predicting 
IHCA by comparing the occurrences during periods 
with and without an operating RRS.

We identified an additional rule for DeepCARS that 
can enhance its F-measure, particularly when clinical 
resources are scarce. This rule requires DeepCARS to 
yield a score above a certain threshold, which reduces 
the number of alarms presented, while maintaining 
sensitivity, and results in an improved F-measure. 
However, there is a tradeoff between early detection 
and performance, and thus it would be better applied 
only during the RRS nonoperating period. Even when 
DeepCARS encountered a high score, the AI system 
had to wait for the rule to be fulfilled before generat-
ing an alarm. However, instances of incorrect alarms 
and the resulting desensitization to alarms pose sig-
nificant risks to patient safety, potentially leading to 
delayed responses in critical situations. Thus, adop-
tion of an improved AI system with an additional 
rule for reducing false alarms will help to decrease the 
RRS workload and facilitate proper decision-making. 
Further studies are required to confirm the effective-
ness of this method.

Figure 5. F-measure and positive-predictive value graph based on varying numbers of subsequent alarms. PPV = positive-predictive 
value, RRS = Rapid Response System.
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Our study had some limitations that should be 
considered. First, this study was conducted retro-
spectively, and a well-designed prospective clinical 
trial is required to demonstrate the effectiveness of 
DeepCARS further as a screening tool in clinical 
practice. Second, our findings were obtained from a 
single tertiary care hospital affiliated with a univer-
sity; thus, it may not be reasonable to expect similar 
benefits from implementing DeepCARS in all hospi-
tals. Consequently, the generalizability of our results 
is limited.

CONCLUSIONS

The predictive performance of DeepCARS was con-
sistently superior across both RRS operating and non-
operating periods as compared with MEWS, NEWS, 
and SPTTS, and thereby demonstrated potential 
effective use in hospitals with various types of RRS. 
Furthermore, DeepCARS demonstrated superior per-
formance when the RRS was nonoperational, indicat-
ing its potential for use in hospitals without an RRS.
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