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� The suspicious ultrasonography
features are related to immune
response in thyroid cancer.

� The features were also related to
epithelial to mesenchymal transition
(EMT).

� Immune response and EMT were
related to aggressive clinical
behaviors.

� Immune response and EMT reflected
in the decision by radiologists and
convolutional neural networks.
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Introduction: Ultrasonography (US) features of papillary thyroid cancers (PTCs) are used to select nodules
for biopsy due to their association with tumor behavior. However, the molecular biological mechanisms
that lead to the characteristic US features of PTCs are largely unknown.
Objectives: This study aimed to investigate the molecular biological mechanisms behind US features
assessed by radiologists and three convolutional neural networks (CNN) through transcriptome analysis.
Methods: Transcriptome data from 273 PTC tissue samples were generated and differentially expressed
genes (DEGs) were identified according to US feature. Pathway enrichment analyses were also conducted
by gene set enrichment analysis (GSEA) and ClusterProfiler according to assessments made by radiolo-
gists and three CNNs - CNN1 (ResNet50), CNN2 (ResNet101) and CNN3 (VGG16). Signature gene scores
for PTCs were calculated by single-sample GSEA (ssGSEA).
Results: Individual suspicious US features consistently suggested an upregulation of genes related to
immune response and epithelial-mesenchymal transition (EMT). Likewise, PTCs assessed as positive by
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Epithelial-mesenchymal transition
 radiologists and three CNNs showed the coordinate enrichment of similar gene sets with abundant
immune and stromal components. However, PTCs assessed as positive by radiologists had the highest
number of DEGs, and those assessed as positive by CNN3 had more diverse DEGs and gene sets compared
to CNN1 or CNN2. The percentage of PTCs assessed as positive or negative concordantly by radiologists
and three CNNs was 85.6% (231/273) and 7.1% (3/273), respectively.
Conclusion: US features assessed by radiologists and CNNs revealed molecular biologic features and
tumor microenvironment in PTCs.
� 2023 Production and hosting by Elsevier B.V. on behalf of Cairo University.. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

According to the Surveillance, Epidemiology, and End Results
(SEER) Program, the incidence of thyroid cancers has nearly dou-
bled in the past two decades [1], with consistently low death rates
of 0.4 to 0.5%. This phenomenon has been attributed to the
increased detection of small, clinically indolent, low-risk thyroid
cancers [2–4]. Owing to the combination of increased number of
cases and high detection rate, intense debates have taken place
over ‘‘over-diagnosis” and ‘‘overtreatment” issues in the manage-
ment of thyroid cancer [5–6]. Active surveillance has been intro-
duced for low-risk thyroid cancers [7]. This management
approach incorporates intense ultrasonography (US) monitoring
for changes in size or feature. Newly detected regional cervical
lymph nodes show features suspicious for metastasis [8]. Stringent
management guidelines recommend the use of high resolution US
to differentiate benign and malignant thyroid nodules and Thyroid
Imaging Reporting And Data Systems [9–12]. US not only demon-
strates superior differential diagnoses of thyroid nodules, but can
also be used in the triage or monitoring of low-risk thyroid cancer
candidates [13–15].

Individual US descriptors used for differential diagnosis have
shown high sensitivity for thyroid cancers. Hypoechogenicity,
defined as lower echogenicity compared to surrounding thyroid
parenchyma, is a common US feature for papillary thyroid cancers
(PTCs) [16]). Pathologically, microcalcifications (fine echogenic foci
measuring less than 1 mm on US) correspond to concentric lamel-
lated calcified structures known as psammoma bodies (PBs) [17].
PBs are common in PTC; however, they are detected even in non-
neoplastic lesions, such as benign hyperplastic thyroid nodules
and autoimmune thyroid diseases [17]. The pathogenesis of PBs
was initially thought to be the dystrophic calcification of cancer
cells [18]. Now, researchers propose PBs as products of a biologi-
cally active process driven by cancer cells [19]. Another US feature,
related to PTCs, is the non-parallel shape (taller-than-wide), which
is less sensitive but highly specific for malignancy [20]. Microlob-
ulated, or irregular margins, with infiltrative tumor borders are
most commonly found in PTCs and have been associated with
epithelial-mesenchymal transition (EMT), and immune response
[21].

However, the assessment of the abovementioned suspicious US
features is largely dependent on who performs or interprets the US
examination [22–23]. In addition, intratumoral heterogeneity is
common in human cancers, and cytopathologic samples have lim-
ited value in representing heterogeneous characteristics within a
tumor [24–25]. With the rapid evolution of computational technol-
ogy and data processing, deep learning-based artificial intelligence
(AI) has been applied to medical imaging, including thyroid US
[26–30]. Based on quantitative data, deep learning-based AI is
more objective and thus, may help overcome observer variability
for a better representation of intratumoral heterogeneity. Although
studies have attempted to link US features to pathologic findings,
not many have done so with molecular biologic approaches. This
2

is true specifically for differentially expressed genes (DEGs) that
might be responsible for the characteristic US features of PTCs.
Evaluating these associations may provide us with more accurate
information that can be used to triage patients with low-risk can-
cers. This can be done in addition to qualitative US assessments
performed by radiologists or quantitative AI data.

In this study, we generated transcriptome data using histologi-
cally proven PTC samples. We also investigated gene expression
profiles based on US features that were assessed by radiologists
and deep learning-based AI. The objective of our study was to
understand the molecular mechanism underlying the US features
that characterize thyroid cancers. Additionally, our goal was to
gain deeper insight by comparing the similarities and dissimilari-
ties regarding the decisions made by radiologists and deep
learning-based AIs.
Materials and methods

Patients and specimens

Thyroid cancer and matched contralateral normal human tissue
samples were obtained from 273 patients who went thyroidec-
tomy for conventional PTC at the Yonsei Cancer Center (Seoul,
South Korea) between May 2014 and January 2018. The diagnosis
and evaluation of PTC were conducted in accordance with the
guidelines of the American Thyroid Society and the Korean Thyroid
Society [9]. All samples were frozen in liquid nitrogen and stored at
�80 �C until use. Written informed consent was obtained from all
patients in this study. The study protocol was approved by the
Institutional Review Board of Yonsei Cancer Center, Severance
Hospital (IRB-No. 4-2013-0546 and 4-2019-1487), Seoul, Korea.
Image acquisition and US assessment by radiologists

At our institution, preoperative staging US is performed in all
patients before thyroid surgery. During the study period, these
examinations were performed by one of the 23 radiologists (five
staff radiologists with 3 to 25 years of experience in thyroid imag-
ing and 18 fellows with 1 to 2 years of experience) who were ded-
icated to thyroid imaging. High frequency linear transducers (5 to
12 MHz) (iU22 or EPIQ 5, Philips Healthcare, Bothell, WA, USA)
were used. During the staging examinations, individual US features
of cancers were prospectively analyzed. Results for the following
categories were recorded in our institutional database. Composi-
tion was classified as solid, predominantly solid (cystic por-
tion < 50%), or predominantly cystic (cystic portion �50%).
Echogenicity was classified as hyper-, iso-, hypoechoic (compared
to the surrounding thyroid parenchyma) or marked hypoechoic
(hypoechoic compared to the adjacent strap muscle). Margins were
classified as circumscribed and non-circumscribed (microlobulated
or irregular). Calcifications were classified as no calcifications,
macro- or eggshell calcifications, microcalcifications, and mixed
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calcifications. Shape was classified as parallel or non-parallel
(taller-than-wide, greater in the anteroposterior dimension than
the transverse dimension). Suspicious US features were marked
hypoechogenicity, non-circumscribed margins, microcalcifications,
and non-parallel shape. Vascularity was evaluated using 2D Dop-
pler scans and classified into three patterns, i.e., reduced or absent
vascularity (absence of Doppler signals within the thyroid nodule),
peritumoral vascularity (presence of Doppler signals in the nod-
ule’s periphery), and intratumoral vascularity (presence of Doppler
signals within the thyroid nodule despite peripheral vascularity).
PTCs were assigned a ‘‘negative assessment” if there were no sus-
picious US features within the nodule, or a ‘‘positive assessment” if
there were one or more suspicious US features [31].
Image analysis using deep learning-based artificial intelligence

Deep learning algorithms, such as CNNs, depend heavily on data
size; i.e., the more data used for algorithm construction, the better
the performance. Due to the limited amount of US image data, in-
house deep learning-based AIs have been built through transfer
learning using pre-trained deep CNNs [32]. These carefully
designed and sophisticated CNNs were trained using more than a
million images to maximize the accuracy of their results. There-
fore, we retained the structure of these CNNs (transfer learning)
and used other parameters as initial values for further modification
(fine-tuning) with the US images. The fine-tuning process adjusts
the provided parameter values, including weights and biases. This
is done through an optimization process that uses a stochastic gra-
dient descent with a momentum scheme to better fit a given US
data set. The initial learning rate was set to 0.0003; 10–20 epochs
were conducted and the last few layers were modified to agree
with the number of binary classes for US features (benign and
malignant). A total of 13,560 US images were collected for thyroid
nodules at Severance Hospital from 2004 to 2019 (with IRB
approval, IRB-No. 4-2019-0163) and were used to train the data
in the fine-tuning process. The training set comprised representa-
tive US images of 7160 malignant and 6400 benign nodules con-
firmed cytopathologically. Randomly selected 760 benign images
were augmented by left-right mirroring and added to the benign
data set to balance the amount of data in each class. We fine-
tuned 17 pre-trained CNNs, including GoogLeNet, Inception-v3
and Xception.

Representative images of thyroid cancer were selected for each
case by one radiologist (J.Y.K.). The images were saved in the Pic-
ture Archiving and Communication System (PACS) as JPEG files.
The Microsoft Paint program (version 6.1; Microsoft Corporation,
Redmond, WA, USA) was used to outline square region-of-
interests (ROIs) on the images to include the entire thyroid mass.
Three fine-tuned convolutional neural networks (CNN) (ResNet50,
ResNet101, and VGG16) among the seventeen CNNs were chosen
to compare gene expression patterns among PTCs according to
imaging features for their excellent sensitivity, specificity, and
accuracy in image recognition tasks (refer to the Supplementary
Materials and Methods for detailed information). ResNet50 is 50
layers deep and has 25.6 million parameters in the overall network
[33]. The basic structure of T ResNet101 is similar; however, it is
much deeper with 101 layers and 44.6 million parameters [34].
VGG16 has 16 layers with 138 million parameters [35]. For nota-
tional simplicity, ResNet50, ResNet101, and VGG16 were desig-
nated as convolution neural network (CCN) 1, 2, and 3,
respectively. The three CNNs individually provided continuous
malignancy risk scores (scale 0–100%) for each input of US images.
Risk scores �50% defined a positive CNN assessment and scores
<50% defined a negative assessment.
3

RNA extraction and sequencing

Total RNA was isolated from frozen tissues using the TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, USA). RNA quality
was assessed using a 2100 Bioanalyzer System (Agilent Technolo-
gies, Santa Clara, CA, USA). Next, the TruSeq Stranded mRNA LT
Sample Prep Kit (Illumina, CA, USA) was used to prepare a cDNA
library according to the sample preparation guide (Part
#15031048 Rev E) by Macrogen Inc. (Seoul, Korea). NovaSeq
6000 (Illumina, San Diego, CA, USA) was used for 100 nt paired-
end sequencing. To remove bias, low-quality RNA or artifacts, such
as adaptor sequences, contaminant DNA, and PCR duplicates, were
trimmed from the raw data. Trimmed data were mapped to the ref-
erence genome using HISAT2 (version 2.1.0) and aligned reads
were generated. StringTie (version 2.1.3b) was used to reconstruct
genes and estimate expressions using reference-based aligned read
information. The transcripts were normalized to fragments per
kilobase of transcript per million mapped reads (FPKM) and tran-
scripts per million kilobases (TPM). Fold changes were calculated
using the TPM Log2 value to analyze DEGs. Genes with fold
changes >2 and P-values < 0.05 were used for the g:Profiler analysis
(https://biit.cs.ut.ee/gprofiler) of significant terms related to gene
ontology, pathways, and other gene function-related terms. To val-
idate the results from high-throughput sequencing, quantitative
real-time polymerase chain reaction (qRT-PCR) were performed
(refer to the Supplementary Materials and Methods for detailed
information).

GSEA and gProfiler

Genes identified as DEGs (fold changes >2 and two-tailed
P < 0.05) were subjected to a functional enrichment analysis using
the g:profiler2 (version 0.2.1) R package [36–37]. Gene Ontology
(GO) biological process, GO cellular component, GO molecular
function, Reactome, the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Hallmark GMT (MSigDB version 7.2) were used for func-
tional enrichment analysis [38]. The significance threshold was
met when gSCS < 0.05 and hypergeometric P < 0.05 were satisfied.
Pathway enrichment analysis for DEGs was performed using Clus-
terProfiler, enrichplot, DOSE, ggplot2, org.Hs.eg.db R packages, and
gene set enrichment analysis (GSEA) [39–40]. GO biological pro-
cess, GO cellular component, GO molecular function and KEGG
were used for pathway enrichment analysis using R. GSEA was per-
formed using the hallmark gene set. The results were significant
when P < 0.05 and FDRs < 0.25. The results were also presented
using the Cnetplot to represent the linkages of genes and biological
concepts.

Generation of the scoring system

We calculated signature scores by performing a single-sample
GSEA (ssGSEA) using a signature gene set and estimating stromal
and immune cells in malignant tumor tissues using expression
data (ESTIMATE) R package (version 2.0.0) [41]. The calculated sig-
nature scores were stromal, immune, estimate, hallmark EMT, RAS,
BRAF, extracellular signal-regulated kinase (ERK), and thyroid dif-
ferentiation (TD) score [42]. ssGSEA was performed using tran-
scriptome data from each of the 273 patients. The ESTIMATE
score was calculated as the sum of the stromal and immune signa-
ture scores.

Statistical analysis

Continuous variables were compared using the two-tailed Stu-
dent’s t-test or the Mann–Whitney U test. Statistical analyses were
performed with SPSS v.23.0 (IBM, Armonk, New York, USA) or
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Table 1
Baseline characteristics of the 273 patients in the study population.

Clinicopathological features n (%)
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GraphPad Prism (GraphPad Software, San Diego, CA, USA). Data
were presented as mean ± standard deviation (SD). Two-sided P-
values < 0.05 were significant.
Age (years, mean ± SD) 49.8 ± 14.0
M:F (ratio) 67:206 (24.5:75.5)
Tumor size (cm) 1.8 ± 0.9 (0.5–7.8)
�1/1 � 2/2–4/> 4 (cm) 40 (14.6)/163 (59.7)/63

(23.1)/7 (2.6)
Multifocality
Single/Multiple/Bilateral 168 (61.5)/22 (8.1)/83 (30.4)

Microscopic extrathyroidal extension 218 (79.9)
T stagea

T1/T2/T3/T4 47 (17.2)/9 (3.3)/190 (69.6)/
27 (9.9)

N stage
N0/N1a/N1b 90 (33.0)/80 (29.3)/103

(37.7)
M stage 271 (99.3)/2 (0.7)
M0/M1
TNM stage§

I/II/III/IV 76 (27.8)/3 (1.1)/115 (42.1)/
79

Presence of BRAFV600E mutation 235 (86.1)
US features assessed by radiologists n (%)
Composition (solid/predominantly solid/

predominantly cystic)
255 (93.4)/18 (6.6)/0 (0.0)

Echogenicity (hyper-/iso-/hypo-/markedly
hypoechoic)

0 (0.0)/18 (6.6)/212 (77.7)/
43 (15.7)

Margins (well/microlobulated/irregular) 31 (11.4)/153 (56.0)/89
(32.6)

Calcifications (no calcification/macro- or
eggshell/micro-/mixed)

93 (34.1)/35 (12.8)/114
(41.7)/31 (11.4)

Shape (parallel/non-parallel) 146 (53.5)/127 (46.5)
Vascularity (no/intratumoral/peritumoral/

both)
101 (37.0)/17 (6.2)/96
(35.2)/59 (21.6)

Echotexture (heterogeneous/homogeneous)
echogenicity)

60 (22.0)/213 (78.0)

Final assessment (Negative/Positive) 14 (5.1)/259 (94.9)

Malignancy risk score (range, 0–100%, mean ± SD) of CNN
CNN1 91.4 ± 15.9
CNN2 87.3 ± 22.3
CNN3 85.6 ± 21.7

Decisions made by CNN (Negative/Positive) n (%)
CNN1 13 (4.8)/260 (95.2)
CNN2 24 (8.8)/249 (91.2)
CNN3 24 (8.8)/249 (91.2)

Abbreviations: TNM, TNM Classification of Malignant Tumors 8th edition; SD,
standard deviation; CNN, convolutional neural network.
Results

Immune responses and EMT linked to individual suspicious US features
assessed by radiologists

RNAseq was performed on tumor tissues from 273 patients
with PTCs. The baseline clinicopathological and US features are
summarized in Table 1. First, we performed a GSEA based on sus-
picious US features assessed by the radiologists to better under-
stand molecular biological features. Genes related to immune
response, such as for allograft rejection, inflammatory response,
and IFN-c were enriched in hypoechoic or marked hypoechoic
PTCs compared to isoechoic PTCs (Fig. 1A). Furthermore, genes
related to EMT, IL6-JAK-STAT3 signaling, and TNF-a signaling via
NFjB were also enriched. EMT, IFN-c response, IFN-a response,
TNFa signaling via NFjB, inflammatory response, and allograft
rejection were also highly enriched in PTCs with microcalcifica-
tions compared to PTCs without any types of calcification
(Fig. 1B). Except for IFN-a response, the non-parallel shape was
not associated with any significantly enriched gene set (Fig. 1C).
Although other gene sets related to immune response were identi-
fied, they were not statistically significant. Similar patterns of gene
enrichment with echogenicity or microcalcifications were also
observed in microlobulated or irregular margins (Fig. 1D).
Increased peritumoral and intratumoral vascularity was associated
with genes involved in protein secretion, MYC, unfolded protein
response, p53, and PI3-AKT-mTOR. (Fig. 2A). Reduced or absent
vascularity was associated with genes related to EMT, allograft
rejection and angiogenesis (Fig. 2B). GSEA of genes related to per-
itumoral vascularity did not reveal significant gene enrichment
compared to those associated with reduced or absent vascularity.
For absent vascularity, they were related to oxidative phosphoryla-
tion, E2F targets, and fatty acid metabolism (Fig. 2C). Comparative
GSEA between intratumoral and reduced/absent vascularity
revealed that intratumoral vascularity showed similar enriched
genes sets to that of both peritumoral and intratumoral vascularity
(Fig. 2D). Reduced or absent vascularity seemed to be related to
EMT and TNFa signaling via NFjB. However, the q-values of the
false discovery rate (FDR) were greater than 0.25. Both peritumoral
and intratumoral vascularity did not have any gene sets that were
differently expressed.

As our data indicated that suspicious US features were related
to immune response, we calculated the stromal, immune, and esti-
mate scores that reflect non-tumor cells in the tumor microenvi-
ronment (TME). Hypoechoic or marked hypoechoic PTCs showed
higher stromal, immune and estimate scores compared to isoe-
choic PTCs (Supplementary Fig. 1A). PTCs with microcalcifications
also showed higher stromal, immune and estimate scores com-
pared to PTCs without calcification (Supplementary Fig. 1B). The
non-parallel shape did not have statistically higher stromal,
immune, and estimate scores compared to the parallel shape (Sup-
plementary Fig. 1C). In contrast, microlobulated or irregular mar-
gins resulted in a statistically higher score compared to the
circumscribed margin (Supplementary Fig. 1D). These results sug-
gest that suspicious US features are tightly linked to non-tumor
cells, such as fibroblasts and immune cells. To understand the bio-
logical characteristics of tumor cells, we also calculated EMT, RAS,
BRAF, ERK, and TD scores. Notably, suspicious US features were
related to aggressive tumorigenic molecular profiles, including
higher EMT scores, lower RAS scores, higher BRAF and ERK scores,
and lower TD scores (Supplementary Fig. 1A to 1D).
4

Prediction of gene expression changes based on the final radiological
assessment

DEGs were evaluated based on binary assessments provided by
the radiologists. Positive PTCs showed 2,147 upregulated and 209
downregulated genes, indicating diverse gene expression changes
(Supplementary Figs. 2 and 3). GSEA with hallmark gene sets
included those with individual suspicious US features, such as
IFN-c response, allograft rejection, inflammatory response, TNFa
signaling via NFjB, INFa response, IL6-JAK-STAT3 signaling, and
EMT. Furthermore, genes sets associated with the p53 pathway
and the mitotic spindle were enriched in positive PTCs in addition
to those with individual suspicious US features (Fig. 3A). Our calcu-
lations also indicated higher stromal, immune, estimate, EMT,
BRAF, and ERK scores and lower RAS and TD scores (Fig. 3B and
Supplementary Fig. 4). Based on g:Profiler, diverse immune-
related gene sets were identified for GO biological processes, cellu-
lar component, and molecular function. Reactome gene set analysis
also identified immune-related gene sets and proto-oncogenic
transcription factors, such as MYC, AML1, and c-JUN. These genes
were listed as candidate transcription factors (TFs) for suspicious
US features of PTC (Fig. 3C, 3D, and Supplementary Table 1).



Fig. 1. Representative images and dot plots for the GSEA results according to the US features assessed by radiologists. A-D. Images and GSEA present gene sets enriched in
hypoechoic or marked hypoechoic PTCs (n = 255) compared to isoechoic PTCs (n = 18) (A), PTCs with microcalcification (n = 114) compared to PTCs without calcifications
(n = 93) (B), PTCs with non-parallel shape (n = 127) compared to PTCs with parallel shape (n = 146) (C), and PTCs with microlobulated or irregular margins (n = 242) compared
to PTCs with circumscribed margins (n = 31) (D). Abbreviations: GSEA, gene set enrichment analysis: FDR, false discovery rate.

Fig. 2. GSEA results based on the presence of vascularity on US. A and B. GSEA represents gene sets enriched in PTCs with increased (peritumoral and intratumoral)
vascularity (n = 172) (A) and PTCs with reduced or absent vascularity (n = 101) (B). C. GSEA represents gene sets enriched in PTCs with reduced or absent vascularity (n = 101)
compared to PTCs with increased peritumoral vascularity (n = 96). D. GSEA represents gene sets enriched in PTCs with increased intratumoral vascularity (n = 17) compared
to PTCs with reduced or absent vascularity (n = 101). Abbreviations: GSEA, gene set enrichment analysis.
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Fig. 3. Molecular biological characteristics according to binary decisions made by radiologists using US images. A. GSEA using hallmark gene sets represent coordinately
enriched gene sets in PTCs assessed as positive (n = 259) compared to those assessed as negative (n = 14) by radiologists on US. These gene sets met the following criteria: FDR
q-value < 0.25, nominal P-value < 0.05. B. Comparison of molecular scores between PTCs assessed as negative and positive on US. The box extended from the 25th to 75th
percentiles, and the whiskers indicated all points. P-values were calculated using the Mann–Whitney U test. *** P-value < 0.001, **** P-value < 0.0001. C. g:Profiler results
using differentially- expressed genes (DEGs, fold changes > 2 and two-tailed P-values < 0.05). The figure depicts the gene sets enriched in PTCs assessed as positive on US; the
number indicates the ranking for each group from the Molecular Signatures Database (MSigDB; HALLMARK, GO:MF, GO:CC, GO:BP, KEGG, REAC, and TF). For detailed gene set
names and statistical analysis results, refer to Supplementary Table 1. D. Representative gene sets related to Fig. 4C. Abbreviations: EMT, epithelial-mesenchymal transition;
TD, thyroid differentiation; FDR, false discovery rate; MF, molecular function; CC, cellular component; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and
Genomes; REAC, Reactome; TF, transcription factor.
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Diverse gene expression changes related to the final evaluations of
interpreting radiologists and CNNs

To understand molecular features based on decisions made by
CNNs, we first developed DEGs. CNN1 revealed 1135 upregulated
and 38 downregulated genes (Supplementary Fig. 5). GSEA identi-
fied genes related to EMT, angiogenesis, and inflammatory
response that were enriched in PTCs assessed as positive by
CNN1 (Supplementary Fig. 6A). However, due to the small number
of DEG and enriched gene sets, no signaling pathways relating to
the IFN response, IL6-JAK-STAT3 signaling, and TNFa signaling
via NFjB were identified. Furthermore, PTCs with positive CNN1
results had higher stromal, EMT, and BRAF scores and lower RAS
scores (Supplementary Fig. 6B). DEG analysis for CNN2 identified
649 upregulated and 184 downregulated genes (Supplementary
Fig. 7). As CNN2 also had a few DEGs, the score comparison for
the GSEA and CNN1 were similar (Supplementary Fig. 8A and
8B). Unlike CNN1, PTCs assessed as positive by CNN2 had genes
related to the IFN response and IL6-JAK-STAT3 signaling. PTCs
assessed as positive by CNN3 had 1567 upregulated and 187
downregulated genes (Supplementary Fig. 9). Once again, the num-
ber of DEGs was small, and the GSEA results were similar to genes
related to the immune response and EMT (Supplementary
Fig. 10A). Except for the ERK score, the score comparison analysis
for CNN3 revealed results similar to the assessments by the radiol-
ogists (Supplementary Fig. 10B). However, when the major TFs
were analyzed, the radiologists and three CNNs revealed subtle dif-
ferences (Fig. 4 and Supplementary Table 2 to 4).

The radiologists and CNN1 reported 14 and 13 false-negative
cases, respectively. In contrast, CNN2 and CNN3 assessed 24
false-negative cases each (Fig. 5A). To understand the common
6

molecular biological characteristics defined by the radiologists
and CNNs, we compared the cases simultaneously evaluated as
negative (n = 3, Fig. 5A) or positive (n = 231, Fig. 5B) by radiologists
and CNNs 1–3. The three cases assessed as negative by radiologists
and all CNNs included genes related to metabolism and synthesis,
such as oxidative phosphorylation, fatty acid metabolism, adipoge-
nesis, reactive oxygen species, glycolysis, and TORC1 signaling
(Fig. 5C). In the 231 PTCs that were assessed as positive by the radi-
ologists and CNNs, genes related to EMT and immune response
were enriched and compatible with our GSEA for suspicious US
features (Fig. 5D).

Discussion

In this study, we investigated the molecular biological features
of pathologically-proven PTCs. These molecular features are the
fundamental cause of US features considered suspicious by radiol-
ogists and deep learning-based AI [12]. Using RNA sequencing and
in silico analysis, we identified TME as an important player in
determining the characteristics of US images. GSEA performed
according to echogenicity and tumor margin revealed that diverse
immune responses, and EMT gene sets were highly enriched in
PTCs, that had hypoechogenicity, microlobulated, or irregular mar-
gins. The presence of microcalcifications was related to immune
responses and EMT; the non-parallel shape was also related to
immune responses, despite the few statistically significant gene
sets. GSEA according to vascular features presented somewhat dif-
ferent results. Increased vascularity, especially intratumoral vascu-
larity, was associated with gene sets related to secretion,
proliferation, replication, and synthesis. The immune responses
and EMT were linked to decreased or absent vascularity.



Fig. 4. Molecular biological characteristics according to binary decisions made by the three CNNs. A-C. g:Profiler results are depicted using differentially expressed genes
(DEGs, fold changes > 2 and two-tailed P-values < 0.05) according to CNN1, CNN2, and CNN3, respectively. Figures show gene sets enriched in PTCs with positive CNN results;
the number indicates the ranking for each group from the Molecular Signatures Database (MSigDB; HALLMARK, GO:MF, GO:CC, GO:BP, KEGG, REAC, and TF). For detailed gene
set names and statistical analysis results, refer to Supplementary Table 2 to 4. D. Representative transcription factor targets are related to Fig. 2A to 2C.

Fig. 5. Molecular biological characteristics according to the binary decisions of radiologists and three CNNs. A and B. A Venn diagram that presents the number of cases
commonly assessed as negative or positive by radiologists and three CNNs. C and D. GSEA using hallmark gene sets presents gene sets highly enriched in nodules assessed as
negative (C) or positive (D). Abbreviations: GSEA, gene set enrichment analysis.
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Angiogenesis-related gene sets were also enriched in PTCs with
low or no vascularity, indicating this vascular feature may be
related to hypoxia. In contrast, increased vascularity may be
related to oxidative phosphorylation, representing aerobic meta-
bolism [43–46]. These findings suggest that suspicious US features
are primarily related to TME and EMT, and that vascularity also
reflects tumor metabolism status.

In regard to driver mutations, our samples showed a high fre-
quency of the BRAFV600E mutation [235 (86.1%) out of 273 cases]
as seen in previous reports in South Korea [47–48]. Molecular clas-
sification of TCGA THCA divided PTC into two representative
groups; RAS-like and BRAF-like [42]. However, with the recent
introduction of new research technology such as single cell tran-
scriptome analysis, understanding of TME has deepened and tumor
heterogeneity is no longer a complete mystery [49]. Even though
the frequency of the BAFV600E mutation was higher in positive
PTCs assessed by the radiologists and three CNNs (data not shown),
our study shows relatively homogenous driver genes, but different
BRAF, RAS, EMT, ERK and TD scores that reflect the characteristics
of tumors, suggesting that additional tumor evolution to
BRAFV600E is an important step leading to the ultrasonography
features analyzed.

We performed the GSEA according to ETE and LNM to better
understand the clinicopathological significance of TME and EMT
(data not shown). Immune response-related signaling was also
found in ETE-related gene sets. LNM-related gene sets were more
diverse; besides the immune response and EMT gene sets, genes
involved in TGF-b and NOTCH signaling were also enriched in PTCs
with LNM [50–53]. The GSEA findings demonstrate that suspicious
US features can be related to ETE, an aggressive clinical feature of
PTCs. However, a more diverse or intense EMT was required for
LNM that may not be reflected in the used suspicious US features
[54–57]. This trend was also observed in the three CNNs. The
diverse EMT-related gene sets identified in PTCs using LNM were
not significantly documented in PTCs and were assessed as being
positive by the three CNNs.

When comparing the assessments of the radiologists and three
CNNs, gene sets related to TME and EMT were identified by both as
positive PTCs. The cases assessed as positive by radiologists also
had the highest number of DEGs. In contrast, those assessed as pos-
itive by CNN3, using VGG16, had more diverse DEGs and gene sets
compared to CNNs that used ResNet50 and ResNet101, respec-
tively. Based on the number of DEGs and identified gene sets,
CNN3-determined features were more similar to US features deter-
mined by the radiologists. However, the number of PTCs in which
cancer was misdiagnosed as benign tumors was the highest in
CNN3 (n = 9), followed by radiologists (n = 5), CNN1 (n = 1), and
CNN2 (n = 7). The subsequent GSEA suggested that the gene
enrichment patterns observed in false-negative cases assessed by
radiologists differed from those assessed by the three CNNs. For
example, dysregulation of the cell cycle was neglected in false-
negative cases assessed by radiologists. In contrast. both dysregu-
lation of the cell cycle and MYC transactivation were not detected
by CNN3. Of note, one false-negative case among CNN1 assess-
ments was observed in which the number of DEGs was lower than
that observed by radiologists and other CNNs. The differences in
the identification of molecular characteristics amongst CNNs
reflect the basis on which each algorithm was built. The three
CNNs detected molecular characteristics differentially based on
their pre-trained algorithms. Based on our research at this stage,
it seems difficult to conclude which of these CNNs is superior. Fur-
ther follow-up studies will be needed to understand and analyze
the characteristics of each AI-based algorithm.

Primarily, this study was designed to evaluate gene expression
related to characteristic US features seen in PTCs. Therefore, DEGs
were investigated by comparing PTC samples, rather than compar-
8

ing PTCs with benign thyroid nodules, as we anticipate future stud-
ies will. No definitive precancerous lesions of PTC were identified,
limiting this comparative analysis [58–59]. Second, our data sug-
gested that the more prominent the ultrasonography features,
the more active the epithelial-mesenchymal transition was. How-
ever, not all signaling pathways that contribute to carcinogenesis
may lead to the characteristic features seen on ultrasonography
images by the naked eye or AI. For example, certain oncogenic sig-
naling related to EMT (i.e., NOTCH signaling) is not reflected
through US features. Furthermore, other hallmarks of cancer, such
as metabolic remodeling, protein synthesis, dysregulation of the
cell cycle, MYC transactivation, and hormone response, do not
appear strongly as suspicious imaging features. The effects of the
gene sets identified in this study on tumor progression must be
further elucidated [42,60]. Third, one of the 23 radiologists inde-
pendently assessed the US features of PTCs in the prospective col-
lection of image data. The inherent subjectivity of the US
assessments may have affected the results, but this was not consid-
ered in this study [22]. Last, the samples for this study were
obtained from a single institution and the number of samples
was limited. Therefore, subgroup analyses, such as the analysis
performed according to gender (no difference between males and
females in ultrasonography features), may have insufficient statis-
tical power. Our findings need to be validated in larger multicenter
studies with wet Lab-based validation experiments.

In summary, the composition of TME and aggressive PTC fea-
tures were related to individual suspicious US features of PTCs.
When applying three deep learning-based CNNs, scores calculated
by CNN1 were generally similar to those calculated by radiologists.
Distinct molecular features including TME characteristics and
aggressive features were identified in PTCs assessed as positive
by radiologists, and CNN algorithms identified various molecular
characteristics according to the type of pre-trained algorithm (Sup-
plementary Figure 11). US features assessed by radiologists and AI-
based CNN can potentially predict the molecular biologic behaviors
of PTCs.
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