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Lymph node (LN) metastasis is an important factor in determining the

treatment and prognosis of oropharyngeal squamous cell carcinoma

(OPSCC). Here, we compared the somatic mutational profiles and clonal

evolution of primary and metastatic LNs using multiregion sequencing of

human papilloma virus (HPV)-positive OPSCC and HPV-negative OPSCC.

We performed high-depth whole-exome sequencing (2009) of 76 samples

from 18 patients with OPSCC (10 HPV-positive and 8 HPV-negative),

including 18 primary tumor samples, 40 metastatic LN samples, and 18

normal tissue samples. Among 40 metastatic LNs, 22 showed extranodal

extension (ENE). Mutation profiles of HPV-positive OPSCC and HPV-

negative OPSCC were similar to those reported previously. Somatic muta-

tions in CDKN2A and TP53 were frequently detected in HPV-negative

OPSCC. Somatic mutations in HPV-positive OPSCC samples showed

APOBEC-related signatures. Somatic mutations from metastatic LNs

showed a different pattern than the primary tumor. Somatic mutations

acquired in the WNT pathway during metastasis showed a significant rela-

tionship with ENE. Clonal evolution analysis of primary and metastatic

LNs showed that, in some cases, each metastatic LN originated from a dif-

ferent primary tumor sub-clone.

Abbreviation

AJCC, American Joint Cancer Committee; CADD, combined annotation-dependent depletion; CNV, copy number variation; COSMIC, catalog

of somatic mutations in cancer; DFS, disease-free survival; ENE, extranodal extension; FFPE, formalin-fixed paraffin-embedded; GRCh38,

genome Research Consortium human build 38; H&E, hematoxylin and eosin; HPV, human papilloma virus; LN, lymph node; MAF, minor

allele frequency; NGS, next-generation sequencing; OPSCC, oropharyngeal squamous cell carcinoma; OS, overall survival; SNP, single

nucleotide polymorphism; TMB, tumor mutational burden; TSS, tumor-specific survival; VAF, variant allelic frequency.
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1. Introduction

The incidence of oropharyngeal squamous cell carci-

noma (OPSCC) associated with human papilloma

virus (HPV) has increased in recent decades, whereas

the incidence of OPSCC caused by smoking and drink-

ing has decreased. HPV-positive OPSCC has distinct

clinical features compared with HPV-negative OPSCC

[1–3]. It occurs in relatively young patients and the

response to treatment is favorable, so the patient’s life

expectancy is relatively longer than HPV-negative

OPSCC. Therefore, a range of clinical trials has inves-

tigated how to reduce treatment-related morbidities

and improve the quality of life of these patients [4–8].
However, despite the favorable prognosis of HPV-

positive OPSCC, the locoregional failure rate remains

high at about 15%, and 10–20% of HPV-positive

OPSCC patients eventually die due to disease progres-

sion. Although HPV-negative OPSCC due to smoking

and drinking has decreased, it still accounts for 30%

of OPSCC cases and the prognosis of these patients is

worse than that of patients with HPV-positive OPSCC.

To improve the poor prognosis of HPV-negative

OPSCC patients and a subset of HPV-positive OPSCC

patients, molecular and genomic studies to understand

the mechanisms underlying the progression and metas-

tasis of OPSCC are required.

Most OPSCC cases originate from the palatine ton-

sils, with lymphatic metastasis occurring first in the

level II area known as the first echelon lymph nodes

(LNs). Thereafter, LN metastasis sequentially occurs

to level III and level IV LNs along the jugular chain.

During this process, extranodal extension (ENE), an

adverse prognostic feature, occurs in some metastatic

LNs. In the revised 8th American Joint Cancer Com-

mittee (AJCC) classification guidelines, the N classifi-

cation was upgraded to N2a or N3b for the finding of

ENE, including in HPV-negative OPSCC [9–12].
Although there is controversy surrounding the prog-

nostic significance of ENE findings in HPV-positive

OPSCC, current NCCN guidelines recommend adju-

vant treatment if ENE is observed.

Next-generation sequencing (NGS) technology has

made it possible to perform genomic analysis of cancer

samples to identify genetic mutations related to the

progression and metastasis of cancer in a cost-effective

manner. In this study, we performed multiregional

whole-exome sequencing of the primary tumor and

metastatic LN samples to explore the genetic variation

and tumor evolution of OPSCC tumors with sequen-

tial LN metastases and ENE. An understanding of the

molecular genetic mechanisms underlying sequential

lymph node metastasis and ENE will likely improve

the treatment outcomes of OPSCC patients.

2. Materials and methods

2.1. Subject ascertainment

Among OPSCC patients who underwent surgery at Sev-

erance Hospital, 18 patients who had surgical specimens

available and who provided written informed consent

for use of these samples to obtain genetic information

were enrolled in this study. An experienced specialized

head and neck pathologist (S. J. Shin) marked the

tumor-corresponding region in formalin-fixed paraffin-

embedded (FFPE) blocks through hematoxylin and

eosin (H&E) staining. Tumor portions on LNs contain-

ing tumor metastasis were marked and matched with

the primary tumor followed by manual dissection. For

metastatic LN samples, metastatic LNs with ENE find-

ings were preferentially collected, and if available, meta-

static LNs samples were collected at different neck

levels including II, III, and IV. Normal tissue samples

were also obtained from surgical specimens. Clinical

information was obtained from medical records. This

study was approved by the Institutional Review Board

of Yonsei University (4-2020-1370). All research proce-

dures conformed to the principles of the Helsinki

Declaration.

2.2. DNA extraction and library preparation

Genomic DNA was extracted from matched tumor,

metastatic LN, and normal tissue samples that were

re-evaluated by a specialized head and neck patholo-

gist using QIAamp DNA FFPE kits (Qiagen, German-

town, Maryland, USA) following standard protocols.

A sufficient amount of DNA (over 1 lg) was extracted
from 18 primary tumors, 40 matched metastatic LNs,

and adjacent normal tissue. Each sample was prepared

according to Agilent library preparation protocols

(Agilent SureSelect Human All exon V6 kit,

Agilent, Santa Clara, CA, USA). Libraries underwent

paired-end sequencing on an Illumina HiSeq 4000

instrument according to the manufacturer’s protocol.

2.3. Bioinformatics analyses of somatic

mutations

To generate analysis-ready bam files from Fastq files,

we followed the ‘Best Practices’ workflow suggested by

the Broad Institute. Briefly, raw sequencing files were

aligned to the Genome Research Consortium human
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build 38 (GRCh38) using BWA-MEM [13]. After applying

MarkDuplicates and Base Recalibration processes, ini-

tial raw candidate variants were called for each sample

using the MUTECT2 caller [14,15]. To reduce false-

positive variants, all variants were filtered using the

following in-house filtering criteria: (a) total

depth < 50, (b) variant allelic frequency < 7%, (c)

altered read counts < 4. Additional filtering criteria

were then applied to assess pathogenicity: (a) com-

bined annotation dependent depletion (CADD) phred

score < 26, and (b) minor allele frequency

(MAF) > 0.1% in the gnomAD database for global

and East Asian populations [16]. To extract muta-

tional signatures based on 30 recurrent base substitu-

tion patterns from the Catalog of Somatic Mutations

in Cancer (COSMIC), we used a public web service pro-

gram called Mutalisk [17]. Copy number log-ratios

were computed with CNVKIT [18]. Unsupervised cluster-

ing of CNV was performed using the R package

‘CNTOOLS’ [19]. Oncoplots were constructed using MAF-

TOOLS [20]. Mutated genes were categorized based on

oncogenic signaling pathways reported in TCGA [21].

Tumor mutational burden (TMB) was analyzed by

comparison with previously reported data following

basic scripts in MAFTOOLS [22].

2.4. Immunohistochemistry

Pathologist (SJS) reviewed all hematoxylin and eosin

(H&E) slides used at the time of diagnosis. Formalin-

fixed, paraffin-embedded tissue blocks of metastatic

LNs chosen, and sections (4-lm thickness) from each

metastatic LN blocks were immunostained with a pri-

mary antibody against b-catenin (1 : 200, mouse

monoclonal, Cell marque, Merck, Darmstadt, Ger-

many), using the Ventana Benchmark XT automated

staining system (Ventana Medical Systems, Tucson,

AZ, USA) according to the manufacturer’s protocol.

2.5. Bioinformatics-based clonal analysis

To analyze ancestral sub-clones of each metastatic LN,

somatic mutations in the primary tumor were listed

without considering pathogenicity (CADD phred score

and MAF score). Variant allelic frequency (VAF) of

selected candidates from metastatic LNs was calcu-

lated using an in-house script. Based on these pro-

cesses, it was not necessary to interpret somatic

mutations in the LNs themselves during the process of

LNs metastasis. Clonal lineage reconstruction and

VAF-based clustering were performed using LICHeE

with all parameters set to default settings except for

the following: -maxVAFAbsent 0.005, -minVAFPresent

0.05, -minClusterSize 5. The best-scored lineage tree

from each sample was exported in DOT format for

GRAPHVIZ visualization [23].

2.6. Statistical analysis

To determine somatic mutations associated with ENE

status, we grouped somatic mutations into clusters

based on the previously mentioned oncogenic signaling

pathways. Categorical variables consisting of muta-

tions occurring in each signaling pathway were com-

pared using the Fisher’s exact test. Statistical analyses

were performed with SPSS version 26 (IBM Corp.,

Armonk, NY, USA), and forest plots were generated

using GRAPHPAD PRISM version 6 (GraphPad Software,

La Jolla, CA, USA).

3. Results

3.1. Tumor characteristics

A total of 76 samples (18 from primary tumors, 40

from metastatic LNs, and 18 from normal tissue) were

obtained from 18 patients with OPSCC. Among 40

metastatic LNs, 22 metastatic LNs had ENE

findings (Table 1). First, we evaluated the genetic land-

scape of the primary tumors according to HPV status

(Fig. 1A). Somatic mutations were categorized based

on oncogenic signaling pathways previously reported

in TCGA. Similar to previous studies, HPV-negative

OPSCC samples were characterized by somatic muta-

tions in a cell cycle gene (CDKN2A) and TP53. Multi-

ple somatic mutations in Notch, hippo, and WNT

pathways were observed only in HPV-positive OPSCC.

Somatic mutations related to the PI3K pathway were

observed in both groups. As most of the samples with

high TMB were HPV-positive, more mutations were

detected in HPV-positive patient samples. Mutational

signatures were analyzed based on 30 recurrent base

substitution patterns from the Catalog of Somatic

Mutations in Cancer (COSMIC). As previous reports

indicated, HPV-positive OPSCC showed enrichment of

signatures related to APOBEC (signatures 2 and 13).

In the HPV-positive patients, 90.9% (10 out of 11)

had a history of smoking, and in the HPV-negative

patients, 57.1% (4 out of 7) had a history of smoking.

As expected, HPV-positive patient samples had more

smoking-associated signatures (signatures 1, 2, 4, 5,

and 13; Fig. 1B) [24]. While HPV-negative OPSCC

presented with enrichment of signatures 6, 18, and 1

(defective mismatch repair, damage of reactive oxygen

species, and spontaneous deamination, respectively;

Fig. 1C,D). The distribution of TMB among our
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samples was similar to that reported previously for

TCGA data. The most common somatic mutations

were single nucleotide polymorphisms (SNPs), with

missense mutations the most common type of SNP

(Fig. S1). Copy number variation (CNV) analysis

showed a gain of 3q and 8q and loss of 3p, 11, and

13. Unsupervised clustering analysis showed no dis-

tinctive subsets according to HPV status (Fig. S2).

To analyze when acquired or missing somatic muta-

tions occurred during the process of LN metastasis, we

generated oncoplots representing the mutational pro-

files of all primary tumor and metastatic LN samples

(Fig. S3). Interestingly, metastatic LNs had unique

somatic mutations compared with their primary tumor

and other metastatic LNs located at different neck

levels in the same patient. To evaluate pathogenic

somatic mutations related to ENE of metastatic LNs,

we analyzed the somatic mutations frequently occurred

in the metastatic LN with ENE. Surprisingly, somatic

mutations of WNT pathway were observed in 41.7%

(10 out of 24) from metastatic LNs with ENE com-

pared with 6.3% (1 out of 16) from metastatic LNs

without ENE and 5.6% (1 out of 18) from the primary

tumor. In addition, most mutations (90.9%, 10 out of

11) were observed in HPV-positive patients (Fig. 2A).

Among metastatic LNs with ENE, two somatic muta-

tions were nonsense mutations in tumor suppressor

genes (TLE2 and APC) while 12 somatic mutations

(SFRP5, CHD4, CHD8, DVL1, APC, TLE4, and

SOST) were missense mutations that had a probable

or possibly damaging effect based on PolyPhen predic-

tion scores. Additionally, all somatic missense muta-

tions had a phred score over 27 CADD (Table S1). To

determine the correlation between mutations in onco-

genic signaling pathways and ENE findings, we per-

formed the statistical analysis. Somatic mutations in

the WNT pathway were significantly associated with

ENE based on a two-tailed Fisher’s exact test (odds

ratio = 10.714, 95% confidence interval = 1.210–
94.862, P = 0.027, Fig. 2B). To determine whether

metastatic LNs containing WNT pathway mutations

resulted in up-regulation of the WNT pathway, we

stained metastatic LNs with an antibody specific to b-
catenin to determine activation of the WNT pathway.

As the expression of b-catenin may be increased in

cancer cells, we compared the intensity of b-catenin
staining between metastatic LNs with and without

ENE. Compared with metastatic LNs without ENE,

metastatic LNs with ENE showed more intense b-
catenin staining than metastatic LNs without ENE

(Fig. 2C).

Finally, we evaluated the clonal evolution of pri-

mary tumors and metastatic LNs. We harvested meta-

static tissues from LNs at different neck levels. By

analyzing the initial sub-clones of each metastatic LN,

we were able to infer the evolutionary process of LN

metastases. We extracted the VAF of somatic muta-

tions belonging to primary tumors only for each meta-

static LN. By evaluating only the somatic mutations

of primary tumors, we could infer the initial sub-

Table 1. Tumor sample characteristics. When multiple metastatic lymph node samples were collected from one patient, they were

collected from different neck levels (level II–IV). LN, lymph node; pN, pathologic N stage; pT, pathologic T stage.

ID # Age Sex pT pN

Smoking

history

P16

status

Tumor

samples

LNs without

ENE

LNs with

ENE

HN01 66 M 2 2 O Positive 1 2 1

HN02 64 M 2 1 O Positive 1 1 1

HN03 80 M 2 2 O Positive 1 2 0

HN04 64 M 1 1 O Positive 1 1 1

HN05 64 M 2 2 X Positive 1 0 2

HN06 72 M 2 2 O Positive 1 1 2

HN07 57 M 3 2 O Positive 1 0 3

HN08 72 M 2 2 O Positive 1 0 3

HN09 66 M 2 2 O Positive 1 0 1

HN10 61 M 2 2 O Positive 1 0 3

HN11 64 M 2 1 O Positive 1 1 1

HN12 59 M 2 2b O Negative 1 0 1

HN13 60 F 2 2b X Negative 1 1 0

HN14 63 F 3 3b X Negative 1 2 1

HN15 45 F 4 3b X Negative 1 1 1

HN16 28 M 3 3b O Negative 1 1 1

HN17 67 M 4 3b O Negative 1 3 0

HN18 59 M 4 3b O Negative 1 0 2
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Fig. 1. Somatic mutational profile of primary tumors. (A) Oncoplots showing mutated genes grouped based on oncogenic signaling

pathways with associated characteristics. (B) Mutational signature of HPV-positive OPSCC. (C) Mutational signature of HPV-negative

OPSCC. (D) Contribution of each mutational signature according to HPV status. HPV, human papilloma virus.
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clones responsible for each metastatic LN. If meta-

static LNs spread sequentially along the jugular lymph

node chain from upper neck levels down to lower

levels, all metastatic LNs should originate from the

same sub-clone of the primary tumor. We found that

most metastatic LNs originated from the same sub-

clone of the primary tumor (Fig. S4). However, several

metastatic LNs did not originate from the same sub-

clone of the primary tumor, i.e., they arose indepen-

dently from different sub-clones of the primary tumor.

For example, level IV metastatic LNs of sample HN01

originated from different sub-clone of the primary

tumor. Level III metastatic LNs of sample HN04 were

derived from a more ancestral sub-clone than level II

metastatic LNs. Level IV metastatic LNs of sample

HN18 originated from independent sub-clones differ-

ent from the sub-clone from which level I metastatic

LNs arose. These different origins of metastatic LNs

mean that LN metastases can arise directly from the

primary tumor rather than from other metastatic LNs

located at upper LN levels. Interestingly, we observed

that contralateral metastatic LNs and retropharyngeal

LNs originated from sub-clones that were completely

different to those from which ipsilateral metastatic

LNs arose in samples HN05, HN15, and HN17.

Taken together, our results suggest that cancer cells of

metastatic LNs not only come from ipsilateral meta-

static LNs but also from the primary tumor (Fig. 3).

4. Discussion

Here, using multiregional whole-exome sequencing of

the matched primary tumor and metastatic LN sam-

ples, we analyzed the genetic landscape and clonal evo-

lution of primary tumors and metastatic LNs in HPV-

positive and HPV-negative OPSCC. First, we analyzed

the somatic mutational profile of the primary tumors

of OPSCC patients and observed similar patterns of

somatic mutations as reported previously. We found

that acquired somatic mutations in the WNT pathway

showed a significant association with ENE of meta-

static LNs and that the WNT pathway activity was

up-regulated in metastatic LNs with ENE. Finally, we

confirmed that metastatic LNs not only originated

from sub-clones of other ipsilateral metastatic LNs

located at different neck levels but that some also

arose from independent sub-clones of the primary

tumor.

HPV status has received attention recently as an

important prognostic factor in determining treatment

outcomes of OPSCC patients. Treatment results are

better for HPV-positive OPSCC patients than HPV-

negative OPSCC patients in terms of disease-free sur-

vival (DFS), tumor-specific survival (TSS), and overall

survival (OS) [25]. Therefore, the 8th American Joint

Committee on Cancer (AJCC) staging system modified

the stage of OPSCC to reflect the prognostic implica-

tion of p16+ as representative of HPV status [26]. As

expected, the somatic mutations, mutational signa-

tures, and copy number alterations that we detected in

primary tumors of OPSCC were similar to those found

previously [21,27–29]. Because our analysis was based

on Asians, there may be limitations in interpreting the

result. However, we detected a smaller overall number

of somatic mutations in HPV-negative OPSCC sam-

ples than in HPV-positive OPSCC samples, and

somatic mutations in NOTCH and HIPPO pathways

were detected only in HPV-positive OPSCC samples,

but these findings should be interpreted with caution

because of the limited number of HPV-negative

OPSCC samples analyzed in this study. To overcome

the low quality of DNA extracted from FFPE sam-

ples, we applied stringent criteria to reduce the number

of false-positive variants. We found that mutations

present in some high-purity samples had a great effect

on the overall genetic landscape. Notwithstanding, our

finding that the most frequently detected mutations in

HPV-negative OPSCC samples were in CDKN2A and

TP53 is consistent with previous studies. These results

indirectly indicate that our analysis based on FFPE

samples was not distorted by the limited number of

samples or unbalanced sample quality.

Lymph node metastasis itself is considered an

important feature in cancer treatment and prognosis

evaluation and is believed to be an intermediate step

in the progression of cancer during which distant

metastasis occurs [30–32]. Moreover, ENE has long

been considered a pathologic high-risk feature, mean-

ing that patients with the finding of ENE are at an

increased risk of disease progression and would benefit

Fig. 2. Genetic analysis of metastatic LNs. (A) Oncoplot representing mutations grouped based on oncogenic signaling pathways with

associated characteristics. (B) Forest plot showing odds ratios and confidence intervals of ENE findings in association with mutated

pathways(Fisher’s exact test). Odds, odds ratio; P, P-value. (C) Representative immunohistochemical staining of b-catenin. Metastatic LNs

with ENE showed strong intensity staining, but metastatic LN without ENE showed moderate intensity b-catenin staining. Upper panels

show metastatic LNs without ENE, lower panels show metastatic LNs with ENE. Scale bar = 200 micrometer; ENE, extranodal extension;

HPV, human papilloma virus; LN, lymph node.
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from adjuvant therapy [33]. Although the pathologic

LN status of HPV-positive OPSCC is based solely on

the number of positive lymph nodes in the revised 8th

AJCC staging system, the finding of ENE is still con-

sidered an important risk factor when planning adju-

vant treatment. In addition, several studies have

reported that ENE is significantly related to poorer

DFS, PFS, and OS even in HPV-positive OPSCC

patients [34,35]. In this study, we found that acquired

somatic mutations in the WNT pathway were signifi-

cantly associated with ENE of metastatic LNs. Fur-

thermore, we demonstrated that the WNT pathway

was activated in metastatic LNs with ENE compared

to LNs without ENE in the same patients using immu-

nohistochemical staining of b-catenin as a biomarker

of WNT pathway activation. The previous study

reported an association between ENE in metastatic

LNs with CTTN and MMP9 mutations [36]. In addi-

tion, CTTN and MMP9 are related to the WNT acti-

vation [37–39]. Due to the limited number of samples

that we evaluated, our results need to be validated in a

larger cohort. Nevertheless, the association between

ENE and somatic mutations in the WNT pathway

suggests another therapeutic approach to improve

refractory OPSCC based on the control of locoregio-

nal recurrences associated with ENE of metastatic

LNs.

OPSCC metastasizes to first echelon LNs according

to the location of the primary tumor, then sequentially

spreads to ipsilateral LNs [40,41]. As OPSCC com-

monly metastasizes to level II LNs followed by level

III-IV LNs irrespective of HPV status, elective neck

dissection including that of level II–IV LNs is usually

performed in the surgical treatment of N0 OPSCC

patients. Several studies have demonstrated that the

number and location of metastatic LNs are critical

predictors of treatment outcomes and survival, but

studies on why these nodal factors of metastatic LNs

affect prognosis are lacking [30,42–44]. In the current

study, we found that a large number of somatic muta-

tions occurred in metastatic LNs. We compared clonal

evolution between primary tumor and metastatic LN

samples and found that metastatic LNs not only origi-

nated from ipsilateral metastatic LNs located at differ-

ent neck levels but that some also arose independently

from sub-clones of the primary tumor. Since we

applied strict filtering criteria to reduce false-positive

calls, it was thought that there were many false-

negative mutations in metastatic LNs. Therefore, we

set the somatic mutations identified in the primary

tumor as the correct mutation set, and the presence or

absence of mutations was checked in each metastatic

LN. We could demonstrate the heterogeneity of the

primary tumor, but it was difficult to infer the hetero-

geneity of each metastatic LNs itself. However, these

findings suggest the presence of inter-lesional heteroge-

neity in metastatic LNs at different neck levels in

OPSCC patients. We attempted to evaluate which

oncogenic signaling pathway affects phylogenetic tree

separation but did not find a clear correlation. This

may be due to the low number of the oncogenic sig-

naling pathway involved. Previous studies have dem-

onstrated that a higher level of intratumoral

heterogeneity is related to a poorer prognosis [45–47].
Although further research is required, inter-lesional

heterogeneity of metastatic LNs in OPSCC may lead

to a poor prognosis and treatment resistance, as does

intratumoral heterogeneity of the primary tumor. Fur-

thermore, our analysis suggested that in order to plan

the targeted therapy, mutation analysis should be per-

formed in consideration of the location of recurrence,

not only the genetic analysis of the primary tumor.

5. Conclusions

Somatic mutations in WNT pathway-associated genes

were significantly associated with ENE of metastatic

LNs, and WNT pathway activity was up-regulated in

metastatic LNs. Furthermore, some metastatic LNs,

including contralateral or retropharyngeal LNs, were

found to originate independently from sub-clones of

the primary tumor rather than from ipsilateral

Fig. 3. Phylogenetic trees of the primary tumor and metastatic LNs. Each circle represented a sub-clone of the primary tumor. The number

of somatic mutations is indicated in circles. The mean variant allelic fractions of sub-clones are indicated next to the line. Heatmap nearby

each tree showed the presence of each mutation in each sub-clone. Columns in the heatmap represented each sub-clone. Right label of

heatmap showed somatic mutations included in the oncogenic signaling pathway reported in the previous report. (A) Level IV metastatic

LNs of HN01 originated from different sub-clones than Level II and III metastatic LNs. (B) Level II metastatic LNs of HN04 were derived

from ancestral sub-clones rather than Level III metastatic LNs. (C) Level IV metastatic LNs of HN18 were derived from different sub-clones

than Level I metastatic LNs. (D) Retropharyngeal metastatic LNs of HN05 were derived from different sub-clones than level III metastatic

LNs. (E) Contralateral level II metastatic LNs of HN15 originated from an ancestral sub-clone rather than level II metastatic LNs. (F) Contra-

lateral level I metastatic LNs of HN17 originated from an ancestral sub-clone rather than level I and II metastatic LNs. cLv, contralateral level;

GL, germline; Lv, level; RP, retropharyngeal.
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metastatic LNs located elsewhere in the neck. Future

studies should investigate how inter-lesional heteroge-

neity of metastatic LNs of OPSCC patients affects

treatment outcomes and prognosis.
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