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Abstract: Background: Wearable devices for robot-assisted gait training (RAGT) provide overground
gait training for the rehabilitation of neurological injuries. We aimed to evaluate the effectiveness
and safety of RAGT in patients with a neurologic deficit. Methods: Twenty-eight patients receiving
more than ten sessions of overground RAGT using a joint-torque-assisting wearable exoskeletal
robot were retrospectively analyzed in this study. Nineteen patients with brain injury, seven patients
with spinal cord injury and two patients with peripheral nerve injury were included. Clinical
outcomes, such as the Medical Research Council scale for muscle strength, Berg balance scale,
functional ambulation category, trunk control tests, and Fugl–Meyer motor assessment of the lower
extremities, were recorded before and after RAGT. Parameters for RAGT and adverse events were
also recorded. Results: The Medical Research Council scale scores for muscle strength (36.6 to 37.8),
Berg balance scale (24.9 to 32.2), and functional ambulation category (1.8 to 2.7) significantly improved
after overground RAGT (p < 0.05). The familiarization process was completed within six sessions
of RAGT. Only two mild adverse events were reported. Conclusions: Overground RAGT using
wearable devices can improve muscle strength, balance, and gait function. It is safe in patients with
neurologic injury.
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1. Introduction

Gait disorder is a serious long-term disability in adults with neurologic deficit. Gait
function is often impaired in people with neurologic deficits, resulting in reduced mo-
bility, which is associated with decreased life satisfaction and a lower quality of life [1].
Additionally, a lack of physical activity increases the risk of developing secondary health
problems, such as cardiopulmonary complications, bowel/bladder dysfunction, obesity,
osteoporosis, and pressure ulcers [2–6]. These issues can further decrease life expectancy
in affected patients [2,3]. Restoration of walking ability is one of the main focuses of reha-
bilitation in such patients [7,8]. Various rehabilitation strategies, including conventional
physical therapy using physical effort, hydrotherapy, and electrical stimulation therapy,
have been developed to improve gait ability in these patients [9]. Repetitive task-specific
training is a modern concept of rehabilitation to restore walking ability [8,10–12]. Previ-
ous studies have demonstrated that high intensities of walking training resulted in better
outcomes [10,12]. Robot-assisted gait training (RAGT) can provide more supportive high-
intensity task-specific training, even in patients with neurologic injury [8]. The benefits
of RAGT in patients with neurologic injury are well-established in the literature, and
it shows significant improvements in clinical outcomes compared to conventional gait
training [13–15].
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The Cochrane Review for RAGT after stroke was first published in 2007 and has
been updated thrice since then [10,16–18]. The review in the last update in 2020 showed
that RAGT helped more patients walk independently. Zhang et al. showed that RAGT
could help patients with spinal cord injury in improving their locomotor ability [19]. In
some studies with patients with cerebral palsy, RAGT appears to have a positive effect on
locomotor ability and capability for daily activities [20,21]. Other previous studies have
also demonstrated the effectiveness of RAGT in various patients [22–24]; however, the role
of the type of device was unclear [10]. The main robotic design for RAGT consists of an
exoskeleton and an end-effector. The exoskeleton resembles human legs, while the robot’s
joints usually correspond to the human’s joints and guide the legs by enforcing determined
gait postures. The end-effector present in the robot’s footplates is connected to the patients’
feet. It simulates a normal gait by moving the robot’s footplates to the trajectories of the gait
cycle [25]. Recently, a wearable type of lightweight exoskeleton for RAGT that can be carried
has been developed, enabling patients to walk overground [9]. The wearable device needs
energy-efficient and functional purposes [26]. Wearable devices may be more advantageous
than static exoskeletons in overground RAGT in restoring walking ability by enabling
walking over a hard surface and stairs. Overground RAGT can emulate overground human
neuromotor control of locomotion and provide more task-specific training for locomotion
compared with a static exoskeleton. Furthermore, overground RAGT using a wearable
exoskeletal robot could improve patients’ active balance control, weight transfer, and
muscle activation [9]. Balance is an important component of gait function, as it is necessary
for maintaining an upright posture and stable walking. Overground RAGT can have a
positive effect on balance, as it promotes dynamic postural control, which is critical for an
independent gait [27]. Wearable exoskeletons allow for a normal gait in a more outdoor
setting, with the patients being able to walk overground and explore the environment [28].
Overground robotic-assisted gait training has the advantage of providing greater freedom
of movement during ambulation, opportunities for independent training at home, and
the possibility to train more daily living activities, such as sitting, turning, and climbing
stairs. Some wearable exoskeletons have already obtained United States Food and Drug
Administration approval and/or European Conformity (CE) mark certification and are
commercially available [29]. However, limited studies on the effectiveness and safety of
the wearable type have been reported for overground RAGT in neurologic deficit [30].
Therefore, we investigated the effectiveness and safety of wearable exoskeletons in patients
with neurologic deficit during overground RAGT. Additionally, changes in the robotic
parameters during each RAGT session were also analyzed.

2. Materials and Methods
2.1. Patients and Study Design

This retrospective study reviewed the medical records of adult patients who under-
went inpatient rehabilitation and RAGT between 1 November 2020 and 30 April 2022.
Twenty-eight patients were selected for the analysis based on the following inclusion crite-
ria: (a) overground RAGT using Angel Legs M performed more than 10 times during the
inpatient rehabilitation program; (b) a clinical evaluation performed before and/or after
RAGT; and (c) details of the diagnosis and adverse events of RAGT recorded during the
inpatient rehabilitation program. Exclusion criteria were: (a) the presence of progressive
neurologic disease and (b) coexisting neurological and/or orthopedic disease that could
affect gait training. The patients were carefully selected to ensure that they met the criteria
for participation in the study and to minimize potential confounding factors.

2.2. Wearable RAGT

The Angel Legs M (ANGEL ROBOTICS Co., Ltd., Seoul, Republic of Korea) was
used for overground RAGT in the study (weight 19.5 kg). This robot can be used in
various individuals with partial impairment of gait function: stroke, spinal-cord injury,
neuromuscular diseases, etc. The overground RAGT was conducted for 10–20 sessions per
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patient, 30 min per session and 5 times a week. All training sessions were conducted under
the supervision of a physical therapist. If the patient could not endure 30 min, we stopped
the session and recorded the actual performed session time. The robot can provide assistive
torque during the different gait phases, which are automatically sensed through combined
information from ground contact sensors, encoders (incremental and absolute) in the
actuators, and inertial-measurement-unit sensors. According to a polynomial assistive joint
torque profile based on the gait phases, flexion torque at the hip and knee joints is generated
in the swing phase, and extension torque at the hip and knee joints is generated in the
stance phase to help the patient’s gait. More details have been described previously [9]. We
collected data on the actual performed session time; cadence in each session (steps/min);
and maximal assist power (Nm) of hip flexion, hip extension, knee flexion, and knee
extension during each session of the RAGT. Patients walked at a self-selected speed during
the treatment sessions, though they were encouraged to keep the speed as fast as possible.
The maximal assist power was adjusted to emulate a normal gait pattern according to a
therapist’s inspection. We also reviewed medical records for any adverse event reported
during the RAGT. We confirmed the completeness of the familiarization process by using
the actual performed time of RAGT and the cadence reaching the plateau.

2.3. Clinical Evaluation

Clinical evaluations were conducted before and after RAGT. Clinical evaluations
included the adjusted Medical Research Council (MRC) scale for muscle strength, Berg
balance scale (BBS), functional ambulation category (FAC), trunk control tests (TCT) and
Fugl–Meyer motor assessment of the lower extremities (FMLE) [31–34]. The adjusted MRC
scale for muscle strength was the sum of the strength of six lower limb muscle groups, such
as hip flexion/extension, knee flexion/extension, and ankle dorsiflexion/plantarflexion,
ranging from 0 to 60 [35]. The clinical evaluation before and after RAGT only included an
interval of three days.

2.4. Statistics

All statistical analyses were performed using R software (version 3.5.1, R Foundation
for Statistical Computing, Vienna, Austria). A parametric paired t-test was used for normally
distributed measures as tested using the Shapiro–Wilk normality test. For nonparametric data,
a Wilcoxon singed-rank test was used. A significance level of p < 0.05 was set, indicating that
any results with a p-value under 0.05 would be considered statistically significant.

3. Results
3.1. Patient Characteristics

The study consisted of 28 patients who were selected based on their medical history
and physical condition. The mean age of the patients was 43.9 ± 22.4 years (range,
19–86 years), and the sample included 17 male and 11 female patients. Of the 28 patients,
19 (68%) patients with brain injury, 7 (25%) with spinal cord injury, and 2 (7%) with
peripheral nerve injury were included in this study. Out of 19 patients with brain injury,
7 had stroke, 9 had cerebral palsy, and 3 had others brain injuries, such as encephalitis or
tumors. The detailed characteristics of the selected patients are shown in Table 1.

3.2. Parameters for Wearable RAGT

The average actual performed session time was 22.9 min in the first session, which
reached 30 min within five sessions of RAGT. The average cadence was 33.8 steps/min
in the first session; this rose to 46.0 steps/min within six sessions of RAGT. However,
individual variations were seen until the 20th session (Figure 1). The averages of the
maximal assist power were 7.7 Nm in hip flexion, 9.2 Nm in hip extension, 7.7 Nm in knee
flexion, and 9.2 Nm in knee extension. A decreasing trend of the maximal assist power for
hip flexion was observed throughout the sessions (Figure 2).
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Table 1. General characteristics of included patients.

Variables Values

Demographics
Mean age (years, mean ± SD) 43.9 ± 22.4

Male:Female (n, %) 17 (60.7):11 (39.3)
Height (cm, mean ± SD) 167.1 ± 10.5
Weight (kg, mean ± SD) 64.4 ± 12.4

Diagnosis (n, percentage)
Brain injury 19 (68.0)

Stroke 7 (25.0)
Cerebral palsy 9 (32.1)

etc. 3 (10.7)
Spinal cord injury 7 (25.0)

Trauma 2 (7.1)
Tumor 3 (10.7)

etc. 2 (7.1)
Peripheral nerve injury 2 (7.1)

CIDP 2 (7.1)
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3.3. Changes in Clinical Outcome after RAGT

The results of the study showed that after overground RAGT, there was a significant
improvement in MRC (36.6 ± 2.1 to 37.8 ± 2.4, p = 0.012), BBS (24.9 ± 3.3 to 32.2 ± 3.2,
p = 0.001), and FAC (1.8 ± 0.4 to 2.7 ± 0.3, p = 0.030) scores in all patients. In patients
with brain injury, there was a significant improvement in MRC (39.4 ± 1.5 to 40.8 ± 1.5,
p = 0.017) and BBS (23.5 ± 3.6 to 30.6 ± 3.2, p = 0.001) scores after overground RAGT.
However, no significant improvement was seen in any of the clinical outcomes in SCI
patients after RAGT. The changes in clinical outcomes are shown in Table 2.
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(a) Maximal hip flexion torque (Nm); (b) maximal hip extension torque (Nm); (c) maximal knee
flexion torque (Nm); and (d) maximal knee extension torque (Nm). Boxes denote mean ± standard
deviation, and the vertical bars represent the range.

Table 2. Changes in clinical outcomes before and after RAGT.

Clinical Measure Values
p-Value

Before RAGT After RAGT

All patients
MRC * 36.6 ± 2.1 37.8 ± 2.4 0.012 †

BBS ** 24.9 ± 3.3 32.2 ± 3.2 0.001 †

FAC * 1.8 ± 0.4 2.7 ± 0.3 0.030
TCT 59.4 ± 4.0 79.4 ± 5.8 0.057

Brain injury
MRC * 39.4 ± 1.5 40.8 ± 1.5 0.017 †

BBS ** 23.5 ± 3.6 30.6 ± 3.2 0.001 †

FAC 1.8 ± 0.5 2.6 ± 0.4 0.053
TCT 59.4 ± 4.0 79.4 ± 5.8 0.057

FMLL 13.0 ± 3.8 22.6 ± 3.4 0.062

Spinal cord injury
MRC 22.2 ± 6.6 24.6 ± 8.3 0.586
BBS 25.3 ± 7.5 34.0 ± 11.2 0.371

Values shown as average ± standard error. * p < 0.05, ** p < 0.01; MRC, adjusted Medial Research Council scale for
muscle strength; BBS, Berg balance scale; FAC, functional ambulation category; TCT, trunk control test. † p value
by paired t-test.

3.4. Feasibility of Wearable RAGT

Only two patients felt pain during the first session. Their skin was tender from the
straps used to attach their leg to the exoskeletal robot’s leg. Based on the numeric pain
intensity scale, they scored 1 and 3 points, respectively. The pain was reduced by adjusting
the position of the strap. Patients did not take any pain-relief medication due to the
diminishing intensity of pain after the cessation of the treatment session. None of the
patients stopped their session due to pain during RAGT.

4. Discussion

Robot-assisted gait training (RAGT) emerged nearly 30 years ago. Since the develop-
ment of the Locomat in 1994, the technology for robot devices used in gait training has
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advanced rapidly [36]. RAGT provides supportive high-intensity task-specific training
for patients with neurologic injury and can improve a patient’s gait and balance function.
Robot-assisted gait training (RAGT) provides supportive high-intensity task-specific train-
ing for patients with neurologic injury. This study evaluated the effectiveness and safety
of a wearable robotic exoskeleton in patients with neurologic injuries during overground
RAGT. Significant improvements in clinical outcomes, assessed using the MRC, BBS, and
FAC scales, were observed after overground RAGT. The actual performance time of RAGT
and the cadence reached six sessions, and the maximal torque assistance for hip flexion
showed a decreasing trend throughout the sessions. The adverse events were minor, and
no patient stopped RAGT due to adverse events.

In our study, overground RAGT improved clinical outcomes associated with gait func-
tion. These results are in line with those of previous studies of static RAGT on treadmills
that demonstrated an improved walking ability [8,37]. The advantage of overground RAGT
is that it is more effective in dynamic postural control than static RAGT [9,38]. Overground
RAGT facilitates the trunk muscles by shifting the body weight according to the gait move-
ment without a body-weight support system, which is mainly used in static RAGT on a
treadmill [38]. Dynamic postural control, which is affected by trunk muscles, is critical for
an independent gait; hence, in this study, overground RAGT showed an improved effec-
tiveness in terms of BBS and FAC measures. Furthermore, the joint-torque-assisting system
can promote patients’ motivation and improve muscle strength by assisting patients in
their effort to move their joints [9]. Therefore, muscle strength, reflected by MRC, improved
after overground RAGT. Since during the swing phase, the hip flexor needs more muscle
power to lift the limb with the exoskeleton, the Angel Legs M system may facilitate the
muscle strength of the hip flexor. The assist torque for hip flexion decreased throughout
sessions due to the increasing hip flexor muscle strength.

For the wearable RAGT, all patients completed the familiarization process within
several sessions. Due to the absence of weight support systems, the wearable RAGT can
be challenging for patients during gait training. The safety of the wearable RAGT was
clearly seen in this study, since no severe adverse events were reported; only mild pain
was felt by two patients, but it did not interrupt their session. Previous studies on similar
wearable devices have demonstrated the safety of gait training [38,39]. However, when
using wearable RAGT, the absence of a weight support system demands precise clinical
indications for patients who can control their trunk posture. Furthermore, at least one
supervisor is required to closely monitor the use of overground RAGT, especially during
the familiarization process. In contrast to conventional physical therapy, where continuous
physical assistance from a therapist is needed, a wearable RAGT is more efficient because
the therapist performs a supervisory role.

There are a few limitations in this study. The small heterogenous sample size, retro-
spective design of the study, and absence of a control group are potential confounding
factors. Our study should be interpreted with caution because it has a small sample size
and is not a randomized controlled trial. Despite these limitations, to the best of our
knowledge, this is the first study to evaluate the effectiveness, safety, improvements in
clinical outcomes, and changes of robotic parameters following overground RAGT in pa-
tients with neurologic deficits using a wearable robotic exoskeleton. Until now, research
on RAGT for peripheral nerve injury patients suffering from conditions such as chronic
inflammatory demyelinating polyradiculoneuropathy (CIDP) or Guillain-Barre Syndrome
(GBS), in addition to stroke or SCI, has not been widely conducted. This study is the first to
analyze the effectiveness of overground RAGT. In the future, it will be necessary to recruit
more patients with peripheral nerve injuries to validate these results. Thus, prospective
randomized controlled studies with larger numbers of patients are needed to confirm the
effectiveness and safety of RAGT in patients with various clinical conditions.



J. Pers. Med. 2023, 13, 676 7 of 9

5. Conclusions

This study showed that overground RAGT using a wearable type is feasible in patients
with neurologic injury, enabling them to reach a tolerable level within six sessions of RAGT.
Moreover, the wearable joint-torque-assisting robot for RAGT can improve muscle strength,
balance, and gait function by providing overground high-intensity gait-specific training.
Furthermore, the application of a wearable type for RAGT is safe in patients with neurologic
deficits. Therefore, our study can be used in future studies when setting up well-defined
protocols to provide the best patient-specific rehabilitation training, especially for patients
with brain injuries.
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