
Citation: Lim, D.-W.; Choi, M.-S.;

Kim, S.-M. Bioinformatics and

Connectivity Map Analysis Suggest

Viral Infection as a Critical Causative

Factor of Hashimoto’s Thyroiditis.

Int. J. Mol. Sci. 2023, 24, 1157.

https://doi.org/10.3390/

ijms24021157

Academic Editor: Alessandro

Antonelli

Received: 18 October 2022

Revised: 15 December 2022

Accepted: 22 December 2022

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Bioinformatics and Connectivity Map Analysis Suggest Viral
Infection as a Critical Causative Factor of Hashimoto’s Thyroiditis
Dong-Woo Lim 1,2 , Min-Seo Choi 1 and Seok-Mo Kim 3,*

1 Department of Diagnostics, College of Korean Medicine, Dongguk University,
Goyang 10326, Republic of Korea

2 Institute of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
3 Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine,

Seoul 06273, Republic of Korea
* Correspondence: seokmokim@yuhs.ac; Tel.: +82-2-2019-3370

Abstract: Hashimoto’s thyroiditis (HT) is a common autoimmune disease, and its prevalence is
rapidly increasing. Both genetic and environmental risk factors contribute to the development of HT.
Recently, viral infection has been suggested to act as a trigger of HT by eliciting the host immune
response and subsequent autoreactivity. We analyzed the features of HT through bioinformatics
analysis so as to identify the markers of HT development. We accessed public microarray data of
HT patients from the Gene Expression Omnibus (GEO) and obtained differentially expressed genes
(DEGs) under HT. Gene Ontology (GO) and KEGG-pathway-enrichment analyses were performed
for functional clustering of our protein–protein interaction (PPI) network. Utilizing ranked gene lists,
we performed a Gene Set Enrichment Analysis (GSEA) by using the clusterprofiler R package. By
comparing the expression signatures of the huge perturbation database with the queried rank-ordered
gene list, a connectivity map (CMap) analysis was performed to screen potential therapeutic targets
and agents. The gene expression profile of the HT group was in line with the general characteristics of
HT. Biological processes related to the immune response and viral infection pathways were obtained
for the upregulated DEGs. The GSEA results revealed activation of autoimmune-disease-related
pathways and several viral-infection pathways. Autoimmune-disease and viral-infection pathways
were highly interconnected by common genes, while the HLA genes, which are shared by both,
were significantly upregulated. The CMap analysis suggested that perturbagens, including SRRM1,
NLK, and CCDC92, have the potential to reverse the HT expression profile. Several lines of evidence
suggested that viral infection and the host immune response are activated during HT. Viral infection
is suspected to act as a key trigger of HT by causing autoimmunity. SRRM1, an alternative splicing
factor which responds to viral activity, might serve as potential marker of HT.

Keywords: Hashimoto’s thyroiditis; bioinformatics; viral infection; mRNA splicing; GSEA;
autoimmune disease; CMap

1. Introduction

Hashimoto’s thyroiditis (HT) is one of the most prevalent autoimmune diseases
(AIDs) [1] and a common cause of hypothyroidism in developed countries [2]. The patho-
logic features of HT include extensive inflammation in thyroid tissue caused by infiltrating
CD4+ T lymphocytes [3] and the presence of autoantibodies, causing follicular cell damage
and ultimately leading to disrupted thyroid function [4]. The clinical phenotype of HT can
vary from asymptomatic to severe symptoms of hypothyroidism, including weight gain,
menstrual disorders, and heat intolerance [5]. Although HT is an organ-specific disease,
the disease might be related to other AID or systemic autoimmune disorders in many
cases [6]. The proposed risk factors for HT include genetic susceptibility, sex (female), and
senescence, as well as environmental triggers such as iodine uptake, drugs, chemicals, and
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viral infections [7]. However, the exact mechanism underlying thyroid autoimmunity in
HT remains unclear.

AIDs lead to tissue injury caused by the autoreactivity of T- and B-cell-mediated
responses [8]. Mechanisms of immune tolerance generally prevent autoimmune reac-
tions through the fine-tuning process of positive and negative selection of potentially
autoreactive lymphocytes [9]. The failure of these selection mechanisms gives rise to autore-
active T cells or antibodies, which may appear several years prior to the manifestation of
AID [10,11]. Genetic susceptibility and environmental factors determine one’s predisposi-
tion to AID [12].

Genetic predisposition and expression changes influence the autoimmune thyroid
disease course by affecting host immunoreactivity or antigen presentation/recognition [12].
Polymorphisms in IL2 and CTLA4 or the upregulation of MHC Class II molecules are impli-
cated in the etiology of AID [10]. MHC, which is also known as human leukocyte antigen
(HLA) in humans, plays a key role in AID by helping the immune system distinguish self
from foreign, owing to its unlimited allelic diversity [13]. HLA alleles (HLA-DPB1) and
their variants (HLA-DPB1*02:02 and HLA-DPB1*05:01) have been described as contributors
to the early pathogenesis of autoimmune thyroiditis [14]. However, genetic susceptibility
alone is often insufficient to give rise to autoimmunity [15].

Recently, viral infection has emerged as an attractive environmental trigger of autoim-
munity, with multiple mechanisms described for different AIDs [16]. Molecular mimicry,
bystander activation, and epitope spreading are the three major mechanisms underlying
virus-induced autoimmunity [17]. Molecular mimicry is based on cross-reactivity due to the
structural similarity between pathogen (viral particles) and self (self-antigens), providing a
basis for virus-induced autoimmunity [18]. Subsequent tissue damage results in the release
of damage-associated molecular patterns (DAMPs) that activate TLRs, leading to amplified
immune activation [19]. Likewise, biomolecule-based observation has been indicating viral
infections as a key factor in the induction and development of autoimmune diseases.

A case study reported HT onset after herpes simplex virus infection (3 to 6 months) in
three patients, as indicated by the presence of IgM and IgG antibodies against the virus [20].
A study of 42 HT patients revealed a high prevalence of Epstein–Barr virus infection
in patient tissue (n = 42) [21]. A larger study showed a clear association of hepatitis C
virus (HCV) infection and thyroid autoimmunity [22]. A systematic review of 12 studies
compared epidemiological differences in thyroid dysfunction between HCV-infected and
non-HCV-infected patients, indicating an increased risk of thyroid dysfunction in the
former [23].

Recent advances in microarray profiling and bioinformatics tools have enabled the
analysis of massive transcriptome data, providing insight into the expression changes
observed during various diseases. The Gene Expression Omnibus (GEO) database is a
public repository with microarray, next-generation sequencing (NGS), and other genomics
data that provides access to large datasets submitted by various researchers [24]. Gene
Set Enrichment Analysis (GSEA) is a powerful analytical method used for interpreting
gene-expression data via Gene Ontology (GO) terms or other gene-set collections [25].
The Connectivity Map (CMap), a comprehensive, large-scale perturbation database con-
taining 1.5 million gene expression profiles from cultured human cells, can be used to
identify potential therapeutic targets or drugs for the submitted gene signature [26]. These
bioinformatics tools can be utilized to address various biomedical issues by deciphering
information hidden in a large number of biological datasets [27].

An investigation into the biomarkers of HT should be conducted to improve diagnosis
and provide feasible medical treatment. A previous study on HT utilized the GEO microar-
ray database yet only suggested hub genes deduced from protein–protein interaction (PPI)
network of DEGs [28]. In this work, we extracted a list of DEGs from the GEO microarray
database and divided them into functional clusters via PPI network construction and per-
formed an overrepresentation analysis (ORA). Based on a ranked gene list, we conducted
GSEA to scrutinize the skewed distribution of genes related to specific BP terms and KEGG
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pathways in the HT group, visualizing these through various R packages. Finally, we
identified promising targets and compounds for HT via a CMap analysis.

2. Results
2.1. Validation of GEO Data

Processed data from the GSE138198 human thyroid tissue microarray dataset was
validated by checking the distribution in a boxplot and the heatmap clustering of samples.
The boxplot revealed median-centered values, indicating that the data are well-normalized
for all samples (Figure 1A). A UMAP plot located each sample in a reduced dimension,
using Euclidean distance, concluding that samples within groups are in close proximity
(HT vs. TN), and, on the contrary, at long distance between the two groups (Figure 1B).
Likewise, the hierarchical correlation heatmap indicated that samples are clustered by
groups (Figure 1C).

(A) (B)

(C) (D)

Figure 1. Validation of selected gene-expression profiles from GSE138198. A total of 16 human sam-
ples were included, 13 in the HT group and 3 in the TN group. (A) Boxplot displays distributions of
values of the selected samples from GSE138198 after normalization. (B) UMAP plot of 16 normalized
samples embedded in a Euclidean space. (C) Clustered correlation heatmap showing correlation of
microarray profile between 16 samples. (D) Volcano plot of significant differentially expressed genes
(DEGs) in HT (adjusted p-value < 0.05 and |log2FC| > 1). Plots were created by using GEO2R or
pheatmap R package.
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2.2. Identification of DEGs Extracted from HT

The volcano plot displayed the distribution of DEGs by their fold change and p-value,
as was distinguishable by color (Figure 1D). After the validation of gene identifiers, a total
of 838 upregulated DEGs and 595 downregulated DEGs were confirmed between the HT
vs. TN groups. Lists of the 15 most significant up- or downregulated genes are presented in
Table 1. KIF5B and PTH were confirmed as the most significantly up- and downregulated
DEGs, respectively, in the HT group as compared to the TN group.

Table 1. List of top 15 up- or downregulated differentially expressed genes (protein-coding genes
only). Genes with |Log2(FC)| > 1 and p-value < 0.05 were considered to be DEGs.

Gene Symbol Gene Name log2(Fold Change) −Log10(P)

Up
regulated

KIF5B Kinesin family member 5B 2.092 9.687
SLC30A7 Solute carrier family 30, member 7 1.613 8.584
RHNO1 RAD9-HUS1-RAD1 interacting nuclear orphan 1 1.948 8.386

PGK1 phosphoglycerate kinase 1 1.628 8.321

ATP5EP2 ATP synthase, H+ transporting, mitochondrial F1
complex, epsilon subunit pseudogene 2 1.865 8.107

PIGS Phosphatidylinositol glycan anchor biosynthesis class S 2.408 8.092
CFL1 Cofilin 1 1.441 7.967

ACER3 Alkaline ceramidase 3 1.833 7.798
PARP3 Poly(ADP-ribose) polymerase family member 3 2.09 7.783

ATXN7L1 Ataxin 7 like 1 2.526 7.756
TMA7 Translation machinery associated 7 homolog 2.999 7.713
PTMA Prothymosin, alpha 1.341 7.685

HLA-DMB Major histocompatibility complex, Class II, DM beta 2.011 7.663
SAMD9L Sterile alpha motif domain containing 9 like 3.262 7.617
UNC93B1 Unc-93 homolog B1 (C. elegans) 1.973 7.581

Downregulated

PTH Parathyroid hormone −7.228 14.79
CKM Creatine kinase, M-type −6.094 10.002
MYL2 Myosin light chain 2 −7.113 9.68
MYH2 Myosin heavy chain 2 −5.091 9.511

ATP2A1 ATPase sarcoplasmic/endoplasmic reticulum Ca2+
transporting 1 −4.317 9.467

AKR1C3 Aldo-keto reductase family 1, member C3 −3.636 9.222
GPT2 Glutamic–pyruvic transaminase 2 −1.961 8.731
CHGA Chromogranin A −1.615 8.614

MYBPC1 Myosin binding protein C, slow type −6.775 8.608
IGBP1 Immunoglobulin (CD79A) binding protein 1 −1.63 8.189

SAMD8 Sterile alpha motif domain containing 8 −1.652 8.067
SOD1 Superoxide dismutase 1, soluble −1.722 7.862

AKR1C1 Aldo-keto reductase family 1, member C1 −3.674 7.796
FKBP3 FK506 binding protein 3 −1.872 7.688

TMEM159 Transmembrane protein 159 −1.87 7.661

2.3. Functional Clustering Analysis of DEGs Reveals the Pathological Characteristics of HT

The full PPI network of up- and downregulated DEGs is presented in Supplementary
Figures S1 and S2. A further analysis of functional modules was conducted by using the full
PPI network with regard to GO (BP) and KEGG terms (Figures 2 and 3). PPI modules were
in line with the general characteristics of HT. Upregulated DEGs were grouped in three
notable clusters whose gene lists overrepresented the immune response (viral infection),
immune system regulation (autoimmune disease), and RNA translation (ribosome), with
scores of 13.467, 8.214, and 6.857, respectively (Figure 2A–C). Meanwhile, downregulated
DEGs were grouped into three remarkable clusters enriched in muscle contraction (car-
diomyopathy), translation (ribosome), and oxidative phosphorylation (cellular respiration
and its related diseases), with scores of 18.842, 11.091, and 7.60, respectively (Figure 3A–C).
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(A) Cluster 1
Score : 13.467
Immune response (to virus)
Viral infection

(B) Cluster 2
Score : 8.214 
Immune system regulation
Autoimmune disease

(C) Cluster 3
Score : 6.857 
RNA translation, mRNA
Ribosome

Figure 2. Functional clustering of upregulated DEGs in HT samples, using the MCODE algorithm.
Results of BP and KEGG-enrichment analyses presented as dot plots. Each cluster represents a
set of highly connected genes. (A–C) represent Clusters 1–3, respectively, which have the highest
clustering scores.
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(A) Cluster 1
Score : 18.842
Muscle contraction, 
cytoskeleton
Cardiomyopathy

(B) Cluster 2
Score : 11.091
Translation, 
mRNA,
Ribosome

(C) Cluster 3
Score : 7.600
Oxidative phosphorylation, 
Mitochondria,
Cellular respiration

Figure 3. Functional clustering of downregulated DEGs in HT samples, using the MCODE algorithm.
Results of BP and KEGG-enrichment analyses presented as dot plots. Each cluster represents a
set of highly connected genes. (A–C) represent Cluster 1–3, respectively, which had the highest
clustering scores.

2.4. BP GSEA Results Revealed a Strong Connection between HT and Immune Regulation

The BP GSEA results were presented in a dot plot, which clearly showed the sig-
nificantly activated or inactivated biological processes in HT (Figure 4A). As expected,
immune-response-related BPs were upregulated in HT patients. In contrast, muscular
processes were distinctively downregulated in HT patients. Subsequently, the Emapplot
showed close interactions between the most significant BP terms based on overlapping
genes (Figure 4B). The BP term ‘cytokine production’ had solid interactions with other
terms, including ‘positive regulation of immune system process’, ‘regulation of immune
response’, ‘hemopoiesis’, and ‘cellular response to cytokine’. These five essential BP terms
and enriched genes were further plotted by using the Cnetplot function (Figure 4C). Twenty-
seven genes, including CASP8, IL6, TNF, IL1B, and SOCS1, were common between these
five BPs, which play key roles in cytokine and inflammatory signaling (Supplementary File
S1). The Ridgeplot analysis illustrated that the overall distribution of component genes
consists of each BP (Figure 4D). Similarly, BP terms related to various immune responses
and cytokine production exhibited increased activity. The term ‘lymphocyte activation’
showed predominant results in regard to both the p-value and NES, exhibiting enriched
distributions of activated genes (Figure 4E). The top BP GSEA results for the HT group are
presented in Table 2. Supplementary Figure S3 presents the top five BPs or pathways and
the distributions of associated genes.
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(A) (C)

(D) (E)

(B)

Figure 4. Gene Set Enrichment Analysis (GSEA) plots of BP terms enriched in HT samples.
(A) Bubble plot of BP terms, (B) Emapplot, (C) Cnetplot, and (D) Ridgeplot with ranked DEGs
of the HT group from microarray data. (E) GSEA BP plot with ranked DEGs of the HT group from
microarray data. All plots were created by using clusterprofiler R package.

Table 2. Top 15 BP terms from GSEA of Hashimoto’s thyroiditis samples, ranked by Normalized
Enrichment Score (NES).

ID Description Enrichment Score NES p-Value

GO:0002250 Adaptive immune response 0.658 2.637 0.00011

GO:0050870 Positive regulation of T-cell
activation 0.674 2.564 0.00012

GO:0046651 Lymphocyte proliferation 0.641 2.502 0.00011
GO:0046649 Lymphocyte activation 0.608 2.494 0.00010
GO:0007159 Leukocyte cell–cell adhesion 0.625 2.483 0.00011
GO:0019724 B-cell mediated immunity 0.684 2.475 0.00013
GO:1990868 Response to chemokine 0.706 2.445 0.00013

GO:0002366 Leukocyte activation involved in
immune response 0.619 2.407 0.00011

GO:0002263 Cell activation involved in
immune response 0.615 2.389 0.00011

GO:0070661 Leukocyte proliferation 0.606 2.387 0.00011
GO:0050865 Regulation of cell activation 0.584 2.377 0.00011
GO:0002252 Immune effector process 0.580 2.359 0.00011

GO:0002684 Positive regulation of immune
system process 0.570 2.347 0.00010

GO:0050776 Regulation of immune response 0.559 2.304 0.00010

GO:0019882 Antigen processing and
presentation 0.658 2.286 0.00013
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2.5. GSEA Results Suggested a Link between Autoimmune Thyroiditis and Viral Infections

The association between HT and other disease pathways was investigated via the
KEGG GSEA of HT transcriptional profiles from microarray data. The KEGG GSEA
dot plot showed a predominance of viral-infection-related pathways (including human
T-cell leukemia virus infection, human cytomegalovirus infection, Epstein–Barr virus
infection, herpes simplex virus 1 infection, etc.) in the activated panel, with strong statistical
significance (Figure 5A). The Emapplot displayed a number of interconnected viral disease
pathways, while the Epstein–Barr virus infection pathway was a hub in the network
(Figure 5B). Five representative KEGG pathways with their connected genes were plotted,
suggesting that TNF and IL6 were common targets of all five pathways (Figure 5C). The
Ridgeplot showed a distribution of gene expression (activated) in several viral-infectious
diseases’ pathways, such as herpes simplex virus 1 infection (Figure 5D). Upon a closer look,
the comparison of GSEA plots between herpes simplex virus 1 infection and autoimmune
thyroid disease revealed that both had a skewed distribution (activated) of genes with a
high Normalized Enrichment Score (NES) (Figure 5E). The top KEGG GSEA results of the
HT group are presented in Table 3.

(A)

(D)

(B) (C)

(E)

Figure 5. Gene Set Enrichment Analysis (GSEA) plots of KEGG pathways enriched in HT samples.
(A) Bubble plot of KEGG pathways, (B) Emapplot, (C) Cnetplot, and (D) Ridgeplot analyzed with
ranked DEGs of the HT group from microarray data. (E) GSEA KEGG plot with ranked DEGs of the
HT group from microarray data. All plots were created by using the clusterprofiler R package.
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Table 3. Top 20 KEGG terms from GSEA of Hashimoto’s thyroiditis samples, ranked by Normalized
Enrichment Score (NES).

ID Description Enrichment Score NES p-Value

hsa04061 Viral protein interaction with
cytokine and cytokine receptor 0.753 2.683 0.00014

hsa04672 Intestinal immune network for IgA production 0.843 2.672 0.00015
hsa04640 Hematopoietic cell lineage 0.742 2.643 0.00014
hsa05322 Systemic lupus erythematosus 0.785 2.524 0.00015
hsa05320 Autoimmune thyroid disease 0.797 2.499 0.00015
hsa05340 Primary immunodeficiency 0.814 2.480 0.00016
hsa04514 Cell-adhesion molecules 0.647 2.449 0.00013
hsa05330 Allograft rejection 0.821 2.427 0.00016
hsa05310 Asthma 0.837 2.426 0.00016
hsa04658 Th1- and Th2-cell differentiation 0.678 2.405 0.00014
hsa05332 Graft-versus-host disease 0.817 2.385 0.00016
hsa05140 Leishmaniasis 0.693 2.379 0.00014
hsa05150 Staphylococcus aureus infection 0.672 2.365 0.00014
hsa04662 B-cell receptor signaling pathway 0.675 2.361 0.00014
hsa04062 Chemokine signaling pathway 0.607 2.360 0.00013
hsa04940 Type I diabetes mellitus 0.775 2.351 0.00016
hsa05323 Rheumatoid arthritis 0.663 2.341 0.00014
hsa04659 Th17-cell differentiation 0.637 2.313 0.00014
hsa05169 Epstein–Barr virus infection 0.587 2.291 0.00013
hsa04650 Natural-killer-cell-mediated cytotoxicity 0.622 2.274 0.00014

2.6. Common DEGs Involved in Two Intuitive Pathways Provide Insight into Disease Etiology

As our results repeatedly indicated a high correlation of HT with viral infectious
disease, we mapped both pathways and colored DEGs (red to green) according to their
relative expression levels, using the PathView R package (Figure 6A,B). Common genes
between the two pathways were plotted by using the Cnetplot function with modified
arguments to investigate only pathways of interest. Of note, two seemingly independent
pathways shared many upregulated MHC Class I and II genes (Figure 7). These 14 HLA
genes consisted of 2 MHC Class I and 12 MHC Class II molecules. Due to the unillustrated
intracellular signaling pathway in the autoimmune thyroid disease KEGG map, other
immune-related intersecting genes were not presented as results (Figure 6B).
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(A)

(B)

Figure 6. KEGG pathway mapping of (A) herpes simplex virus 1 infection pathway and (B) autoim-
mune thyroid disease based on microarray data of the HT group. The plot was created by using
PathView R package. The red-to-green color indicates the relative gene expression.
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14 common 
genes

HLA-DQA2
(Class II)

HLA-DPB1
(Class II)

HLA-DRA
(Class II)

HLA-DMA
(Class II)

HLA-DOA
(Class II)

HLA-DPA1
(Class II)

HLA-DOB
(Class II)

HLA-DQA1
(Class II)

HLA-DMB
(Class II)

HLA-DRB1
(Class II)

HLA-DRB5
(Class II)

HLA-F
(Class I)

HLA-DQB1
(Class II)

HLA-C
(Class I)

log2FC 3.965 3.889 3.221 2.784 2.551 2.511 2.197 2.153 2.011 1.349 1.268 1.004 0.935 0.877

Adj.pval 9.01E-07 7.41E-07 5.49E-06 3.69E-07 1.15E-03 2.36E-04 1.04E-02 8.66E-03 2.17E-08 6.34E-02 6.14E-03 2.42E-02 1.88E-01 2.98E-03

Figure 7. Distribution of overlapping DEGs between the herpes simplex virus infection and au-
toimmune thyroid disease KEGG pathways of the HT group. Green and blue square boxes indicate
pathway names, and the 14 red circles denote overlapping DEGs between the two pathways.

2.7. CMap Analysis Revealed Potential Markers and Drugs Based on the HT Gene Signature

The CLUE webtool deduced potential target genes and compounds for HT by com-
paring the gene signature against a gene-expression database based on perturbations.
Arranged by their median CMAP score, 19 KD gene perturbations were assumed to restore
the gene-expression profiles of the queried signature (HT), with CMap-score criteria below
−90 (Figure 8A). Six compound perturbations were expected to reverse the gene signature
with the same CMap score as criteria (Figure 8B). Among the 19 KD gene perturbagen lists,
three genes (SRRM1, NLK, and CCDC92) actually exhibited a significantly increased ex-
pression (p < 0.05) in the HT group (Figure 8C). The SRRM1 expression fold change, p-value,
and transcriptional activity score (TAS) were most prominent among the three genes.
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Median_tau_score
-99.92
-99.61
-99.53
-99.50
-99.50
-99.35
-99.08
-99.03
-98.42
-96.12
-95.35
-94.87
-94.65
-94.24
-93.73
-92.30
-91.97
-91.96
-91.37

Median_tau_score

Median_tau_score
-96.09
-94.74
-93.57
-92.94
-92.27
-90.18

Median_tau_score

(A)

(B)

(C)
Genes

CMap analysis Gene expressions

C-score
result

TAS
(percentile)

Fold change
(log2x)

Pvalue
(-logP)

CCDC92 -91.37 0.06 (11%) 1.07 2.765

NLK -95.35 0.12 (28%) 1.101 4.437

SRRM1 -99.08 0.49 (98%) 1.424 5.391

Figure 8. Connectivity Map (CMap) analysis results showing (A) significant perturbation genes with
the least CMap connectivity score; (B) significant perturbation compounds; and (C) three significant
genes presented with their CMap score, fold-change, p-value, and TAS (transcriptional activity score).

3. Discussion

A US population-based review study reported that AID prevalence is 5–7% and is
gradually increasing [10,29]. It has been suggested that both genetic susceptibility and
environmental factors act as triggers for the breakdown of tolerance and progress of the
disease [6]. Genetic predisposition, usually associated with HLA Class II alleles and other
immune mediators, is not sufficient on its own for the increasing prevalence of AIDs [30];
rather, environmental factors, including viral infections, are regarded as major contributors
to the incidence of AID [21].

Accumulating evidence indicates such a connection between viral infections and the
development of AIDs, with an example being the increased prevalence of AIDs following
an influenza pandemic reported in a population-based observational study [16,31]. A
recent review on SARS-CoV-2 suggested that this virus could also trigger autoimmune
responses through molecular mimicry, working in similar ways with other viruses [32].
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The most prevalent autoimmune diseases/conditions involved with COVID-19 infection
are Guillain–Barre syndrome, immune thrombocytopenic purpura, Kawasaki disease and
autoimmune thyroid disease [33]. Investigations on the involvement of SARS-CoV-2
infection in autoimmune thyroid disease development are currently underway [34]. A
recent systematic review revealed general characteristics of COVID-19-induced subacute
thyroiditis patients [35]. The authors found that subacute thyroiditis to be the most common
clinical thyroidal syndrome associated with COVID-19, thus indicating the direct effect
of viral infection on autoimmune disease [35]. In another systematic review, the authors
pointed out that multifaceted effects of SARS-CoV-2 infection on thyroid functions are
variable (thyrotoxicosis, hypothyroidism, and non-thyroidal illness syndrome) and difficult
to predict [36]. In this situation, it is of great importance to identify biomarkers to elucidate
the link between viral infections and the development of HT.

Our analysis of microarray data revealed characteristic features of HT. The functional
cluster analysis of upregulated DEGs provided strong evidence of an association between
viral infection and the pathophysiological traits of AID through the activation of innate
immune responses (Figure 2) [37]. The GSEA results indicated immune activation in the
HT group, with an upregulation of genes implicated in lymphocyte activation, regulatory
immune responses, cytokine production, and other related pathways (Figures 4 and 5).
Decisively, the GSEA of the herpes simplex virus 1 infection and autoimmune thyroid
disease pathways showed similar plots and presented high-ranked significance (each 1st
and 44th rank), with the KEGG analysis of DEGs demonstrating an intimate relationship
between the two pathways in HT (Figures 5E and 6A,B).

In our data, of all HLA Class I and II molecules investigated, the expression of
14 genes was significantly upregulated (Figure 7). Aberrant HLA II expression in non-
antigen presenting cells, such as epithelial cells and cultured thyrocytes, has been described
in a number of AIDs [38]. Similarly, overexpression of HLA Class I during the antiviral
response was observed in tissue obtained via core needle biopsy from 46 HT patients [39].
Therefore, the increased expression of both HLA classes might be a general indicator of HT
induced by the antiviral immune response.

Interestingly, ribosome-enriched clusters were noted among both up- or downregu-
lated DEGs (Figure 3). As cellular machinery that is hijacked by viruses, host ribosome
factors, including ribosomal proteins (RPLs), play critical roles during viral infection [40].
While detailed functions of the various RPLs are under investigation, these are expected to
impact viral replication and gene expression through interactions with viral proteins [40].
The result leads to the speculation of mixed reaction from host cellular defense mecha-
nisms and viral activity. In line with our data, Wu et al. reported similar results from
their analysis of blood samples from patients with systemic lupus erythematosus, another
AID [41]. When they analyzed the PPI network consisting of DEGs, several RPL genes were
implicated as key genes in a module, and the authors explained it as being the outcome of
the host immune response to viral infection [41].

SRRM1 is an RNA-binding protein and splicing factor participating in the alternative
RNA splicing process [42]. It was suggested that host SRRM proteins are modulated by
HIV-1 to facilitate its replication and release [43]. Furthermore, the observed changes in
alternative splicing could be either a direct consequence of viral manipulation, the innate
immune response, or cellular damage [44]. Dysregulation of post-transcription processes
during the antiviral immune response, which is modulated by Type I and III interferons,
may lead to autoimmunity [45]. In our study, SRRM1 was suggested as a critical marker of
HT, as indicated by the strictly negative CMap score (−99.08) and upregulated expression
(log2FC = 1.424) in the HT group (Figure 8C).

While the clinical phenotype of HT differs per case and is difficult to predict, it
progresses slowly over months to years [46]. It is highly suggested that patients with au-
toimmune thyroid disorders should be monitored for the thyroid functions in consideration
of the relationship with other systemic autoimmune diseases as well [6]. The predictive
Thyroid Events Amsterdam (THEA) score takes into account the TSH, TPOAb levels, and
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familial background information to estimate the 5-year risk of overt hypothyroidism [47].
Based on our current findings, the evaluation of viral activity, as a key environmental factor
in the context of HT, may improve prediction of further development of the disease. To
this end, future studies should elucidate the relationship between SRRM1 (or the other
alternative splicing factors) and the widely employed clinical HT biomarkers.

4. Materials and Methods
4.1. Data Resources and Processing

The human microarray dataset of GSE138198 [48] was accessed via the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) at the National Center of Biotechnology Informa-
tion (NCBI) [24]. The GSE138198 dataset comprises a total of 36 human thyroid tissue
microarray samples, including 13 HT tissue samples and 3 normal thyroid (TN) tissue
samples. The microarray dataset is based on the GPL6244 (HuGene-1_0-st) Affymetrix
Human Gene 1.0 ST Array (transcript (gene) version).

4.2. Screening of DEGs

GEO2R, an interactive web tool for the analysis of GEO datasets, was used to screen
DEGs between HT and TN (http://www.ncbi.nlm.nih.gov/geo/geo2r/). GEO2R identified
DEGs via GEO queries and the Limma R package from R/bioconductor [49,50]. Genes with
an adjusted p-value < 0.05 and |log2(Fold Change)| > 1 were considered DEGs. Adjustment
of the p-value was performed via the Benjamini and Hochberg method to reduce false
discovery rate. DEGs were visualized with a color-differentiated (by significance and
fold change) and labeled volcano plot, using ggplot R packages. A clustered correlation
heatmap of all samples was created by using the pheatmap package.

4.3. Construction of PPI Network and Functional Subcluster Analysis

We used the Search Tool for the Retrieval of Interacting Genes (STRING, https://
string-db.org/) online database to construct a PPI of up- or downregulated DEGs [51]. PPI
networks were further imported to Cytoscape software (version 3.91) [52] for a functional
cluster analysis, which groups genes with similar functions, using the MCODE plugin to
yield the top 3 clusters by score [53]. Sets of genes from these clusters were separately
subjected to an overrepresentation analysis.

4.4. GO and KEGG Pathway Enrichment Analyses

GO and KEGG-pathway-enrichment analyses of DEGs were conducted by using
the Database for Annotation, Visualization and Integrated Discovery (DAVID database,
Accessed on 31th July) [54]. Lists of clustered genes were uploaded with the identifier set
to ‘official gene symbol’. The data of enriched terms and KEGG pathways were processed
and further visualized as a bubble plot created by using the ggplot2 R package [55].

4.5. GSEA of GO and KEGG Pathway

GSEA of all ranked genes was performed by using the clusterprofiler R package and
the genome-wide annotation package (OrgDb) of Bioconductor [56]. The package provides
gseGO and gseKEGG functions for GSEA, using GO (biological process, molecular function,
and cellular component) and KEGG annotations. The list of significant gene-set annotations
was arranged in the order of normalized enriched score (NES).

Argument parameters used in gseGO and gseKEGG were as follows: nPerm = 10,000,
minGSsize = 3, maxGSSize = 800, pvalueCutoff = 0.05, and pAdjustMethod = ‘none’.
Redundant GO terms were removed via the simplify function [57]. Visualization of re-
sults obtained from ORA and GSEA analyses was performed by using the enrichplot
package [58].

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://string-db.org/
https://string-db.org/
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4.6. Clinical HT Biomarker Identification Via Comparison of Gene Signatures in the
CMap Database

We selected the top 150 up- and downregulated DEGs of HT groups and submitted
these to the Connectivity Map for analysis by querying the list on the CLUE web tool
(https://clue.io/query/, version 1.1.1.43). The results present perturbagens, including KD
(gene knock down), CP (compounds), OE (gene overexpression), and PCL (perturbagen
lists), aligned by the calculated connectivity score (median tau score), which varies from
100 to −100.

A negative connectivity score indicates an inversed gene-expression signature between
the query and perturbagen, thus implying potential as a promising target or drug [59].
Rank-ordered perturbagens with a CMap connectivity score (tau) < −90 were selected and
regarded as significant candidates.

5. Conclusions

In conclusion, through the use of bioinformatics approaches for the analysis of microar-
ray data, we provided evidence for the association between viral infection and immune
activation in HT. We identified SRRM1, an mRNA splicing factor, as a key player in this
association. Clinical validation of our current results remains to be performed. The history
of viral infection should be seriously taken into account by clinicians during HT diagnosis.
The host immune response to viral infection, especially with alternative mRNA splicing,
may provide us helpful indicators of HT development and could be harnessed as diagnostic
for therapeutic purposes. Further elucidating the relationship between viral infection and
HT may improve therapeutic approaches against this disease.
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