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Abstract: Metabolic alterations and direct cell–cell interactions in the tumor microenvironment (TME)
affect the prognostic molecular landscape of tumors; thus, it is imperative to investigate metabolic ac-
tivity at the single-cell level rather than in bulk samples to understand the high-resolution mechanistic
influences of cell-type specific metabolic pathway alterations on tumor cells. To investigate tumor
metabolic reprogramming and intercellular communication at the single-cell level, we analyzed
eighty-four metabolic pathways, seven metabolic signatures, and tumor-stroma cell interaction using
21,084 cells comprising gastric cancer and paired normal tissue. High EMT-score cells and stem-like
subtype tumors showed elevated glycosaminoglycan metabolism, which was associated with poor
patient outcome. Adenocarcinoma and macrophage cells had higher reactive oxidative species levels
than the normal controls; they largely constituted the highest stemness cluster. They were found
to reciprocally communicate through the common ligand RPS19. Consequently, ligand-target reg-
ulated transcriptional reprogramming resulted in HS6ST2 expression in adenocarcinoma cells and
SERPINE1 expression in macrophages. Gastric cancer patients with increased SERPINE1 and HS6ST2
expression had unfavorable prognoses, suggesting these as potential drug targets. Our findings
indicate that malignant stem-like/EMT cancer cell state might be regulated through reciprocal cancer
cell-macrophage intercellular communication and metabolic reprogramming in the heterogeneous
TME of gastric cancer at the single-cell level.

Keywords: immunometabolism; single cell; gastric cancer; glycan metabolism; cancer stemness

1. Background

Metabolic reprogramming is a hallmark of cancer [1]; however, given intratumoral
heterogeneity, the exact metabolic characteristics of diverse cell types coexisting in the tumor
microenvironment (TME) remain elusive. To understand the high-resolution mechanistic
influences of cell-type specific metabolic pathway alterations on tumor cells, it is imperative
to investigate metabolic activity at the single-cell level rather than in bulk samples [2].
Metabolic reprogramming via nutrient levels, oxygen tension, and the presence of signaling
factors allows cells to adapt to and function in a specific TME and communicate with
neighboring cells [3]. The tumor metabolic process is complex, and tumor cells select a
metabolic energy pathway suitable for their environment to survive. Specifically, tumor
cells adopt different metabolic pathways to maintain their oncogenic potential in the
TME in which metabolic heterogeneity occurs depending on diverse stimuli by stromal
cells. The tumor stroma mainly consists of fibroblasts, endothelial cells, several types
of immune cells, and an extracellular matrix (ECM). Interaction among the cancer cells,
stromal cells, and ECM in the TME leads to tumor progression; moreover, the tumor stroma
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continuously changes during cancer progression, promoting cancer cell survival, invasion,
and metastasis [4]. Epithelial-mesenchymal transition (EMT) and stem-like cancer cells, in
particular, rely on highly energetic metabolic pathways to support stress-resistance and
malignant phenotypes such as anti-cancer therapy-induced genotoxic stress, migration,
invasion, and metastasis. Inevitably, reactive oxidative species (ROS) generated in large
quantities can threaten cell fitness. Therefore, EMT/stem-like cancer cells should devise
biological mechanisms to overcome ROS stress.

In this study, we focused on distinct metabolic pathways activated in different cell
types in tumor tissue to assess the metabolic activity that helps to acquire the stem-like state.
We analyzed metabolic gene expression in 21,085 cells with a stem-like state and elucidated
the metabolic reprogramming at the single-cell level. Further, we evaluated specific cell–cell
interactions driving metabolic changes associated with cancer cell stemness. By doing so,
we identified stem-like gastric cancer-specific drug targets.

2. Methods
2.1. Data Preprocessing

We downloaded gastric cancer single-cell data [5] from the website of the Ji Research
Group (https://dna-discovery.stanford.edu/research/datasets/, accessed on 29 March
2021). The raw output data were processed with the Seurat package (Seurat V3 [6]) using
R software (R version 4.0.5). For downstream analysis, we filtered cells that meet the
following criteria: (1) cells that have unique feature counts < 200 or >2500 (in the outlier
range, because the latter might be indicative of potential doublets) and (2) had >5% of
mitochondrial counts (Seurat default). Thus, we applied more stringent filter criteria than
in the previous study, which is why there are fewer cells than in the previous reports. A
total of 12,422 filtered cells were included for further bioinformatics analysis. We also used
microarray data derived from bulk samples of 497 gastric cancer patients from the Yonsei
cohort in Gene Express Omnibus (registration number: GSE84437, accessed on 15 May
2021). For patient survival validation, The Cancer Genome Atlas Stomach Adenocarcinoma
(TCGA-STAD) was used in GEPIA2 [7].

2.2. Metabolic Pathway Activity and Cancer Hallmarks

To calculate metabolic pathway activity, we analyzed 84 Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathways. MAGIC [8] was used for imputing missing
single-cell data. The information regarding the pathway activities for each cell was obtained
using single-sample gene set enrichment with the R package GSVA [9]. To assess the
significance of the scores, we estimated p-values by generating the background distribution
using the permutation of the expression profiles (10,000,000 times). ROS signatures and
50 cancer hallmark gene sets were obtained from MSigDB (http://software.broadinstitute.
org/gsea/msigdb, accessed on 2 May 2021).

2.3. Meta-Analysis and Deconvolution Analysis

We used RaceID and StemID from the R package to identify single-cell stem cells [10].
xCell was used for cell type classification from microarray Y497 bulk samples [11].

3. Results
3.1. Transcriptional Landscape of Cell Type-Specific Metabolic Heterogeneity in Gastric Cancer

We analyzed pan-cancer metabolic reprogramming in bulk samples obtained from
The Cancer Genome Atlas (TCGA) reported in previous studies [2]. However, considering
intratumoral heterogeneity, there are limitations to bulk analysis, which only provides
average gene expression data of diverse cell types within tumor tissue. To overcome these
limitations, a single-cell RNA sequencing (scRNA-seq) dataset of gastric cancer [5] was
used to assess the cell type-specific metabolic reprogramming in 21,085 cells at the single-
cell level. We used seven gastric cancer patients and one gastric intestinal metaplasia (GIM)
as a tumor group (12,422 cells) based on the previous results of transcriptional similarity
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of metaplastic cells with gastric cancer type 2 cancer cells and paired normal cell controls
(8663 cells). Since only 2000–4000 genes are expressed specifically in each single cell, MAGIC
was used for imputing missing data [8]. The unbiased clustering of the cells identified
eight main clusters for the tumors (Figure 1A, Table S1) and nine main clusters for the
controls (Figure 1D). Next, we performed Uniform Manifold Approximation and Projection
(UMAP) analysis to identify subclusters from tumors and adjacent normal controls using
gene expression profiling and cluster marker genes (Figure 1B,E and Table S1). Interestingly,
there was a small number of adenocarcinoma-like cells in the normal control, which
were distinct from epithelial cells (n = 82) (Figure 1D,E). Among the tumor samples,
adenocarcinoma cells, endothelial cells, fibroblasts, and macrophages were mostly enriched
in seven metabolic signatures (Figure 1C). We found that adenocarcinoma cells had low
integrated energy metabolic activity (Figure 1C). On the contrary, adenocarcinoma-like
cells in normal tissue exhibited high energy metabolic pathways and low carbohydrate
metabolic activity (Figure 1F). The level of glycolysis differed significantly (false discovery
rate [FDR] = 0.01) between tumor and normal control samples, suggesting that metabolic
reprogramming is highly enriched in specific cell types, such as adenocarcinoma cells,
endothelial cells, fibroblasts, and macrophages.

In addition, we performed ROS analysis on different cell types present in the TME. Low
to moderate ROS levels are essential for cell survival and proliferation, but excessive ROS
has detrimental effects on cell fitness. In tumor samples, macrophages and adenocarcinoma
cells had significantly higher ROS levels than the controls (Figure 1G). Furthermore, the
ROS levels in tumor sample subcluster cells positively correlated with energy metabolism
and the TCA pathway (Figure 1H).

Given that energy and the TCA pathway are integral to mitochondrial bioenergetics,
these results show that a distinct ROS pathway is associated with the mitochondrial energy
metabolism of adenocarcinoma cells and macrophages in the TME.

3.2. Heterogeneous Immune and Macrophage Metabolic Landscapes in the TME

Tumor and immune cells compete for nutrients [12]. Innate immune cells show
comparatively lesser metabolic reprogramming than adenocarcinoma cells. In this study,
we determined the metabolic signature used by the immune cells for mounting the immune
response, since tumors reportedly inhibit the function of tumor-infiltrating T cells via
competitive glucose uptake [13].

Our results showed that, overall, NK cells undergo a relatively more complex metabolic
reprogramming compared to T cells and B cells. Among 84 metabolic pathways, B cells
showed relatively higher activities of alpha-linolenic acid metabolism, arginine biosynthe-
sis, and taurine and hypotaurine metabolism, whereas T cells showed relatively higher
activities of tyrosine metabolism, linoleic acid metabolism, fatty acid biosynthesis, and
inositol phosphate metabolism, while NK cells showed relatively complex metabolic repro-
gramming that included glycolysis and oxidative phosphorylation (OXPHOS) (Figure 2A).

Next, we performed UMAP analysis, which facilitated the classification of T cells into
three subtypes and revealed the marker genes for each cluster (Figure 2B). Specifically, the
OXPHOS, pentose phosphate pathway, ascorbate and aldarate metabolism, valine, leucine
and isoleucine biosynthesis, sulfur metabolism, and lipoic acid metabolism were relatively
upregulated in Treg cells compared to those in CD8+ T cells. The CD8+ T cells used gly-
cosphingolipid biosynthesis—ganglio and linoleic acid metabolism, nitrogen metabolism,
and mannose type O-glycan biosynthesis—for executing their functions (Figure 2C).

The metabolic reprogramming of M1 and M2 macrophages occurs differently depend-
ing on the macrophage polarization states [14]. M1 macrophages [15,16] use glycolysis and
pentose phosphate pathways, whereas M2 macrophages [17,18] mainly rely on OXPHOS
and fatty acid oxidation (FAO) to supply energy.

We analyzed the macrophage lineage tree using slingshot [19] and divided it into five
clusters and investigated metabolic reprogramming in macrophages by their metabolic
activity (Figure 2D,E).
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Figure 1. Single−cell analysis of metabolic reprogramming. (A) Pie chart for tumor cell types: T 
cells 45%, fibroblasts 13%, B cells 15%, macrophages 8%, adenocarcinoma cells 8%, endothelial cells 
5%, NK cells 5%, and granulocytes 1%. (B) Uniform Manifold Approximation and Projection 
(UMAP) plot of the eight main cell types identified in gastric lesions. (C) Heatmap of seven meta-
bolic reprogramming signatures for the eight main cell types in tumors. (D) Pie chart for cell types 
of the control: T cells 33%, fibroblasts 11%, B cells 17%, macrophages 2%, adenocarcinoma cells 1%, 
smooth muscle cells 1%, endothelial cells 4%, NK cells 23%, and epithelial cells 8%. (E) UMAP plot 
of the nine main cell types identified in adjacent normal gastric lesions (paired sample). (F) Heatmap 
of seven metabolic reprogramming signatures for the nine main cell types in the normal control. (G) 
ROS score of cell types in tumors and the control. (H) Pearson correlation between ROS and the 
seven metabolic reprogramming signatures in tumors and control. 

Figure 1. Single-cell analysis of metabolic reprogramming. (A) Pie chart for tumor cell types:
T cells 45%, fibroblasts 13%, B cells 15%, macrophages 8%, adenocarcinoma cells 8%, endothelial
cells 5%, NK cells 5%, and granulocytes 1%. (B) Uniform Manifold Approximation and Projection
(UMAP) plot of the eight main cell types identified in gastric lesions. (C) Heatmap of seven metabolic
reprogramming signatures for the eight main cell types in tumors. (D) Pie chart for cell types of the
control: T cells 33%, fibroblasts 11%, B cells 17%, macrophages 2%, adenocarcinoma cells 1%, smooth
muscle cells 1%, endothelial cells 4%, NK cells 23%, and epithelial cells 8%. (E) UMAP plot of the nine
main cell types identified in adjacent normal gastric lesions (paired sample). (F) Heatmap of seven
metabolic reprogramming signatures for the nine main cell types in the normal control. (G) ROS
score of cell types in tumors and the control. (H) Pearson correlation between ROS and the seven
metabolic reprogramming signatures in tumors and control.
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Figure 2. Immune and macrophage cell heterogeneous metabolic landscapes in the TME. (A) Heat 
map of the activity of 84 metabolic pathways in immune cells (T cells, B cells, NK cells). (B) Uniform 
Manifold Approximation and Projection (UMAP) plot of the three sub-clusters in T cell. (C) Heat 
map of highly enriched metabolic pathways in the T cell subtypes. (D) Macrophage lineage tree by 
using slingshot. (E) M1 and M2 marker gene for five clusters. (F) Heat map of highly enriched met-
abolic pathways in the macrophage cluster. 

Figure 2. Immune and macrophage cell heterogeneous metabolic landscapes in the TME. (A) Heat
map of the activity of 84 metabolic pathways in immune cells (T cells, B cells, NK cells). (B) Uniform
Manifold Approximation and Projection (UMAP) plot of the three sub-clusters in T cell. (C) Heat
map of highly enriched metabolic pathways in the T cell subtypes. (D) Macrophage lineage tree
by using slingshot. (E) M1 and M2 marker gene for five clusters. (F) Heat map of highly enriched
metabolic pathways in the macrophage cluster.
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Cluster analysis identified that in cluster 4, the M1 marker gene CD86 was relatively
lower than that of the other clusters, and the expression of the M2 marker gene CD163 was
high. Clusters 1, 2, 3, and 5 had both M1 and M2 marker genes expression at the same time
(Figure 2E). In cluster 4, 27 metabolic pathways including glutamate metabolism and fatty
acid biosynthesis were upregulated. In contrast, glycosaminoglycan (GAG) degradation,
GAG biosynthesis-heparan sulfate (HS) [20], sphingolipid metabolism, glycosphingolipid
biosynthesis-globo, and isoglobo pathways were relatively upregulated in cluster 2 and
cluster 5 (Figure 2F).

Together, these results suggest that different types and subsets of immune cells and
macrophages undergo distinct metabolic adaptations for their existence and functions
within the heterogeneous TME.

3.3. Comparison of Intratumoral Metabolic Heterogeneity between Adenocarcinoma Cells and
Bulk Samples

Cancer cells and immune cells compete for nutrients in the TME. At single-cell res-
olution, adenocarcinoma cells exhibit complex metabolic reprogramming compared to
that of other immune cells [21]. We clustered 924 adenocarcinoma cells in tumor samples
based on the expression of metabolic genes. Slingshot [19] analysis revealed intratumoral
metabolic heterogeneity in eight clusters (Figure 3A). Specifically, among tumor samples,
the cluster 5 cells overexpressed an EMT score; cluster 4 cells did not overexpress an EMT
score (Figure 3B). Each cluster exhibited specific metabolic reprogramming.

Cluster 5 with high EMT was enriched for ether lipid metabolism and starch and
sucrose metabolism, and cluster 5 and cluster 6 showed similar metabolic reprogramming
patterns, but cluster 4 showed the opposite pattern (Figure 3C). Cluster 4 with low EMT
was highly enriched in the glycan degradation pathway (FDR < 0.01) (Figure 3C). Among
924 adenocarcinoma cells, high-EMT and low-EMT cells were classified, and the metabolic
activation pathways were analyzed, showing a distinct metabolic reprogramming pattern.
At high EMT, arachidonic acid metabolism, glycosphingolipid biosynthesis-globo and
isoglobo series, taurine and hypotaurine metabolism, glucosaminoglycan biosynthesis-
keratan sulfate, glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminogly-
can biosynthesis-chondroitin sulfate, and dermatan sulfate were upregulated. On the other
hand, lysine degradation and oxidative phosphorylation were upregulated at low EMT
(p < 0.001) (Figure 3D).

Interestingly, purine metabolism was upregulated in cluster 6 adenocarcinoma cells
at the single-cell level but was not upregulated in any molecular type in the bulk samples
of the Yonsei Hospital cohort (Figure 3E). Next, we analyzed bulk samples of gastric
cancer. All the five molecular subtypes from the Yonsei Hospital cohort that had distinct
prognoses [22] showed specific metabolic reprogramming in bulk analysis.

Notably, the stem-like subtype showed distinctive metabolic reprogramming patterns
among other subtypes with upregulated GAG, nicotinate and nicotinamide metabolism,
and starch sucrose metabolism, while it downregulated glutathione metabolism (Figure 3E).
However, at the single-cell level, there was a different activity of the TCA cycle and
oxidative phosphorylation among four EMT high clusters, implying cancer cell subset-
specific heterogeneous metabolic reprogramming in tumor tissues (Figure 3C). The activity
related to GAG and glycosphingolipid was high in the stem-like subtype in bulk analysis.
Stem-like subtype tumors share biological similarities with the EMT phenotype [23]. In line
with the bulk analysis results, GAG and glycosphingolipid showed high activity in tumor
cells with high EMT activity at the single-cell level. Further, among various metabolic
pathways, only taurine and hypotaurine metabolism is highly upregulated both in bulk
stem-like subtype tumors as well as in tumor cells with high EMT clusters at the single-cell
level. These results suggest that cancer cell-intrinsic alterations in taurine and hypotaurine
metabolism are specific to stem-like and EMT tumors.
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Figure 3. Comparison of intratumoral metabolic heterogeneity between adenocarcinoma cells
and bulk samples. (A) Adenocarcinoma lineage plot adenocarcinoma single cells from the gastric
tumor dataset. (B) Boxplot of EMT score for eight adenocarcinoma clusters. (C) Heat map of
84 metabolic pathways for clustering adenocarcinoma cells. (D) Heat map of top six enriched
metabolic pathways between high EMT and low EMT. (E) Heat map of 84 metabolic pathways for
molecular subtype of gastric cancer (497 Yonsei Hospital patients). (F) Heat map of Pearson correlation
with 84 metabolic pathways and 64 cell types from bulk samples (purple: positive correlation, blue:
negative correlation). (G) Bar graph of the immune score, stromal score, and microenvironment score
using correlation coefficient values.
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Next, we successfully performed immune profiling in adenocarcinoma cells at the
single-cell level in gastric cancer and in bulk samples (Figure 3F). We analyzed the correla-
tion between cell types and 84 metabolic pathways in Y497 bulk samples.

According to KEGG, CD4+ T cells, CD4+ memory T cells, CD8+ effector memory T cells
(Tem), MPP, CD4+ central memory T cells (Tcm), NK cells, macrophages, M1 macrophages,
dendritic cells (DCs), T regulatory cells, and mesenchymal stem cells (MSCs) positively
correlated with GAG biosynthesis—keratan sulfate, GAG degradation, glycosphingolipid
biosynthesis—globo and isoglobo, and glycosphingolipid biosynthesis—ganglio, thiamine
metabolism, valine, leucine, and isoleucine biosynthesis (Figure 3F). The immune score
showed a high correlation with GAG-keratan sulfate (R = 0.74), while the stromal score
showed a high correlation with GAG biosynthesis-HS (R = 0.98). The microenvironment
score showed a high correlation with glycosphingolipid biosynthesis-ganglio (R = 0.83)
(Figure 3G). Collectively, these results demonstrate that GAG [24] may affect immune and
stromal cell function and tumor progression according to tumor environmental conditions.

3.4. Identification of High Stemness Cells and Metabolic Reprogramming

Next, we used VarID and StemID to identify cells likely to become stem cells [10]
based on their metabolic pathways. We analyzed differential gene expression in 924 adeno-
carcinoma cells of tumor samples to identify cells with high metabolic reprogramming and
stemness (Figure 4A). VarID quantifies the gene expression variability, whereas StemID
permits the inference of a lineage tree based on clusters (i.e., cell types) identified by RaceID.
Next, we analyzed the stemness of the clusters. The entropy from cluster 7 to cluster 6
was the highest, and the stem cell transition from cluster 7 to cluster 5 was also predicted
(Figure 4A,B). Clusters 6 and 7 had the highest stemness cells. Clusters 4, 5, and 7’s cells
are upregulated in riboflavin metabolism, glycosaminoglycan biosynthesis—chondroitin
sulfate/dermatan sulfate, valine leucine and isoleucine biosynthesis, glycosaminoglycan
biosynthesis heparan, glycine serine and threonine metabolism (Figure 4B). We compared
metabolic reprogramming of eight clusters of cells with high stemness and observed that
the GAG biosynthesis was highly expressed in cluster 7 (Figure 4B).

Next, we attempted to identify novel therapeutic targets related to the highest stem-
ness in 924 adenocarcinoma cells. Among eight clusters, clusters 6 and 7 showed the
highest stemness score. The activity of six ligands expressed in multiple cell types indi-
cated that RPS19 was overexpressed in adenocarcinoma (Figure 4C). Since the metabolic
reprogramming of macrophages among other cell types in the TME was most significantly
altered along with adenocarcinoma cells (Figure 1C), we evaluated the signaling interaction
between macrophages and adenocarcinoma cells. To this end, we used NicheNet to predict
ligand-target links between interacting cells [25]. We investigated the key transcription
factors that regulate the expression of target genes and that are most closely downstream of
the ligand (based on the weights of the edges in the integrated ligand signaling and gene
regulatory networks). Then, the shortest paths between these transcription factors and
the ligands of interest were determined, and the genes that were part of these paths were
considered important signaling mediators.

RPS19 and CALM1 were predicted as prioritized active ligands for macrophages. The
genes in selected metabolic pathways in adenocarcinoma cells potentially regulated by
these ligands were predicted as follows: ETFB, HS6ST2, and NDST1.

When the ligand-target links between adenocarcinoma and macrophages were in-
vestigated, we identified CALM1, RPS19, GSTP1, and LGALS3 as prioritized adenocar-
cinoma expressed ligands. We used RPS19 as a ligand and MYH9, PTHLH, and SER-
PINE1 as targets with 14 transcriptional regulators (Figure 4D). Then, we identified
signaling pathways between an adenocarcinoma ligand and some of its top predicted
macrophage target genes. Intriguingly, the common ligand of RPS19 potentially regulates
SERPINE1 in macrophages (Figure 4D). Indeed, SERPINE1 is expressed in tumor-associated
macrophages in esophageal squamous cell carcinoma and it promotes cancer cell invasion
and macrophage migration [26].
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Figure 4. Metabolic heterogeneity and stem cell identification and cell–cell interaction correlates
with therapeutic sensitivity. (A) RaceID3 and StemID2 analysis of 924 adenocarcinoma cells from
the original clusters. The link color indicates the link p-value, and the vertex color represents
transcriptome entropy. The link p-value and transcriptome entropies were derived by StemID2.
The thickness and color of a link indicate the transition probability between the connected clusters.
(B) Heat map of enriched metabolic pathway for adenocarcinoma clusters. (C) Dot plot of best
upstream ligands for eight cell types. (D) Signaling path for the RPS19 ligand and the target gene link.
(E) Genomics of Drug Sensitivity in Cancer (GDSC) drug and target genes for gastric cancer. Green
(negative correlation) indicates high drug sensitivity (F) Kaplan–Meier plot showing recurrence-free
survival rates for high and low SERPINE1 expression in gastric cancer of TCGA cohort (up) and
HS6ST2 (down).

We performed a drug-target prediction analysis using the Genomics of Drug Sensi-
tivity in Cancer (GDSC) database [27] and identified candidate drugs (ZG10, Dasatinib,
CGP-082996) for HS6ST2, RPS19, and SERPINE1 in gastric cancer (Figure 4E). We further
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examined its clinical relevance using another dataset (TCGA STAD), which revealed poor
outcomes (p = 3.5 × 10−5) when SERPINE1 is overexpressed [28]. HS6ST2 (p = 0.0099)
overexpression was also related to poor outcomes (Figure 4F). Piperlongumine [29] inhibits
cancer growth by inducing the accumulation of intracellular ROS, decreasing glutathione,
damaging chromosomal DNA, and modulating key regulatory proteins, including PI3K,
AKT, mTOR, NF-κB, STATs, and cyclin D1. Piperlongumine also induces apoptosis in
gastric cancer cells [30,31].

4. Discussion

Cancer and stromal cells depend on metabolic reprogramming for their proper growth
and functioning [32]. In the highly competitive metabolic TME, tumor cells not only
compete with stromal cells for nutrition but also co-opt stromal cells via intercellular
communications. To the best of our knowledge, in gastric cancer, metabolic reprogramming
and cell–cell interaction have not been reported in diverse cell types at the single-cell level.
Our results demonstrated that distinct metabolic pathways are differentially activated in
specific cell types. High stemness and EMT score cells showed elevated GAG metabolic
signatures, which were associated with an unfavorable prognosis.

Cell–cell interaction analysis identified that cancer cells and macrophages in the high-
est stemness cluster communicate through the common ligand RPS19. The ligand-target
regulated transcriptional reprogramming resulted in HS6ST2 expression in adenocarci-
noma cells, while it may lead to the expression of SERPINE1 in macrophages [33]. In line
with this, adenocarcinoma-like cells in normal tissue use various energy sources in the
TME, primarily glycan metabolism [34]. Moreover, glycan metabolism was upregulated
in the poor prognostic stem-like cell subtype in the bulk analysis of 497 gastric cancer
patients. Collectively, these single cell and bulk analyses results suggest that reciprocal in-
tercellular communications between macrophages and cancer cells promoting stem-like GC
progression are associated with GAG metabolism in the TME. HS, one of the major GAGs
expressed at the cell membrane, is sulfated at 2-O- of uronic acid residues, and 3-O- and
6-O of GlcN units. M1 and M2 activation drastically modified the profiles of the expression
of numerous HS sulfotransferases, which was accompanied by the expression of GAGs
with distinct structural features. The ability of macrophage GAG species to present FGF-2
might promote tumor cell proliferation. Indeed, M2 macrophages could be efficient pro-
moters of FGF-2-dependent proliferation of adjacent cancer cells. In M2 macrophages, the
expression of HS6ST2 was increased by a factor of two, while HS3ST3B was barely detected.
Indeed, the removal of cell surface HS by heparinases potently reduced FGF-2-induced
cell proliferation, suggesting the importance of HS6ST2 in augmenting M2 macrophages’
induced cancer cell promotion [35].

In addition, GAG is partially degraded in ECM and endocytosed into cells, wherein
being associated with lysosome, it inhibits lysosomal cathepsin activity, thereby reducing
ROS, maintaining mitochondrial membrane potential, and inhibiting cyt c release [36].

Our findings suggest that high stemness cancer cells co-opt macrophages to promote
cell survival and malignant progression via cell–cell interaction-mediated ROS regulation
in highly energetic cancer metabolic reprogramming. Metabolic pathways with a high
correlation with immune scores are shown in top-ranking order (Figure 3G). In particular,
the stromal score and the glycosaminoglycan heparan were highly positively correlated.

Understanding metabolic reprogramming-related markers and pathways may provide
insights into cancer metabolism-associated features specific for each cell type and their
potential as novel drug targets. Gastric cancer patients with increased SERPINE1 and
HS6ST2 expression had unfavorable prognoses (p = 0.000035 and p = 0.009, respectively) [37],
suggesting these as potential drug targets. Our integrated analyses highlight novel findings
that malignant stem-like/EMT cancer cell state might be regulated through reciprocal
cancer cell-macrophage intercellular communication and metabolic reprogramming in the
heterogeneous TME of gastric cancer at the single-cell level [38].
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Collectively, refractory cancer cells, stem-like EMT cancer cells, devise highly intri-
cate hetero-molecular signaling modules through co-opting macrophages to overcome
oxidative stress and maintain stem cell fitness in metabolically competitive and immuno-
surveillant TME.

Although we attempted to delineate the metabolic characteristics of each cell type exist-
ing in the TME, a vast number of metabolic pathways were differently enriched in immune
cell phenotypes. This impeded a clear understanding regarding the biological implication
of distinct metabolic activities occurring in different cell types. Nevertheless, we believe
that our results will be useful for future investigation and facilitate a detailed understanding
of metabolic reprogramming and cell–cell interaction in the heterogeneous TME.

5. Conclusions

This study is the first attempt to profile the metabolic activity of different cell types at
the single-cell level in the TME of gastric cancer and it successfully demonstrated metabolic
reprogramming and intercellular communications between cancer cells and macrophages
that contribute to the stemness and EMT state of gastric cancer at the single-cell level.
Furthermore, our study outcomes present potential therapeutic targets and drugs based on
intercellular interactions associated with specific metabolic pathways related to unfavorable
cancer prognosis.
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