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ABSTRACT

Radiation therapy (RT) plays a critical role in breast cancer treatment. In the modern 
technological era, innovations and progress in breast RT and delivery techniques have greatly 
improved the clinical outcomes. Intensity-modulated RT (IMRT) is a modern RT technology 
that permits the modulation of RT beams, ensuring a more uniform dose distribution through 
the target tissue and better avoidance of underlying critical structures. Recently, several 
studies have been published on breast IMRT. However, the interpretation of these results can 
be challenging because of the wide diversity of patients and treatment. The purpose of this 
study was to review these studies, focusing on the impact of IMRT on reducing toxicity and 
increasing convenience, as well as addressing concerns regarding breast IMRT.
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INTRODUCTION

In the treatment of breast cancer, randomized trials have demonstrated a significant benefit 
in ipsilateral breast tumor control following whole breast radiation therapy (RT), which 
has led to an increase in survival rates when compared with surgery alone [1]. Studies have 
further assessed the impact of comprehensive regional nodal RT with whole breast or chest 
wall RT in women with either node-positive disease or high-risk node-negative disease, and 
have indicated a significant benefit in regional control and survival [2,3]. The benefits of RT 
in breast cancer treatment are well established; however, there is a struggle for previous trials 
to keep up with the rapid development of technology for imaging and treatment delivery. 
For instance, in the early days of breast RT, technology specific to 3-dimensional (3D) 
imaging of the body did not exist. Instead, RT was delivered using 2D imaging produced by 
kilovoltage radiation and surface anatomy. This allowed the bony anatomy to be rendered 
but failed to show the organs at risk (OARs) as well as targets in the soft tissue. Therefore, it 
was only possible to approximate the tumor bed, internal mammary lymph nodes (IMNs), 
and axillary lymph nodes. During this time, it was not possible to ensure target coverage or 
predict the volume of critical organs exposed to harmful radiation, because the path of the 
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radiation beam was only verified through kilovoltage imaging. In the past century, RT has 
advanced through expanded knowledge of oncological disease processes, applied physics, 
and technological developments. Although computed tomography (CT) imaging was first 
developed in 1972, it was not available to radiation oncology departments for treatment 
planning until the 1990s [4]. Currently, CT treatment planning is the standard of care and is 
of critical importance for calculating 3D dose distribution and achieving a balance between 
tumor control and critical OARs protection [5,6].

3D CONFORMAL RADIATION THERAPY IN BREAST 
CANCER
In 3D-conformal radiation therapy (CRT), although it might be difficult to distinguish 
between historical 2D plans and modern 3D plans, 3D plans differ by performing 
optimizations based on the dose to the target areas and OARs [7]. In a common beam path, 
parallel opposed photon tangent fields are used to treat the chest wall, breast, IMNs, and/
or low axilla [8]. If the high axilla and supraclavicular nodes were irradiated, the anterior 
photon field that treated these regions was matched to the parallel opposed photon tangents. 
If the IMNs were irradiated, physicians modulated the field size of the photon tangents 
or added high-energy electrons in lieu of photons to include the IMNs, thus resulting in 
substantial exposure of the lungs and heart. Materials that absorb radiation can be placed in 
the path of the beam, and smaller fields can be inserted within a larger field to adjust the dose 
homogeneity, particularly in the tangent fields.

IMRT IN BREAST CANCER

Intensity-modulated radiation therapy (IMRT) was introduced as an advanced RT technique, 
and uses dynamic multileaf collimators [9]. IMRT differs from conventional treatment 
modalities—2D or 3D-CRT—because of its ability to modulate the intensity of radiation 
directed at specific regions. IMRT planning should be developed according to 3D target 
volumes that have been contoured on CT images, rather than on surface anatomy, skin 
incisions, and/or 2D images of underlying bony anatomy and critical OARs (e.g., the heart and 
lungs) [10]. The process of contouring anatomically individualized targets with standardized 
OARs requires a high level of expertise and a large amount of time [11]. Additionally, physicians 
must work with physicists and dosimetrists to determine the optimal parameters to adequately 
cover the target areas and minimize the radiation dose to OARs. Given that the dose reduction 
to normal tissues achieved by advanced techniques can be translated into reduced toxicity, 
dose constraints for potential OARs, which are continually changing because of the evolving 
knowledge on the dose–volume parameters attributed to known toxicities [12-14], can be used 
to limit the toxicity risk alongside modern delivery techniques.

Breast IMRT can be classified into two types according to the optimization algorithms for 
segment weight definition [15]: 1) forward IMRT, which is a simplified version of IMRT 
wherein only a few segments are manually optimized and is also known as the “field-in-field 
(FIF)” technique, and 2) inverse IMRT, which is more complex and uses a cost-function 
reduction algorithm (a process of tradeoffs between target coverage and normal organ 
sparing) that allows for a more homogeneous dose distribution while sparing the normal 
tissue from excess radiation dose exposure. However, by considering inverse treatment 
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planning as an essential component of IMRT, forward IMRT or FIF is often placed in the 
same classification as traditional “forward” planned 3D-CRT in modern perspectives [16].

When using 3D-CRT, the physician and dosimetrist team select the beam angles and evaluate 
the dose distribution to optimize the target coverage and predefined OAR constraints. 
However, using IMRT, 1) the target coverage and OAR constraint goals are entered into 
the treatment planning system and 2) the number of beams and their angles are selected. 
The system then generates a plan to conform the radiation dose to the target and avoid 
the exposure of healthy tissue by varying the beam intensities and shapes throughout the 
treatment. A complete planning optimization procedure involves repeated optimization 
iterations under appropriate constraints (Figure 1).

Volumetric modulated arc therapy (VMAT) is a form of IMRT that achieves high-dose 
conformity, but in a shorter time period [17]. Unlike standard IMRT, which relies on multiple 
independent beam angles, VMAT continuously administers radiation in an arc, while the 
gantry rotates. Several parameters can be modulated during this delivery (e.g., the field shape 
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Figure 1. Workflow diagram of the 3D-CRT and IMRT procedures for breast cancer treatment. 
3D = 3-dimensional; CRT = conformal radiation therapy; IMRT = intensity-modulated radiotherapy; CBCT = cone-
beam computed tomography; QA = quality assurance; DQA = delivery quality assurance.
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and orientation, dose rate, and rate of gantry rotation). Numerous planning studies have 
demonstrated improved dose distribution and better conformity and homogeneity index in 
IMRT or VMAT when compared with 3D-CRT (Figure 2) [18,19].

IMRT was first performed in Korea in 2001. A decade later, in 2011, IMRT treatment for 
certain sites of cancer, including the head and neck, brain, prostate, spine, and re-irradiation 
cases, was partially covered by national health insurance. Since July 2015, this coverage 
has been extended to include nearly all cancer types. A study investigating recent trends in 
IMRT reported an 18-fold increase in the use of IMRT for breast cancer in Korea, from 1,921 
patients in 2011 to 34,759 in 2018 [20].
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Figure 2. Schematic illustration of the dose distribution of 3D-CRT and VMAT on axial CT images at the level of 
breast (upper) and lower neck (lower). 
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Owing to improvements in radiation techniques over the past decade, it is now possible for 
breast RT to be delivered with adequate dose coverage, while maintaining reduced toxicity. 
Many studies have recently been published on breast RT using IMRT; however, interpretation 
of these results can be difficult because of the wide diversity of patients and treatments 
involved. This article summarizes the studies of breast IMRT in narrative review form with 
clinically relevant outcomes in either a randomized (Table 1) [21-28] or non-randomized 
design (Table 2) [29-34].

OLD FORWARD-IMRT TRIALS IN THE EARLY 2000S

In breast cancer treatment, the first randomized trial that investigated the utility of an 
advanced technique was the Royal Marsden/UK breast study published in 2007 [21]. A total of 
306 patients were randomized to receive either a 2D wedge plan (2D-RT) or the FIF technique 
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Table 1. Summary of the randomized controlled trials on the role of IMRT for adjuvant radiation therapy in breast cancer
Name Trial  

group
Number Control  

(Gy/fraction)
Intervention  
(Gy/fraction)

Local relapse 
of control vs. 

IMRT (%)

Remark Primary or global NTEs Secondary or specific NTEs
NTE being 
measured

NTE of control  
vs. IMRT (%)

NTE being 
measured

NTE of control  
vs. IMRT (%)

RMH/GOC 
trial [21]

2D vs. FIF 306 50 Gy/25fx 50 Gy/25fx NA Cosmesis OR 0.48 favoring FIF 
@ 5yr (p  0.001)

Breast pain, 
breast 

discomfort, 
breast 

thickening, etc.

p = NS

Canadian 
trial [22]

2D vs. FIF 358 50 Gy/25fx 50 Gy/25fx NA Acute skin 
reaction

36.7% vs. 27.1% (p 
= 0.06) for Gr 3–4 
acute skin reaction

Moist 
desquamation

47.8% vs. 31.2%  
(p = 0.002)

Cambridge 
Breast IMRT 
trial [23]

2D vs. FIF 814 40 Gy/15fx 40 Gy/15fx 2.56% vs. 
1.35% @ 5yr 

(p = 0.36)

LRR Cosmesis OR 0.65 favoring FIF 
@ 5yr (p = 0.038)

Induration, 
telangiectasia, 
breast edema

OR 0.57 favoring 
FIF @ 5yr (p 
= 0.031) for 

telangiectasia
KROG 15-03 
[24]

3D-CRT vs. 
IMRT-SIB

693 59.4 Gy/33fx 
(sequential boost)

57.4 Gy/28fx  
(SIB)

99.4% vs. 
98.5% @ 3yr 
(p = 0.523)

LRRFS Radiation 
dermatitis

37.1% vs. 27.8% (p 
= 0.009) for Gr 2+ 
acute dermatitis

IMRT-MC2 
[25]

3D-CRT vs. 
IMRT-SIB

502 66.4 Gy/36fx 
(sequential boost)

64.4 Gy/28 fx  
(SIB)

99.6% vs. 
99.6% @ 2yr 
(p = 0.487)

LC Cosmesis OR 0.961 @ 2yr (p = 
0.797)

UK IMPORT-
HIGH [26]

3D-CRT vs. 
IMRT-SIB

2,617 46 Gy/23fx 
(sequential boost)

48 Gy/15fx (SIB)  
or 53 Gy/15fx (SIB)

1.9% vs. 2.0% 
(48 Gy/15fx) 
vs. 3.2% (53 

Gy/15fx) @ 5yr 
(p = NS)

IBTR Any AE in 
breast

2.8% vs. 2.0% (48 
Gy/15fx) vs. 2.8% 
(53 Gy/15fx) @ 5yr 
by clinician (p = 
0.011 for 48 Gy vs. 53 
Gy) for moderate/
marked AE

Breast 
induration

6% vs. 5% (48 
Gy/15fx) vs. 9% (53 
Gy/15fx) @ 5yr by 

clinician (p = 0.006 
for 48 Gy vs. 53 

Gy) for moderate/
marked induration

ARO 2013-
15/HYPOSIB 
[27]

3D-CRT vs. 
IMRT-SIB

2,324 60.4–66.4 
Gy/33–36fx 

(sequential boost) 
or 58.8–63 Gy/28fx 
(conventional SIB) 

or 52.56–58.56 
Gy/21–24fx 

(hypofractionated 
SIB)

48 Gy/16fx 
(hypofractionated 

SIB)

NA Radiation 
dermatitis

23.9% vs. 13.8% @ 
6 weeks (p = NA) 
for Gr 2+ radiation 
dermatitis

APBI-IMRT-
Florence 
[28]

3D-CRT-WBI 
vs. IMRT-

APBI

520 60 Gy/30fx 
(sequential boost)

30 Gy/5fx 2.5% vs. 3.7% 
@ 10yr (p = 

0.40)

IBTR Cosmesis 0% vs. 1.9% by 
physician (p = 
0.0001) for fair/poor 
cosmesis

Acute and late 
period AE

37.7% vs. 2.0% (p 
= 0.0001) for Gr 2+ 
acute AE 2.7% vs. 
0% (p = 0.015) for 

Gr 2+ late AE
2D = 2-dimensional radiation therapy; 3D-CRT = 3-dimensional-conformal radiation therapy; AE = adverse events; APBI = accelerated partial breast irradiation; 
FIF = field-in-field; IBTR = ipsilateral breast tumor recurrence; IMRT = intensity-modulated radiation therapy; LC = local control; LRR = loco-regional recurrence; 
LRRFS = loco-regional recurrence-free survival; NA = not assessed; NTE = normal tissue effects; NS = not significant; OR = odds ratio; SIB = simultaneous 
integrated boost; WBI = whole breast irradiation.
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using step-and-shoot multileaf collimators or a physical 3D compensator (although the 
authors used the term “IMRT arm,” we used the term “FIF” to distinguish forward IMRT 
from the modern concept of IMRT in this article). According to the analysis of the 5-year 
photographs, changes in appearance were 1.7-times higher in the 2D-RT arm than in the FIF 
arm. The incidence of palpable induration was lower in the FIF group.

The second randomized trial was a Canadian/Sunnybrook breast study first published in 2008 
[22]. A total of 331 patients were randomized to receive either 2D wedge-based RT or FIF. 
This study found that the rate of moist desquamation, which is significantly associated with 
pain and reduced health-related quality of life, was reduced from 47.8% with standard wedge 
RT to 31.2% with FIF (p = 0.002).

The third randomized trial was a 2-year-long Cambridge study published in 2013 [23]. A total 
of 1,145 patients were randomized to receive either tangential techniques or FIF. Unlike the 
2 aforementioned trials, which used a 2 Gy daily fraction (50 Gy), this trial used moderate 
hypofractionation (40 Gy in 15 fractions with a 2.67 Gy daily fraction). The development 
of telangiectasia was 1.7 times more common in the control group. In a subgroup analysis 
of patients with good surgical cosmesis, patients with FIF were less likely to experience 
moderate or poor cosmesis than those in the control group. Given that hypofractionated 
(HF)-whole breast irradiation (WBI) is the preferred dose-fractionation scheme for the 
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Table 2. Summary of the non-randomized studies on the role of IMRT for adjuvant radiation therapy in breast cancer
Name Trial group Number Control  

(Gy/fraction)
Intervention 
(Gy/fraction)

Local relapse of 
control vs. IMRT 

(%)

Remark Primary or global NTEs Secondary or specific NTEs
NTE being 
measured

NTE of control  
vs. IMRT (%)

NTE being 
measured

NTE of control  
vs. IMRT (%)

McDonald 
et al. [29] 
(2008)

2D vs. FIF 245 45–50 
Gy/25fx

45–50 
Gy/25fx

90% vs. 95%  
@ 7yr  

(p = 0.36)

Freedom 
from IBTR

Skin 
toxicity

52% vs. 39% (p = 
0.047) for Gr 2+ 
dermatitis

Lee et al. 
[30] (2015)

FIF vs. 
IMRT-SIB

126 60–64 
Gy/30–32fx 
(sequential 

boost)

60.2 Gy/28fx NA Skin 
toxicity

18.3% vs. 4.5% (p 
= 0.048) for Gr 2+ 
dermatitis

Yang et al. 
[31] (2016)

2D vs. IMRT 234 50 Gy/25fx 45 Gy/25fx 96.7% vs. 
97.6% @ 8yr  
(p = 0.393)

LRFFS Skin 
toxicity

56.5% vs. 40.8% (p 
= 0.017) for Gr 2+ 
dermatitis

Moist 
desquamation

21.4% vs. 10.7% (p = 
0.029)

Chen et al. 
[32] (2020)

3D-CRT vs. 
IMRT

308 50 Gy/25 
fx or 42.56 

Gy/16fx

50 Gy/25 
fx or 42.56 

Gy/16fx

NA Skin 
toxicity

HR 0.27 favoring 
IMRT (p < 0.001)

Lung injury HR 0.49 favoring IMRT 
(p = 0.01)

Kim et al. 
[33] (2021)

3D-CRT (CF) 
vs. 3D-CRT 

(HF) vs. IMRT

5,749 50.4 Gy/28fx 
or 40.05 
Gy/15fx

40.05  
Gy/15fx

2.8% (3D-CF) vs. 
2.6% (3D-HF) 

vs. 2.4% (IMRT) 
@ 5yr  

(p = NS)

LRR Acute/
subacute 
toxicity

OR 0.11 favoring 
IMRT compared with 
3D-CF (p < 0.001) for 
Gr 2+ toxicities OR 
0.45 favoring IMRT 
compared with 3D-
HF (p = 0.010) for Gr 
2+ toxicities

Late toxicity OR 0.58 favoring 
IMRT compared with 
3D-CF (p < 0.001) 
for any toxicities OR 
0.79 favoring IMRT 
compared with 3D-HF 
(p = 0.084) for any 
toxicities

Jagsi et al. 
[34] (2022)

3D-CRT vs. 
FIF vs. IMRT

5,167 NA NA NA Acute 
toxicity

OR 0.64 favoring 
IMRT-CF compared 
with 3D-CF (p = 
0.0158) for any 
toxicity OR 0.41 
favoring IMRT-HF 
compared with 3D-
HF (p = 0.0007) for 
any toxicity

Radiation 
dermatitis 
toxicity- 
related 

treatment 
break

0.7% in 3D-HF vs. 
0.2% in FIF-HF vs. 
0% in IMRT-HF (p 
= 0.026) for Gr3+ 
dermatitis 5.0% in 
3D-CF vs. 2.1% in 
FIF-CF vs. 3.6% in 
IMRT-CF (p = 0.003) 
for treatment break

2D = 2-dimensional radiation therapy; 3D-CRT = 3-dimensional-conformal radiation therapy; CF = conventional fractionation; FIF = field-in-field; HF = 
hypofractionation; HR = hazard ratio; IBTR = ipsilateral breast tumor recurrence; IMRT = intensity-modulated radiation therapy; LRR = loco-regional recurrence; 
LRRFS = loco-regional recurrence-free survival; NA = not assessed; NTE = normal tissue effects; NS = not significant; OR = odds ratio; SIB = simultaneous 
integrated boost; WBI = whole breast irradiation.
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majority of early breast cancer patients [35], unplanned dose inhomogeneities (so called 
“hotspots”) in breast tissue could be penalized more severely in a larger fraction size. 
Therefore, dose–volume restrictions and dose conformity within the breast may be more 
important with HF-WBI.

In these earlier studies, the forward IMRT, “simple” IMRT, or FIF technique was used, which 
aimed to reduce a higher-dose area than the prescription dose within the breast, but was unable 
to substantially reduce doses to the OARs, such as the lung and heart. The avoidance of a high-
dose area within the breast contributed to a reduction in the incidence of moist desquamation, 
as demonstrated in a randomized trial conducted by Pignol et al. [22]. Long-term follow-up 
data from this trial showed that late subcutaneous fibrosis and telangiectasia were correlated 
with moist desquamation, which was reduced by FIF [36]. In addition, the Cambridge breast 
trial demonstrated that FIF improved overall cosmesis and reduced skin telangiectasia [23].

INVERSE IMRT STUDIES IN THE MODERN ERA

Whole breast irradiation using IMRT
A recent trial conducted in Korea suggested that inverse-planned IMRT is likely to further 
reduce acute toxicity when compared with 3D-CRT [24]. In the Korean Radiation Oncology 
Group (KROG) 15-03 trial, 693 women with pT1-2N0M0 early breast cancer were randomly 
assigned to undergo either IMRT or 3D-CRT. The conformity index was significantly higher 
in the IMRT arm than in the 3D-CRT arm (p < 0.001), and the incidence of grade 2 or higher 
dermatitis was significantly lower in the IMRT arm than in the 3D-CRT arm (27.8% vs. 37%, 
p = 0.009). Furthermore, Jagsi et al. [34] reported the results of a comparative effectiveness 
analysis of 3D-CRT versus IMRT in a prospective multicenter cohort of patients with breast 
cancer receiving WBI without nodal irradiation. They separately analyzed acute toxicity in 
patients treated with conventionally fractionated (CF) or HF-WBI. Multivariate analysis 
showed that the odds ratio (OR) for acute toxicity after inverse-planned IMRT versus 3D-CRT 
was 0.64 with CF-WBI and 0.41 with HF-WBI.

Kim et al. reported a large-volume single-center experience of breast RT using various 
combinations of fractionation and techniques in 4,209 women [33]. They observed that 
grade 2+ acute/subacute toxicities were the highest in the 3D-CRT group (15.0%, 2.6%, and 
1.6% in CF-3D, HF-3D, and HF-VMAT, respectively; p < 0.001), and the use of HF-VMAT 
significantly reduced grade 2+ acute/subacute toxicities when compared to CF-3D (OR, 0.11) 
and HF-3D (OR, 0.45).

Partial breast irradiation using IMRT
Breast conservation with WBI in the treatment of early-stage breast cancer has been a pivotal 
achievement in modern cancer history. Following this achievement, extensive clinical 
research has been conducted, focusing on reducing the burden of care imposed by 5–7 
weeks of daily radiation delivery after lumpectomy. Partial breast irradiation, which targets 
the breast tissue around the surgical cavity, was one of the earliest alternatives studied [37]. 
Accelerated partial breast irradiation (APBI) using IMRT is well established as one of the 
effective approaches for RT in early-stage breast cancer patients (Figure 3) [38].

With increasing interest in the de-escalation of breast RT, APBI is gradually being employed 
among select low-risk patients. The criteria for patient selection have been suggested by 
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several oncology societies, including the American Society for Radiation Oncology (ASTRO), 
Groupe Européen de Curiethérapie, European Society for Radiotherapy & Oncology (GEC-
ESTRO), and American Brachytherapy Society (ABS), although minor differences are 
observed among these standards [39,40]. There are also various APBI techniques, including 
external beam RT, applicator brachytherapy, interstitial brachytherapy, and intraoperative 
RT [41]. According to the ABS, the strongest evidence for APBI supports interstitial 
brachytherapy and IMRT [42]. While interstitial brachytherapy-based APBI requires specific 
expertise, is more demanding, and is mainly performed at specialized centers, external 
beam-based APBI can be applied in all radiation oncology departments. Unlike intraoperative 
RT, brachytherapy and external beam-based APBI may be delivered following recovery from 
surgery and after receiving the final pathological results.

It is important to understand that adverse events and cosmetic outcomes are highly influenced 
by the irradiated volume, ratio with non-target ipsilateral breast volume, RT technique, and 
adopted schedule [43]. As the irradiated volume (V50%, the non-target ipsilateral breast volume 
of the dose receiving 50% of the prescription dose) increases, adverse events and cosmetic 
outcomes worsen [44]. In a previous prospective KROG 08-04 trial evaluating 3D-CRT-based 
APBI in Korean breast cancer patients, the median V50% of the ipsilateral breast was 42%, 
and the dose constraint of V50% < 50% was not achieved in 10% of patients [45]. The authors 
concluded that APBI using 3D-CRT is not feasible in Korean women.

APBI using IMRT was compared with WBI in a phase 3 randomized trial in Italy [28]. A total 
of 520 patients were randomized to receive APBI-IMRT (30 Gy in 5 fractions, every other day 
for 2 weeks) and WBI (50 Gy in 25 fractions), followed by a sequential boost. The 10-year 
ipsilateral breast tumor recurrence rate did not differ between the two arms. The mean V50% 
of the uninvolved breast volume was 32% in the APBI-IMRT arm, and less acute and late 
toxicities, as well as improved cosmetic outcomes, were observed in the APBI-IMRT arm.

In a retrospective study by Lee et al. [46], similar feasibility was achieved by IMRT in 104 
Korean women. The median ipsilateral breast V50% was 35.8%, despite the smaller breast 
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volumes. The change in skin thickness appeared to be limited to the tumor bed after APBI-
IMRT, in contrast to the diffuse skin thickening observed after HF-WBI. Another Korean 
study reported the initial experience of APBI-IMRT in 37 patients using magnetic resonance 
imaging-guided adaptive RT, which enables the adaptation of seroma changes during the 
course of RT [47].

Concomitant boost technique using IMRT
Boost irradiation, which refers to an extra dose of radiation that surrounds the tumor bed, 
is intended to decrease the local recurrence rates. Two randomized trials that investigated 
the impact of tumor bed boost after breast conserving surgery implied that boost results in 
a lower rate of local recurrences and, subsequently, a lower rate of mastectomies [48,49]. 
If a boost is administered, 10–16 Gy in 2 Gy fraction over 1–2 weeks is typically delivered 
after the completion of WBI. An additional advantage of the IMRT technique is its ability to 
provide differential dose distributions, which allows for simultaneous integrated boost (SIB) 
delivery (Figure 4). SIB delivers an additional dose to the high-risk area while simultaneously 
delivering the conventional dose to the standard or low-risk area at the same time [50]. Using 
the IMRT technique, a tumor bed boost can be delivered simultaneously with WBI, which 
can reduce patient visits. There are a number of prospective trials evaluating tumor bed boost 
delivered as SIB using IMRT technique (IMRT-SIB) in breast cancer.

The IMRT-MC2 trial is a phase 3, randomized, non-inferiority trial comparing IMRT-SIB 
(whole breast 50.4 Gy in 28 fractions, SIB 64.4 Gy in 28 fractions) with 3D-CRT followed by 
sequential boost (whole breast 50.4 Gy in 28 fractions, boost 16 Gy in 8 fractions) [25]. A total 
of 502 patients were enrolled, and there were no significant differences in cosmesis, local 
control, or overall survival between the two treatment schedules at a median follow-up of 
5.1 years. The overall treatment times were 1 to 1.6 weeks shorter in the IMRT-SIB arm than 
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in the 3D-CRT arm, which most likely improves patient convenience. Breast pain and arm 
symptoms were more favorable in the IMRT-SIB arm than in the 3D-CRT arm. KROG 15-03 
trial compared IMRT-SIB (whole breast 50.4 Gy in 28 fractions, SIB 57.4 Gy in 28 fractions) 
versus 3D-CRT followed by sequential boost (whole breast 50.4 Gy in 28 fractions, boost 
9 Gy in 5 fractions) [24]. IMRT with the SIB method not only reduced grade 2+ radiation 
dermatitis but also reduced treatment times (from 33 fractions to 28 fractions), with a similar 
loco-regional failure-free survival approaching 99%.

In 2017, international guidelines adopted HF-WBI as the preferred dose fractionation scheme 
for a majority of patients with early breast cancer [35]. The IMPORT-HIGH trial is a phase 3 
randomized trial to test dose-escalated SIB compared with sequential boost using moderately 
HF-WBI in high-risk early breast cancer. The dose-fractionation schedule of the control arm was 
40 Gy in 15 fractions to the whole breast, followed by a sequential boost (16 Gy in 8 fractions) 
[51]. The dose levels of the experimental arms were as follows:36 Gy/15fx to the low-risk breast, 
40 Gy/15fx to the index quadrant, and 48 Gy/15fx to the tumor bed in arm 1; the same doses 
to the low-risk breast and index quadrant as in arm 1, but dose escalated to the tumor bed (53 
Gy/15fx) in arm 2. A total of 2,617 patients were accrued, and the 5-year moderate/marked 
adverse events were broadly similar between each test group and control group, but with a 
higher risk of breast induration and distortion in the 53 Gy/15fx arm [26]. This study concluded 
that IMRT with SIB (48 Gy/15fx) is a safe treatment with fewer patient visits.

Currently, 2 ongoing randomized trials (HYPOSIB and RTOG 1005) are evaluating SIB versus 
sequential boost in women receiving HF-WBI. In 2020, the preliminary safety data of the 
HYPOSIB randomized phase 3 trial, which recruited 2,324 patients from 88 centers in Germany 
and Austria, was presented [27]. An SIB of 48 Gy in 15 fractions was administered using IMRT 
in the IMRT-SIB arm, and acute skin reactions were less pronounced and completed before the 
peak skin reaction occurred in the IMRT-SIB arm than in the control arm.

Regional nodal irradiation using IMRT
A study published in 2013 by Darby et al. showed a linear no-threshold relationship between 
mean heart dose (MHD) and the incidence of heart disease after breast RT, finding a 7.4% 
relative risk of ischemic heart disease for every 1-Gy increment in MHD [52]. Chung et al. [53] 
confirmed these findings in a Korean population, independently corroborating this linear 
no-threshold model for MHD, regardless of the risk factors for coronary events. Left-sided 
breast cancer and the inclusion of IMNs in the treatment volume are well-known risk factors 
for increased MHD in RT planning. Therefore, breast RT planning should focus on achieving 
optimal coverage of targets and minimizing radiation to OARs, considering 1) the expected 
long-term survival in early breast cancer and 2) the impact of regional node irradiation 
(especially IMN and supraclavicular) on survival among patients with node-positive and high-
risk node-negative breast cancer, as demonstrated in the MA.20 and EORTC 22922 trials [54].

IMRT, especially VMAT, has been suggested as a heart-sparing technique (Figure 5) [55]. 
However, MHD, a parameter associated with an increased risk of ischemic heart disease, is 
often higher with IMRT than 3D-CRT if cardiac sparing is not prioritized in the IMRT planning 
process. A prospective study conducted by Memorial Sloan-Kettering Cancer Center reports 
that an MHD of 13.2 Gy (range, 8.6–20 Gy) was achieved among left-sided breast cancer 
patients receiving multibeam IMRT [56]. The cardiac-sparing capability of IMRT can be 
synergized with a controlled breathing technique, such as deep inspiration breath-hold (DIBH) 
or continuous positive airway pressure (CPAP) [19,57]. A small, randomized trial tested the 
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benefit of IMRT with DIBH compared to 3D-CRT in left-sided, node-positive patients receiving 
nodal irradiation including IMNs [57]. Mean doses to the heart, left ventricle, and left anterior 
descending coronary artery were significantly lower, and the left ventricular ejection fraction 
at 1-year was higher in the IMRT-DIBH group, although perfusion defects on single-photon 
emission computed tomography did not differ between the 2 groups. Another dosimetric 
study demonstrated that MHD could be reduced by 50% with the use of DIBH or CPAP, and the 
use of VMAT could further lower MHD by approximately 40% [19].

Based on the same principle, VMAT has the potential to reduce radiation exposure to the 
lungs if lung sparing is prioritized in the RT planning process. Kim et al. [33] analyzed 5,749 
patients treated with 3D-CRT or VMAT at a single institution. Late toxicities, including 
radiation pneumonitis, lymphedema, hypothyroidism, cardiotoxicity, and secondary 
contralateral breast cancer, were also evaluated. There was no significant difference in any 
late toxicity except radiation pneumonitis, which favors VMAT over 3D-CRT. As emerging 
late toxicities are highlighted, delineation and constraints to more OARs, such as the thyroid 
[12], esophagus [12], and axillary-lateral thoracic juncture [14], would improve the quality 
of IMRT in breast RT. Because an unintended increased radiation dose to the reconstructed 
breast is associated with an increased risk of reconstruction complications, including 
capsular contracture, VMAT may mitigate radiation-related complications by improving dose 
homogeneity in the reconstructed breast (Figure 6) [58,59]. Recent target volume guidelines 
can further reduce the dose to the heart while maintaining target volume coverage in breast 
reconstruction with subpectoral implant placement [60].

ISSUES RELATED TO IMRT IN BREAST CANCER

There are concerns regarding secondary malignancies as a late toxicity of RT. Compared 
with 3D-CRT, IMRT for breast cancer increases the low-dose area outside the target volume, 
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which potentially increases the risk of secondary malignancy, including contralateral breast 
cancer. A recent dosimetric study by Ko et al. [19] showed that although VMAT increased the 
radiation dose to the contralateral breast relative to 3D-CRT, the difference in the mean dose 
between these techniques was approximately 1 Gy. Another dosimetric study by Ranger et 
al. showed that there is no significant difference in mean contralateral breast dose between 
VMAT and 3D-CRT (1.7 Gy vs. 1.2 Gy, respectively) [55]. In real-world data using the National 
Cancer Database, the second cancer diagnosis was similar after 3D-CRT and IMRT at a 
median follow-up of 5.1 years after the completion of RT [61]. There was no difference in 
second cancer risk between 3D-CRT and IMRT when the analysis was confined to primary 
breast cancer alone. A recent study that evaluated the long-term risk of secondary malignancy 
with > 10 years of follow-up in childhood cancer patients who were treated with IMRT showed 
that many secondary malignancies develop in the high-dose region after IMRT [62].

As IMRT becomes more sophisticated, its implementation introduces several issues related 
to quality control. Considering that errors in RT treatment may have dire consequences for 
patients, quality management is an integral component of preventing deviations from the 
intended track. Quality control includes all facility activities during simulation, contouring, 
planning, and treatment. According to TG-100 by the American Association of Physicists 
in Medicine, a program needs to ensure that the following components are in place [63]: 
1) adequate resources—physicians, dosimetrists, medical physics, therapists, equipment, 
and administrative support—to perform the breast IMRT procedure; 2) quality training for 
the staff and established standardized procedures (e.g., contouring of clinical target volume 
and OARs and planning considerations); 3) a program focused on maintaining equipment 
and software; and 4) clear and effective lines of communication. Above all, inter-physician 
variations in contouring and planning present the greatest challenges for standardization and 
increased quality control. Currently, the KROG 21-01 study is underway to improve the quality 
of breast IMRT in Korea [64].
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CONCLUSION

With the modernization of RT, 3D treatment planning has been incorporated into practice, 
along with the use of CT simulation. Further innovations in technology include the 
improvement of standard linear accelerators that allow for the avoidance of healthy tissue 
using multileaf collimators, ability to obtain 3D images in real-time using cone beam CT, 
improvements in cardiac sparing techniques (e.g., respiratory motion management including 
DIBH), and advances in treatment planning and delivery (e.g., IMRT). Altogether, these 
innovations have enabled great progress in relation to dose fractionation and targets in 
breast RT. In the years to come, breast RT is expected to evolve further, allowing for even 
shorter regimens, reduced toxicities and patient visits, incorporation of tumor genetics 
or biomarkers, new opportunities for patients with metastatic breast cancer, and further 
increases in the therapeutic ratio of techniques.
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