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A B S T R A C T   

Introduction: Characterizing the tumor microenvironment (TME) and immune landscape of cancer has been a 
promising step towards discovering new therapeutic biomarkers and guiding precision medicine; however, its 
application in mucoepidermoid carcinoma (MEC) has been sparse. Here, we conducted a comprehensive study to 
understand the properties of the TME and immune profiles of MEC. 
Method: 20 patients with MEC were collected from Yonsei Head and Neck Cancer Centre, Yonsei University, 
South Korea. Total RNA sequencing was conducted to determine gene expression profiles. Bioinformatic and 
immunoinformatic analyses were applied to characterize the TME and identify immunophenotypic subgroups, 
and to investigate the molecular features that explain the distinct phenotypes. 
Results: The MEC samples were subdivided into two groups, immune hot and immune cold, based on the 
heterogenous immune cell-infiltration and activation level. The immune-hot subgroup exhibited a higher level of 
immune activity, including T cell infiltration, cytolytic score, IFN-γ, antigen-presenting machinery, and immune 
modulator genes. Further characterizing molecular features of two subgroups, downregulation of lipid metabolic 
regulators, including MLXIPL and FASN, and the migration of chemokines and leukocytes were observed, 
respectively. And, Group-specific expression of immune checkpoint molecules, such as TIGIT, PD-L2, and CTLA- 
4, was observed in the immune-hot group, which can be exploited as a potential immunotherapeutic biomarker. 
Conclusions: Immunophenotypically heterogeneous MEC subgroups analysis has shown distinctive molecular 
characteristics and provided potential treatment options. These findings yield new insights into TME of MEC and 
may help next step to study this uncharted cancer.   

Introduction 

Mucoepidermoid carcinoma (MEC) is the most common malignant 
neoplasm of the salivary gland, accounting for approximately 30–40% of 
all malignancies [1]. MEC arises from heterogeneous cell types, 
including epidermoid, mucus-producing cells, and their intermediate 
cells [1]. Patients with MEC generally show a relatively good prognosis, 

with a 5-year survival rate of 88.6% [1]. However, poor prognosis fac
tors such as age, vascular invasion, cytologic atypia, and high mitotic 
frequency, affect treatment efficiency; for instance, about 25% of the 
high-grade MECs eventually recur, limiting the 5-year survival rate to 
50–56% [1]. Over the years of cumulative salivary gland tumor man
agement knowledge, multidisciplinary management approaches have 
been regarded as essential elements in MEC treatment, which includes 
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surgical options as first choice of treatment with or without adjuvant 
therapy, to maximize the treatment outcome and maintain acceptable 
level of safety [2]. And, with recent advancement of machine learning 
techniques, decision tree based adjuvant chemo treatment prognosis 
predictive model has shown promising personalized treatment options 
for salivary cancer patients [3]. However, unlike many other major 
cancers that have benefitted from genomics-based biomarker develop
ment, patient stratification, and precision medicine, the rarity and lack 
of underlying molecular/genomic characterization hinder the use of 
such advances in MEC. Only a few driver mutations are known for MEC, 
including the t(11;19) translocation, which involves fusion of the tran
scriptional coactivator genes MAML2 and CRTC1 [4], copy number 
variations (CNVs) in DCC, SMAD4, and GALR1 [5] and additional so
matic mutations in TP53 and POU6F2 [6]. Except for the CRTC1-MAML2 
fusion, which is known to have a favorable prognosis [4], no major 
genetic aberrations have been associated with or utilized for clinical use. 
As the discovery of novel high-frequency mutations is unlikely, alter
native approaches with possible clinical implications are required for 
better treatment of MEC. 

Recent advances in the profiling of immune cells and the tumor 
microenvironment (TME) and understanding the interplay between tu
mors and their surrounding components have led to warrant new ther
apeutic opportunities for immune-oncology, such as immune checkpoint 
blockades, discovery of new biomarkers for improved prognosis, and 
optimization of clinical management [7–9]. In salivary gland cancer, 
these efforts have been described in recent research [10]. However, 
comprehensive TME landscape of MEC has not yet been elucidated. 

In the present study, based on the level of immune and stromal cell 
infiltration, we characterized the tumor immune microenvironment of 
MEC using whole transcriptome analysis of 20 tumor samples. 
Furthermore, gene expression and protein interaction networks analysis 
revealed immunophenotypic subgroup-associated intrinsic molecular 
features and potential immunotherapeutic biomarkers. We expect that 
our study will provide insights to next step of immuno-oncologic 
research of MEC. 

Material and methods 

Sample acquisition and preparation 

Twenty patients who were diagnosed with MEC and treated at the 
Yonsei Head and Neck Cancer Center between March 2012 and April 
2018, were enrolled in the study. Fresh frozen tissues from primary 
MECs and their matched normal tissues were retrieved and collected 
during the operation, after approval by the Institutional Review Board at 
Severance Hospital, Yonsei University College of Medicine (IRB 255- 
001). Informed written consents were obtained from all patients. The 
inclusion criteria were as follows: (1) patients aged > 18 years; (2) pa
tients with biopsy-proven MEC with a minimum diameter of 1 cm (to get 
sufficient amount of tissue sample without violating margin finding, 
which determines for adjuvant therapy); and (3) patients with no pre
vious history of chemotherapy or radiotherapy. All patients were treated 
surgically by complete resection, according to the National Compre
hensive Cancer Network (NCCN) guidelines. The general clinical char
acteristics of the patients are presented in Table 1. 

Data processing 

FastQC (version 0.11.7) was used to determine read quality. No 
further read trimming and filtering were performed. Reads obtained 
from RNA sequencing were mapped against the UCSC hg38 reference 
genome (FASTA) and hg38 gene annotation (GTF) using STAR (version 
2.6.0c) [11] under two default passes. The resulting alignment files 
(BAM) were used to quantify the read count per gene, using HTSeq 
(version 0.10.0) [12]. All count data were normalized using the DESeq2 
software package (version 1.24.0) [13] to normalize the raw counts into Ta
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variance-stabilizing transformation (VST). 

Calculation of TME 

For constructing concise TME genes specific to microenvironment- 
related cells, gene signatures from CIBERSORT [14] and MCP-counter 
[15] were used. All 22 gene signature sets (LM22) of CIBERSORT 
were utilized; however, as they do not cover fibroblast and endothelial 
cell gene signatures, these were imported from the MCP-counter. Sub
sequently, using the gene set variation analysis (GSVA) software pack
age (version 1.32.0) [16] single-sample gene set enrichment analysis 
(ssGSEA) function, a ssGSEA was performed on normalized expression 
data to measure the abundance of each cell subset in each patient. 

Tumor subgrouping with TME estimation 

ssGSEA was used to measure the abundance of immune and micro
environmental cells in the sample, using the ssGSEA function of the 
GSVA software package (version 1.32.0) [16]. In total, 24 cell types 
were investigated by combining two gene signatures: the LM22 signa
ture of CIBERSORT [14] for 22 major immune cell types, and 
MCP-counter [15] to supplement two microenvironmental cell types: 
fibroblasts and endothelial cells. Based on the ssGSEA scores, hierar
chical clustering was performed using Euclidean distance and complete 
linkage methods utilizing the ComplexHeatmap software package 
(version 2.0.0) [17]. The two largest clusters were used to define two 
immunologically distinct subgroups, which were later designated as 
immune-hot and immune-cold subgroups. 

Robustness of the subgroups was tested by constructing clusters with 
an independent TME score from ESTIMATE (version 2.0.0) [18]. To 
produce ESTIMATE scores, T-cell infiltration score (TIS), immune infil
tration score (IIS), cytolytic score (CYT), and IFN-γ score were calculated 
as follows [19]: (1) TIS was defined as the mean of the standardized 
values for CD8+ T, central memory T, and effector memory T cells, and 
Th1, Th2, Th17, and Treg cells; (2) IIS of a sample was defined as the 
mean of the standardized values for macrophages, DC subsets (total, 
plasmacytoid, immature, and activated), B cells, cytotoxic cells, eosin
ophils, mast cells, neutrophils, NK cell subsets (total, CD56bright, and 
CD56dim), and all T-cell subsets excluding T-gamma delta and 
T-follicular helper cells; (3) CYT score was calculated from the geo
metric mean of the expression of granzyme A (GZMA) and perforin 
(PRF1), which was demonstrated in the study by Rooney et al. [20]; and, 
(4) IFN-γ signalling was scored with ssGSEA using the IFN-γ gene set 
defined in REACTOME (Error! Hyperlink reference not valid. 
INTERFERON_GAMMA_ SIGNALING). 

Comparative analysis of subgroups 

Differential gene expression analysis between the immune-hot and 
cold subgroups was determined using the following significance criteria: 
(1) adjusted P < 0.05, and 2) Log2(fold change) ≥ 1, using the internally 
implemented function of the DESeq2 software package (version 1.24.0) 
[13]. Gene ontology (GO) and pathway enrichment analyses were per
formed using the clusterProfiler software (version 3.12.0) [21]. For 
subtype tumor intrinsic analysis, differentially expressed gene (DEG) 
analysis was performed using the following significance criteria: (1) 
adjusted P < 0.01, and (2) Log2(fold change) ≥ 3. For the gene set 
enrichment analysis (GSEA), genes were ranked by their log 
fold-exchange values, then GSEAPreanked with default settings was 
used [22] and the 50 hallmark genes from MSIgDB collection were 
utilized [23]. The enrichment score (ES) denotes which gene set is 
overrepresented at the top or bottom of the ranked gene list. 

Analysis of isoform switching 

HISAT2 (version) [24] was used to quantify the transcript-level 

expression of the UCSC hg38 reference. The mapped transcripts were 
assembled using Stringtie [24] and used for downstream analysis. 
Alternative splicing and isoform changes in normal to tumor progression 
were examined using IsoformSwitchAnalyzeR (version 1.8.0) [25] at 
default setting and per the recommended procedures in the manual. To 
assess the protein-coding potential of transcripts, CPC2 (http://cpc2.cbi. 
pku.edu.cn/batch.php) (web version 2.0) was used. Protein domains 
were predicted using HMMER (https://www.ebi.ac.uk/Tools/h 
mmer/search/hmmscan) (web-version 2.41.1), and PFAM was used as 
a profile database. Signal peptides were predicted using SignalP-5.0 
(http://www.cbs.dtu.dk/services/SignalP) (web-version 5.0) with 
eukaryote and short-output options. 

Network-based functional analysis of genes 

The significant candidate genes were identified using the STRING 
database [26]. A combined score of ≥ 0.4 was used as the cut off for a 
significant interaction. We developed a network of isoform-switched 
genes and PPIs. To visualize the protein interaction network and 
analyze hub proteins, the CytoHubba application [27] in Cytoscape 
(v.3.7.2) [28] was utilized to implement seven calculation methods: 
degree, bottleneck, closeness, betweenness, eccentricity, EPC, and MCC. 

Results 

Immunological subgrouping of MECs 

We initially profiled the tumor microenvironment in 20 patients with 
MEC from Yonsei Head and Neck Cancer Center (Table 1) using ssGSEA 
with respect to 24 immune and stromal cell types (Fig. 1A) (see Mate
rials and methods for analysis procedures and Fig. S1 for overall work
flow). Hierarchical clustering of the 20 MECs with the inferred cell 
abundance revealed two subgroups: eight tumors with high immune cell 
infiltration (referred to as immune-hot) and 12 with low infiltration 
(immune-cold). The infiltration patterns were concordant among most 
immune cell types, including myeloid progenitor cells, NK/T lineage 
cells, and stromal cells, with only a slight variation in B and mast cells. In 
addition, we confirmed that these clusters were consistently reproduced 
in an independent analysis with a different measurement algorithm 
(ESTIMATE [18], see Materials and methods), showing clear immuno
logical discrepancies between the two subgroups (Fig. 1A and Table S1) 
(Wilcoxon rank-sum test, P = 4.5 × 10− 4 for immune score and P = 6.0 
× 10− 4 for stromal score, see Materials and methods). These results 
represent immunological heterogeneity and the existence of subgroups 
of MECs. 

Further analyses confirmed distinct immune activities between the 
subgroups. The expression levels of CD8A and CD8B were significantly 
higher in the immune-hot MECs (Fig. 1B, Wilcoxon rank-sum test P =
1.1 × 10− 3 for CD8A and P = 3.0 × 10− 3 for CD8B) than in the immune- 
cold MECs, demonstrating distinct activities of cytotoxic T-cells. Simi
larly, scores for TIS (i.e. the average value of central memory, effector 
memory CD4+ and CD8+ T cells, and Th1, Th2, Th17, and Treg cells), 
and overall IIS [19] were high in immune-hot MECs (Wilcoxon rank-sum 
test P = 3.2 × 10− 5 for TIS and P = 6.4 × 10− 5 for IIS). Moreover, we 
noted elevation in the CYT score (P = 4.1 × 10− 3) [20] and IFN-γ score 
(P = 3.0 × 10− 4) [29] (see Materials and methods) for the immune-hot 
group (Fig. 1C). After observing high levels of immune infiltration and 
immunity in the immune-hot group, we further characterized the 
immunophenotypes of the two MEC subgroups, focusing on the corre
lation between immune-cell infiltration and cytotoxic functions. IFN-γ, 
one of the final products of antitumor T-cell activity, was strongly 
positively correlated with the TIS (Pearson correlation coefficient r =
0.76, P = 1.0 × 10− 4) and overall IIS (r = 0.84, P = 3.1 × 10− 6; Fig. S2B). 
Together, these results suggested that immune cell infiltration and ac
tivity level-based MEC stratification exhibited two robust immunophe
notypic subgroups. 
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Fig. 1. Comprehensive immune landscape and immune modulator illustration representing immune subtypes of MEC. A. Single-sample geneset enrichment analysis 
(ssGSEA) of 20 patients with MEC identified two immunophenotypically distinctive subgroups based on different immune and stromal cell-infiltration levels. Top bar 
plot represents the number of gene mutations in each sample. B. Comparison of CD8A and CD8B expression between the immune-hot and -cold MEC. C. Comparison 
of the TIS, IIS, INFG, CYT, and APM scores between the immune-hot and -cold MEC. Statistics in A–C: Wilcoxon test. All P-values for significance < 0.05. 
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Subgroup-associated immunophenotypic characteristics 

We then investigated the phenotypic characteristics that confer 
immunological differences between the immune-hot and -cold sub
groups. We initially noted that the TMB and neoantigen burden did not 
differ between the subgroups (Wilcoxon rank-sum test, P = 5.7 × 10− 1 

and P = 6.8 × 10− 1 for immune-hot and -cold subgroups, respectively). 
The frequency and pattern of known MEC prognosis associated marker 
[30], CRTC1-MAML2 fusion, was not significantly different between 
immune subgroups (6/8 and 6/12 in immune-hot and -cold, respec
tively, Fisher’s exact test, P = 3.7 × 10− 1), and, no potential immuno
genic neoantigens were predicted by the CRTC1-MAML2 fusion event 
(see Supplementary Materials and methods). The schematic diagram of 
fusion gene structure is illustrated Fig. S3. Based on these results, we 
presumed that the immunological differences between subgroups 
resulted from the machinery or regulatory mechanisms in the immunity 
cycle, rather than genome-level aberrations. 

Next, to profile the activities of subgroup-associated immune-regu
latory mechanisms, expression levels of 78 immunomodulator (IM) 
genes [9] were used to infer the status of seven immune regulatory 
categories: antigen presentation, cell adhesion, immune checkpoint re
ceptor, ligand, co-inhibitor, co-stimulator, and others (Fig. 2). We found 
that most of the IM genes and the categories, particularly cell adhesion 
(SELP, ITGB2, and ICAM1), antigen presentation (HLA Class I/II), 
co-inhibitor (PD-L1, PD-L2, BTN3A1, and BTN3A2), co-stimulator 
(CD80 and CD28), and ligand (CXCL9, CXCL10, IL2, IL10, OX40L, 
CD40LG, and IFNG), were consistently elevated in the immune-high 
MECs (all, P < 5.0 × 10− 2), which implied that the immunologic dif
ferences may have risen at the early stages of the immunity cycle, such 
as the antigen-presenting machinery (APM). Of note, level of the APM 
[29] was significantly low in the immune-cold subgroup (P = 7.3 ×
10− 3) compared to that in the immune-hot subgroup (Fig. S2A), and was 
positively correlated with the TIS (r = 0.56, P = 9.5 × 10− 3) and IIS (r =
0.67, P = 1.1 × 10− 3) (Fig. S2C). These results indicate that the higher 
cytolytic potential in the immune-hot MECs could be a result of the 
higher level of APM expression with a cytolytic feed-forward loop along 
with an increased amount of immune cell infiltration, thereby leading to 
elevated IFN-γ levels and anti-cancer immune activity. 

Transcriptomic landscape and hub genes of the immune subgroups 

To illustrate the biological properties of immune-hot and immune- 
cold MECs, we conducted a functional analysis in the biological con
texts based on gene expression profiles. We identified 1518 DEGs be
tween the two subgroups, 1076 of which were upregulated in the 
immune-hot and 442 in the immune-cold MECs (see Materials and 
methods). Gene ontology (GO)-based enrichment analysis (see Materials 
and methods) uncovered a global overrepresentation of innate and 
adaptive immune-related terms in the immune-hot subgroup, including 
T-cell activation, regulation of leukocyte activation, and regulation of 
lymphocyte activation (all, adjusted P < 1.0 × 10− 2) (Fig. S4A, top). 
Likewise, cancer hallmark-based GSE analysis (see Materials and 
methods) revealed enrichment of inflammatory response and interferon- 
gamma response in the immune-hot MECs, confirming increased anti
tumor immune activity (Fig. S4B). For the immune-cold MECs, ion 
transport-related terms, epidermis development, cornification, and 
chloride transport from GO analysis (all, adjusted P < 1.0 × 10− 2) 
(Fig. S4A, bottom), and metabolism-related cancer hallmark, such as 
fatty acid metabolism and adipogenesis, were enriched (Fig. S4C). 

Next, to improve understanding of factors that are shaping hetero
geneity of immune state in MEC immune subgroups, we sought to assess 
tumor-intrinsic traits of them by comparing with matched adjacent 
normal tissues. First, we identified 893 DEGs with tumor-specific 
expression (see Materials and methods). Of these, 467 DEGs were 
over- or under-expressed from immune-hot MECs tumor and 326 from 
immune-cold MECs (full list available in Tables S2–S5). As the top- 

ranked upregulated genes observed only in immune-hot MEC, 
CXCL13, which is a B cell chemoattractant and an important factor in 
TLS formation and initiation of secondary lymphoid organ development 
[31] (adjusted P = 1.55 × 10− 10 and log2 fold change 5.89) and DUOX2, 
responsible for the innate immune response [32] (adjusted P = 2.74 ×
10− 9 and log2 fold change 5.94), were observed, whereas MUC6 (mucin 
6) was top ranked in immune-cold MEC (adjusted P = 1.34 × 10− 6 and 
log2 fold change 5.47). POSTN1 (periostin), which affects tumor 
microenvironment remodeling during tumor progression, was one of the 
top-ranking genes overexpressed in both immune subgroups (log2 fold 
change > 5). Then, also, to integrate biological impact of isoform-level 
changes in forming polar tumor microenvironment, we measured the 
isoform switches as mentioned in Vitting-Seerup and Sandelin [25] and 
we identified 173 and 85 genes that underwent isoform switching in 
tumorigenesis in the immune-hot and -cold MECs, respectively. Among 
the 640 genes in immune-hot MECs, we identified T-cell regulatory 
genes (ADA, IL4R, and NFKBIZ) and lipid metabolism regulatory genes 
(MLXIPL, LEP, and FASN). From 411 genes from immune-cold MECs, we 
observed collagen and bone forming related genes (MMP13, COL10A1, 
and ITGB6) (see Materials and methods; full list available in Tables S6 
and S7). These gene- and isoform-level intrinsic features provide a broad 
understanding of the distinctive intrinsic features that reflect the het
erogeneous immunophenotypic state of each immune MEC subgroup. 

To better study the functional significance of subgroup-specific genes 
at the system level, we constructed Protein-protein interaction (PPI) 
network by the union of DEGs and significant isoform-switching genes 
(Table S8), which formed 610 nodes and 1429 edges, and 403 nodes and 
896 edges for immune-hot and -cold subgroups, respectively (Table S9). 
We then selected hub genes, important nodes with several interaction 
partners, with seven different topological analysis algorithms provided 
by cytoHubba [27], which appeared more than twice in the union of all 
top 20 genes from each algorithm, resulting in 35 genes (15 upregulated 
and 20 downregulated) and 31 genes (2 upregulated and 29 down
regulated; Table S10) for immune-hot and -cold subgroups, respectively, 
and then searched for their functionality. 

In the immune-hot MECs, the genes that are related to chemokine 
regulation and ECM (POSTN, COL11A1, MMP13, LUM, VCAN, and BGN) 
and lipid metabolism regulation (SCD, LPL, MLXIPL, PCK1, and DGAT2) 
were selected as hub genes (Fig. 3A). Overexpression of the ECM-related 
genes and lipid metabolism-related genes in cancers is associated with 
cancer progression, immune suppression, and tumor aggressiveness [33, 
34]. Here, as expected, ECM-related genes were over-expressed in the 
immune-hot MECs; however, lipid metabolic-regulator genes were 
under-expressed in the immune-hot MECs, and this particular feature, 
downregulated lipid metabolism, was also captured in above GSE 
analysis. Based on the aforementioned findings and inverse correlation 
between signature scores of fatty acid metabolism and adipogenesis 
obtained from cancer hallmark genesets with cytotoxic activity 
(Spearman correlation coefficient r = − 0.49, P = 3.1 × 10− 2 and r =
− 0.55, P = 1.4 × 10− 2, respectively; Fig. 3B), we surmised that 
under-expressed lipid metabolic regulator genes in immune-hot MEC 
samples could be novel molecular characteristics and may be linked to 
agonistic anti-tumor immune activity in this MECs, as their over
expression is often related to a decrease in immune activity [34,35]. In 
the immune-cold MEC samples, all selected genes, except POSTN and 
RUNX2, were downregulated and are known to function as chemokines 
and their receptors (CXCR1, CXCR2, CCL2, CCR3, and CCR10) and in 
leukocyte migration and adhesion (ELANE, LEP, and SELL) (Fig. 3C). 

Additionally, POSTN and RUNX2 were recurrently overexpressed in 
tumor samples from both MEC immune subgroups. POSTN participates 
in ECM structure formation and organization [36,37), and RUNX2 is a 
key transcription factor for osteoblast differentiation [38]. At this point, 
we do not know their exact roles in MECs; however, based on our ob
servations and previous studies, we conjecture that they could play a 
critical role in MEC ECM formation. In this analysis, we identified 
unique and common candidate molecular characteristics that were 
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Fig. 2. Comparison of immunomodulator genes between the two immune MEC subgroups. Comparison of immune modulatory regulator genes between the immune-hot 
and -cold MEC. Statistics: Wilcoxon test. P-values for significance < 0.05. 
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Fig. 3. . PPI network and Hubgene analysis. A. Hubgenes were selected from the DEGs and IS genes from immune-hot MEC tumor intrinsic analysis. Genes were 
grouped into functionally similar GO terms. The size of GO term indicates the number of genes matched to the term, with the greater number of gene being larger. 
Colors of genes represent the following: Red: DE up; Violet: IS up; Blue: DE down; Sky blue: IS down. B. Correlation between GSEA identified significantly enriched 
‘Hallmark fatty acid metabolism’ and ‘Hallmark adipogenesis’ with CTY score. C. Immune-cold MEC tumor intrinsic analysis. Genes were grouped into functionally 
similar GO terms. The size of GO term indicates the number of genes matched to the term, with the greater number of genes being larger. Colors of genes represent: 
Red: DE up; Violet: IS up; Blue: DE down; Sky blue: IS down. Statistics in A and C: GO term analysis. All q-values for significance < 0.05 and significant fold change 
(FDR < 0.01). R values represent the Pearson correlation coefficients. 
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predicted to play a vital role in immune regulation and intrinsic tumor 
characteristics of two immunophenotypically distinct MECs. Further 
studies are warranted to better understand their role in MECs and their 
potential use as targets for novel classification and therapeutic 
implications. 

Molecular features associated with immuno-oncology therapeutics 

Based on the subgrouping and immunological analyses, we explored 
potential subgroup-specific molecular features that can be employed in 
the application of current immunotherapy to MECs. First, we examined 
the efficacy of immune checkpoint inhibitors (ICIs). The analysis of 
mRNA expression identified significant elevation of PD-1 and PD-L1 
levels in the immune-hot MECs (P = 9.6 × 10− 3 and P = 3.1 × 10− 2) 
(Fig. 4A). In addition, co-inhibitor genes, including SLAMF7 (P = 1.0 ×
10− 2), BTN3A1 (P = 1.0 × 10− 4), and BTN3A2 (P = 9.0 × 10− 3), were 
highly expressed in the immune-hot subgroup. Extended analysis of a 
collection of immuno-oncological therapy biomarkers [39] with the 
immune-hot subgroup-specific DEGs identified elevated levels of addi
tional immune checkpoint molecules (TIGIT, 4-IBB, TIM-3, PD-L2, and 
CTLA-4), T-cell targeted immunomodulators (ICOS, IL10, and OX40), 
adaptive immune systems (MICB), and cell adhesion molecules (ICAM1) 
in the immune-hot MECs (Figs. 4B and S5A). These results suggest that 
at least a subgroup of immune-hot MECs underwent T-cell exhaustion by 
checkpoint molecules and could be sensitive to ICIs. In contrast, in the 
immune-cold MECs, carbonic anhydrase IX (CA9), a surrogate marker of 
hypoxia-related response [40], and the Wnt signaling signal trans
duction regulators Dickkopf-1 (DKK1), which functions to confer tumor 
growth and metastasis [41], Ring Finger Protein 43 (RNF43), cytokine 
signaling regulator RANK (TNFRSF11A), and cell tight 
junction-associated claudin 3 (CLDN3) were highly activated (Figs. 4B 
and S5B). This suggests that different or combined therapeutic strategies 
are needed as the subgroups based on immune activity show distinct 
immunosuppressive TME characteristics. 

Discussion 

In recent years, remarkable success of immunotherapy in cancer 
treatment has triggered tumor immune microenvironment research in 
other cancer type [29]. With such efforts, understanding of how tumors 
interact with their surrounding environment has been broadened and 
utilized in prognosis assessment, treatment planning, and clinical 
outcome predictions. However, such efforts have been neglected with 
regard to MECs. Here, we made the first attempt to discover the mo
lecular features that could be used in precision medicine and potential 
treatment biomarkers of MEC by landscaping its tumor immune 
microenvironment and analyzing the intrinsic characteristics of its 
immunophenotypic subgroups. 

In this study, we demonstrated two immunophenotypically hetero
geneous MECs based on the estimated immune and stromal cell- 
infiltration abundance levels in tumor microenvironment. For 
immune-hot MECs, elevated immune activity (TIS and IIS score), 
expression level of the APM score, chemoattractants required for traf
ficking of T cells to tumors (CXCR9 and CXCR10), cytokines (TNFSF9, 
IL2, and INFG), and co-stimulators (CD80 and CD28) were observed. 
Concomitantly, increased expression levels of immune co-inhibitors, 
such as PD-L1, PD-L2, BTN3A1, and BTN3A2, and immune checkpoint 
genes (ICOS, OX40, TIM-3, and TIGIT) were observed as well. In the 
context of the cancer-immune cycle, active tumor-antigen presenting 
has led to enhanced immune-cell trafficking and T-cell infiltration, 
resulting in successful anti-tumor immunity, and such dynamic pro- 
immune TMEs were captured in this group. In contrast, immune-cold 
MEC was impoverished in immune activation signatures and enriched 
with genes that are associated with ECM signatures, such as epidermis 
development, cornification, skin development, and epidermal cell dif
ferentiation. Based on these findings, along with downregulated APM 

expression, we could infer that ineffective antigen-presenting mecha
nisms and over-expressed physical barriers prevent immune cell infil
tration and promote immune evasion [33]. Additionally, based on the 
distinct tumor immune microenvironment profiles observed in the two 
MEC subgroups, we believe PD-1/PD-L1 blocking immune checkpoint 
molecules could render therapeutic benefits to immune-hot MEC pa
tients, and that other potential immuno-oncological therapy targets 
could also be utilized in treating immune-hot and -cold MEC. We hope 
our findings will aid in future immuno-oncologic therapeutic treatments 
for immune-hot and -cold MECs and provide wider therapeutic treat
ment options for MEC patients. 

As tumor cells require more energy than normal cells and are the 
elementary characteristics of every transforming cell, lipid accumula
tion serves as an energy source and provides cell membrane structural 
integrity [42]. Additionally, high activation of the lipid metabolic state 
in cancer is characterized by immune suppressive activity in the TME via 
enhancement of myeloid-derived suppressor cell activity and suppres
sion of dendritic cells and CD1D [34,35,43]. By conducting a multi-step 
transcriptomic analysis, we discovered the intrinsic molecular charac
teristics of the two MEC immune subgroups. It delineated that in 
immune-hot MEC, lipid metabolic regulator genes, such as MLXIPL (also 
known as ChREBP), a key regulator of fatty acid synthesis and lipid 
metabolism, fatty acid synthase (FASN) and stearoyl-CoA desaturase 
(SCD), were significantly downregulated. As they are known to dysre
gulate the TME at various levels and promote cancer growth levels [44], 
but based on our results, we believe that such findings may have 
contributed to forming elevated immune activity in immune-hot MEC, 
and further investigation is needed to ascertain the role of dysregulated 
lipid metabolism in immune-elevated MEC. 

The CRTC1-MAML2 fusion has been associated to favorable prog
nosis of MEC [45] and increased tumor-infiltrating immune activity also 
results in a favorable prognosis. Therefore, we initially anticipated that 
the CRTC1-MAML2 fusion would be more significant in immune-hot 
MECs than in -cold MECs; however, in our study result, no significant 
association was shown between the subgroups (Fisher’s exact test, P =
0.37). Based on this result, we must carefully consider a few reasons for 
this. First, although a higher proportion of fusion-positive patients was 
present in the immune-hot MEC subgroup (6/8 [75%] vs. 6/12 [50%]), 
our study sample size was not large enough to show a statistically sig
nificant difference between the two groups. Second, in this study, we 
performed CRTC1-MAML2 neoantigen analysis, but CRTC1-MAML2 
fusion did not produce peptides with immunogenicity. This suggests that 
the CRTC1-MAML2 fusion may not directly related to the immunogenic 
role or the immunophenotype of MEC. Additionally, gender has been a 
played significant role in MEC, with a female and male ratio of 2:1, and 
with a better prognosis (1). Therefore, we checked whether the 
gender-based immunophenotypic feature differences can be observed in 
our study samples. We performed inter and intra subgroup gender 
comparison statistical test to see whether there is significant difference 
between them (data not shown). However, gender was not significant 
indicator as well. Thus, although we cannot conclude the immunogenic 
role of CRTC1-MAML2 and gender in MEC at this point, we might be able 
to do so with a larger cohort. 

In this study, we discovered common molecular features that were 
overexpressed immune-hot and -cold subgroups compared to those in 
normal MEC immune subgroup samples, namely, POSTN and RUNX2. 
These are known to be overexpressed in bone development, maturation, 
and remodeling; epithelial-mesenchymal transition (EMT); ECM struc
turing and remodeling; and inflammatory processes. Their role as key 
regulators in such biological processes in other tumors has been well 
documented [46]. We speculate that the roles of POSTN and RUNX2 in 
MEC are similar to those in previously studied tumors. However, further 
research is required to comprehensively understand their functional role 
and potential crosstalk in relation to the tumor immune microenviron
ment of MEC. It is worth mentioning that attempts have been made to 
target POSTN for new therapeutic options in other cancers, and we hope 
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Fig. 4. . Comparison of PD-1, PD-L1, and immuno-oncological (IO) target gene expression difference between the two immune MEC subgroups. A. Comparison of PD-1 and 
PD-L1 score between the immune-hot and -cold MEC subgroups. B. Heatmap showing expression of immune-oncological therapeutic target genes between the 
immune-hot and -cold MEC subgroups. Upper part shows target genes that are differentially upregulated in the immune-hot MEC, and lower part shows target genes 
that are differentially upregulated in the immune-cold MEC. Statistics in A: Wilcoxon test. All P-values for significance < 0.05. 
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that the therapeutic value of POSTN in MEC will also be tested in the 
future. 

Here, we aimed to demonstrate the heterogeneity of the tumor im
mune microenvironment of MEC and the intrinsic characteristics of each 
MEC subgroup and provide potential immunotherapeutic targets. 
Significantly downregulated lipid metabolic regulators and immune- 
related genes were among the most distinguishing characteristics of 
the immune-hot MEC and -cold MEC. We discovered potential immu
notherapeutic targets that could be used in immune-inflamed MEC. This 
study has several limitations. Findings analyzed in a relatively small 
sample in this study will need to be validated in an independent cohort. 
And we were not able to perform prognostic analysis with our study 
samples due to limited sample size and short follow up period. Although 
this study suggests promising immune-oncology targets for each 
immune-based subgroup, this study has limitation in that it cannot 
derive meaningful results from prognostic analysis due to insufficient 
sample size and follow-up period. Thus, in future studies, a larger cohort 
size and longer follow-up period would provide us with more compre
hensive knowledge and information on the role of our findings in MEC. 
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