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Deep learning diagnostics 
for bladder tumor identification 
and grade prediction using RGB 
method
Jeong Woo Yoo1, Kyo Chul Koo1, Byung Ha Chung1, Sang Yeop Baek2, Su Jin Lee2, 
Kyu Hong Park2 & Kwang Suk Lee1*

We evaluate the diagnostic performance of deep learning artificial intelligence (AI) for bladder cancer, 
which used white-light images (WLIs) and narrow-band images, and tumor grade prediction of AI 
based on tumor color using the red/green/blue (RGB) method. This retrospective study analyzed 
10,991 cystoscopic images of suspicious bladder tumors using a mask region-based convolutional 
neural network with a ResNeXt-101-32 × 8d-FPN backbone. The diagnostic performance of AI was 
evaluated by calculating sensitivity, specificity, and diagnostic accuracy, and its ability to detect 
cancers was investigated using the dice score coefficient (DSC). Using the support vector machine 
model, we analyzed differences in tumor colors according to tumor grade using the RGB method. The 
sensitivity, specificity, diagnostic accuracy and DSC of AI were 95.0%, 93.7%, 94.1% and 74.7%. In 
WLIs, there were differences in red and blue values according to tumor grade (p < 0.001). According to 
the average RGB value, the performance was ≥ 98% for the diagnosis of benign vs. low-and high-grade 
tumors using WLIs and > 90% for the diagnosis of chronic non-specific inflammation vs. carcinoma 
in situ using WLIs. The diagnostic performance of the AI-assisted diagnosis was of high quality, and the 
AI could distinguish the tumor grade based on tumor color.

Bladder tumor diagnosis and operation was usually performed using cystoscope. Among cystoscopic findings 
for bladder tumor, the prediction of benign, malignancy was depended on the experience of the urologist1. At 
transurethral resection of bladder tumor (TURBT), an experienced urologist estimated presence of malignancy 
lesion and tumor grade, and decided whether to perform superficial resection or additional bladder muscle 
biopsy. However, it is difficult to differentiate between chronic non-specific inflammation (CNI) and carcinoma 
in situ (CIS) and between low and high grade among urothelial carcinomas, and it is difficult to distinguish even 
when mass is too small. The national comprehensive cancer network guideline recommended consideration of 
the second look TURBT if the necessary muscle biopsy is not performed or incomplete TURBT2. The existing 
white light image (WLI) cystoscope has limitations in effective identifying the characteristics for small bladder 
tumors, flat tumors such as CIS. To increase diagnostic accuracy, narrow band image (NBI) cystoscope and 
blue light cystoscope have been developed3–5. Based on accurate diagnosis performed through these enhanced 
cystoscopes, high-quality TURBT without misdiagnosis, under-staging, or incomplete resection is the most 
important factor in non-muscle invasive urothelial bladder cancer management6. However, still better diagnostic 
image modality was required for high-quality TURBT.

Tumor grade is an important factor in determining whether or not to perform a muscle biopsy. High grade 
bladder tumor and low grade bladder tumor are empirically classified according to the shape of the tumor 
(papillary vs. sessile). However, it is not always clearly differentiated according to the tumor shape, it is difficult 
to distinguish flat tumors, such as CIS, from benign inflammatory lesions such as CNI. For increasing repre-
sentativeness and overcoming the limitation of reliance on empirical distinguishing of tumor grades, artificial 
intelligence (AI) that used in various fields including the medical field was introduced in urological endoscope 
field. There are still few studies in the field of urology, especially bladder cancer diagnosis using AI. With the 
development of deep learning, image recognition by AI proved high accuracy in diagnosis7. AI-based image 
diagnosis is a potential modality to improve bladder cancer detection. For clinical application of AI in bladder 
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tumor diagnosis, it is necessary distinguishing between the tumor grades (high grade vs. low grade, CIS vs. CNI, 
etc.) as well as determining cancer and non-cancer, however there was no study have been reported.

AI is a model that predicts based on learned data, and authors considered shapes and color as learned data. 
Several studies using numerical data of color using red/green/blue (RGB) method8 have already been reported 
in other carcinomas9–11, and we also have reported the study using numerical color data for hypoechoic lesions 
of transrectal ultrasound12. Accordingly, the authors performed deep learning of AI by collecting WLI and NBI 
cystoscopic images of histopathologically confirmed benign and malignant lesions and confirmed the diagnos-
tic performance and ability to identify tumor contours. And making color data based on the tumor contours 
identified by AI, it was analyzed whether the tumor grades were able to distinguished according to the color of 
the tumor.

Results
Bladder cancer diagnostic performance of AI‑assisted diagnostic device.  The sensitivity of the 
AI-assisted diagnostic device was 95.0% (285/300 cases), the 95% confidence interval (CI) was 91.9–97.2, and 
the specificity was 93.7% (562/600 cases) and the 95% CI was 91.9–97.2. The diagnostic accuracy of the AI-
assisted diagnostic device was 94.1% (847/900 cases), and the 95% CI was 92.4–95.6. The area under the receiver 
characteristic curve was 0.974 and cut-off value was 0.384 (Fig. 1). The accuracy of lesion location recognition 
of the AI-assisted diagnostic device was confirmed to be 74.7% for dice score coefficient (DSC) and 74.6–74.9 
for 95% CI.

Baseline RGB characteristics.  We conducted the study only with anonymized cystoscopic images and 
histopathological pathology, so we could not identify other patient characteristics, including the patient’s sex or 
laboratory values. The characteristics of RGB values according to benign tumor or tumor grade are presented 
in Table 1. In WLI, there were differences in red and blue values according to tumor grade (p < 0.001). In RGB 
values measured NBI or WLI by AI, there were no difference between benign vs. low grade and high grade, 
CNI vs. CIS. But between benign and low grade vs. high grade, there was a difference in red (p < 0.001) and blue 
(p < 0.001) values in WLI (Table 2).

Diagnostic performance of tumor grade by color measured by AI.  The optimal cut-off value and 
diagnostic performance by support vector machine (SVM) was presented Table 3. Overall, the diagnostic per-
formance was better in WLI than in NBI. In WLI, at diagnosis of benign vs. low grade and high grade, there 
were excellent results of 98% or more in both sensitivity and specificity and diagnostic accuracy. In distinguish-
ing between CNI and CIS, both sensitivity, specificity, and diagnostic accuracy were more than 90% in WLI. 
In benign and low grade vs. high grade, although the diagnostic performance was relatively low, the separating 
hyperplane using SVM was classified two groups in WLI (Fig. 2).

Discussion
We confirmed that the newly developed AI-assisted diagnostic device has good diagnostic performance and abil-
ity to identify tumor contours, and tumor grade was distinguished by colors inside tumor contour that recognized 
by AI. The AUC for benign and low-grade tumors vs. high-grade tumors was relatively low, however, it was distin-
guished by separating hyperplane using SVM in WLI. Our results help follow-up studies of cystoscopy using AI.

Cystoscopy is the gold standard for bladder cancer diagnosis. Imaging modalities such as abdominal pelvic 
computed tomography and bladder magnetic resonance imaging are also used to diagnose bladder cancer. These 
modalities are useful for determining whether bladder cancer has metastasized or invaded the muscle layer or 

Figure 1.   The AUC of AI-assisted diagnostic device. AI artificial intelligence, AUC​ area under the receiver 
operating curve.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17699  | https://doi.org/10.1038/s41598-022-22797-7

www.nature.com/scientificreports/

Table 1.   Baseline RGB characteristics according to tumor grade. Data are expressed as number (%), 
mean ± standard deviation. CIS carcinoma in situ, CNI chronic non-specific inflammation, NBI narrow-band 
image, RGB red/green/blue, WLI white-light image. a Benign defined cystitis cystica or cystitis grandularis 
except CNI.

Benigna CNI CIS Low-grade High-grade p

NBI

No 83 (4.6) 361 (20.1) 158 (8.8) 547 (30.4) 651 (36.2)

Red 159.32 ± 25.32 157.27 ± 24.92 157.76 ± 23.48 160.75 ± 24.91 157.51 ± 25.87 0.168

Green 110.20 ± 24.91 115.05 ± 27.03 112.63 ± 21.59 115.59 ± 24.82 114.08 ± 23.16 0.294

Blue 84.63 ± 19.05 88.50 ± 20.26 86.50 ± 16.15 89.18 ± 19.33 87.89 ± 18.61 0.208

WLI

No 198 (5.3) 729 (19.3) 256 (6.8) 1063 (28.2) 1522 (40.4)

Red 180.35 ± 25.35 179.04 ± 22.81 180.85 ± 20.28 176.48 ± 24.39 184.62 ± 22.55 < 0.001

Green 129.38 ± 23.28 129.85 ± 19.29 131.73 ± 16.68 131.69 ± 22.34 130.10 ± 19.96 0.176

Blue 89.68 ± 32.86 94.45 ± 27.34 96.64 ± 25.52 90.94 ± 31.29 96.91 ± 28.62 < 0.001

Table 2.   Baseline RGB characteristics in the NBI and WLI groups. Data are expressed as number (%), 
mean ± standard deviation. CIS carcinoma in situ, CNI chronic non-specific inflammation, NBI narrow-band 
image, RGB red/green/blue, WLI white-light image. a Benign defined cystitis cystica or cystitis grandularis 
except CNI.

Benigna
Low-and high-
grade p

Benigna, low-
grade High-grade p CNI CIS p

NBI

No 83 (6.5) 1198 (93.5) 630 (49.2) 651 (50.8) 361 (69.6) 158 (30.4)

Red 159.32 ± 25.32 158.99 ± 25.48 0.909 160.56 ± 24.95 157.51 ± 25.87 0.032 157.27 ± 24.92 157.75 ± 23.48 0.835

Green 110.20 ± 24.91 114.77 ± 23.93 0.094 114.88 ± 24.88 114.08 ± 23.16 0.550 115.05 ± 27.03 112.63 ± 21.59 0.278

Blue 84.63 ± 19.05 88.48 ± 18.94 0.074 88.58 ± 19.34 87.89 ± 18.61 0.513 88.50 ± 20.26 86.50 ± 16.15 0.231

WLI

No 198 (7.1) 2585 (92.9) 1261 (45.3) 1522 (54.7) 729 (74.0) 256 (26.0)

Red 180.35 ± 25.35 181.27 ± 23.66 0.598 177.09 ± 24.57 184.62 ± 22.55 < 0.001 179.04 ± 22.81 180.85 ± 20.28 0.262

Green 129.38 ± 23.28 130.75 ± 20.98 0.381 131.32 ± 22.50 130.10 ± 19.96 0.127 129.85 ± 19.29 131.73 ± 16.68 0.165

Blue 89.68 ± 32.86 94.45 ± 29.89 0.031 90.74 ± 31.53 96.91 ± 28.62 < 0.001 94.45 ± 27.34 96.64 ± 25.52 0.263

Table 3.   Diagnostic performance and differentiation of tumor grade according to tumor color by SVM. Data 
are presented as median (interquartile range). AUC​ area under the receiver operating characteristic curve, CI 
confidence interval, CIS carcinoma in situ, CNI chronic non-specific inflammation, NBI narrow-band image, 
SVM support vector machine, WLI white-light image. a Benign defined cystitis cystica or cystitis grandularis 
except CNI.

Cut-off value AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

NBI

Benigna vs. low-and high-
grade 0.934 0.899 (0.863–0.931) 0.854 (0.834–0.874) 0.771 (0.681–0.861) 0.849 (0.829–0.868)

Benigna, low-grade vs. 
high-grade 0.507 0.583 (0.553–0.613) 0.644 (0.607–0.680) 0.478 (0.439–0.517) 0.562 (0.535–0.589)

CNI vs. CIS 0.298 0.890 (0.852–0.925) 0.873 (0.822–0.925) 0.834 (0.795–0.872) 0.846 (0.815–0.877)

WLI

Benigna vs. low-and high-
grade 0.930 0.992 (0.984–0.999) 0.993 (0.990–0.997) 0.980 (0.960–0.999) 0.992 (0.989–0.996)

Benigna, low-grade vs. 
high-grade 0.535 0.701 (0.682–0.720) 0.670 (0.647–0.694) 0.629 (0.602–0.656) 0.651 (0.634–0.669)

CNI vs. CIS 0.251 0.972 (0.958–0.983) 0.980 (0.964–0.997) 0.912 (0.892–0.933) 0.930 (0.914–0.946)
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beyond but have limitations in identifying small tumors in the early stages. Additionally, it is more challenging 
to diagnose bladder tumors if the bladder is empty. Several guidelines recommend the use of cystoscopy when 
bladder cancer is suspected. However, it is sometimes difficult to differentiate between benign and malignant 
bladder tumors, and the diagnosis of CIS is challenging. Bladder cancer is prone to recurrence and is charac-
terized by multiple lesions. The accurate identification of tumor margins and complete TURBT are crucial in 
preventing recurrence. However, although NBI cystoscopy and blue-light cystoscopy can overcome the limita-
tions of white-light cystoscopy, better diagnostic tools are needed. Our results demonstrated the potential of AI 
models for accurately diagnosing bladder cancer.

In the field of urology, prostate cancer is being extensively studied from diagnosis to treatment using AI13. 
However, in the field of cystoscopy using AI, to our knowledge, there are only six reports14–19. Chan et al. reported 
a review article on previous studies on bladder cancer diagnosis using AI7. This study reviewed 1 brief corre-
spondence, 1 presentation, and 4 research papers. The training dataset volumes for these reports were between 
1680 and 6658 images, and our AI model was trained 8244 images, more than in these previous reports. The com-
bined sensitivity was 89.7% (95% CI 87.5–91.4%) and the integration specificity was 96.1% (95% CI 89.0–98.7%), 
the diagnostic accuracy was 85.6–96.9%. Only one study was identified that evaluated the ability of AI to identify 
bladder image using DSC20. The DSC of this previous study was an average of 0.67, which was slightly lower than 
our result, but there was a difference in evaluating the ability to identify bladder stones and ureteral orifice in 
addition to tumors. The results of our AI-assisted diagnostic device are similar to or slightly superior to those 
of previous reports.

Our study is valuable and scalable as it is the first study to bladder lesions using RGB method. There were some 
previous studies using RGB method to distinguish pulmonary nodule21, esophageal lesions22, and skin lesions23. 
However, there were no studies using RGB method in the field of cystoscopy, and no studies in the field of urol-
ogy that machine-learned the average RGB inside AI-identified tumor contours so we could not comparable, but 
this also presented good results. We have reported a successful study by applying the RGB method in transrectal 
ultrasound12. The color of bladder mass is different from that of the normal bladder mucosa, we made numerical 
data that the color of bladder tumor through RGB method. In our previous study, RGB was calculated as the 
average of three points of hypoechoic lesion on transrectal ultrasound, but in this study, the average RGB value 
of the area inside the tumor contours recognized by AI was calculated. This improved the representativeness of 
the RGB values of tumor compared to our previous study.

Our results using RGB in WLI show superior performance in specificity than the results of conventional NBI, 
especially in distinguishing between CNI and CIS (0.912 [95% CI 0.892–0.933] vs. 0.768 [95% CI 0.730–0.802])24. 
NBI limited the optical spectrum used in cystoscope by Wlters which allow transmission of light at short wave-
lengths of 415 nm (blue) and 540 nm (green)24,25. This allows light to penetrate the bladder surface tissue and 
hemoglobin preferentially absorbs these wavelengths, increasing the visibility of capillaries and submucosal ves-
sels. According to a previous meta-analysis, NBI presented higher diagnostic accuracy than WLI in humans24. 
However, our results presented a higher AUC in WLI. It is presumed that this is because the limited short wave-
length of light limits the difference in intrinsic color according to the grade of the tumor.

We confirmed the effectiveness of the deep learned AI-assisted diagnostic device and at the same time con-
firmed that the tumor grade was able to classify according to the color of the tumor. Our study is one of the 
few studies that confirmed the usefulness of AI in cystoscopic image diagnosis and is the first study to classify 
tumor grades through machine learning of average RGB inside tumor contour recognized by AI. We wonder 
if better results will be obtained if the deep learned AI additionally learns RGB data of tumor color. The results 
of these additional studies will be able to check whether the variables that AI learned included color data. Our 
study is valuable as a pilot study in this field, it had many limitations. First, our study reports that the diagnostic 
performance is good, but the number of initially trained images may not be sufficiency in the deep learning 
field. By training more numbers and diverse types of images, higher diagnostic performance and more similar 
tumor contours identification expected. The DSC for tumor identification is 0.75, and the average RGB value 

Figure 2.   The separating hyperplane of the two groups using SVM in white light image cystoscope. SVM 
support vector machine.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17699  | https://doi.org/10.1038/s41598-022-22797-7

www.nature.com/scientificreports/

was measured based on images with a higher concordance rate of tumor identification between the physician 
and AI, but the RGB value may still be different from the RGB value of the actual tumor. Again, if more images 
are trained, more accurate RGB values were obtained. Second, as our first experience to evaluate the color of the 
overall tumor, color normalization was not performed because the color space in rendered images would differ 
significantly from that in real images. Additional considerations for proper color normalization processing are 
required. Third, since only internal test was performed about diagnostic performance of AI, we need to confirm 
the results of our study with external validation. In addition, as the study was conducted on per-image-basis, 
the independence between data sets may have been lower than that if the study was conducted on a per-patient-
basis, and this may have affected the results. The multicenter prospective study we are planning will consider this 
issues. And our color data were divided according to tumor grade, the number of cases was insufficient in some 
types, including benign lesion images. Therefore, we focused on training rather than training and validation of 
existing data. Because of this, the possibility of overtraining cannot be ruled out. Additional validation and test is 
required and may require further training with larger number of color data. Fourth, the initially trained images 
were prepared by a urologist, it is consistent, but there is a possibility that the lesion may have been missed or 
underestimated or overestimated. Finally, differences according to urine turbidity and the distance between the 
target and the endoscope were not considered.

AI is widely used in various medical fields, and in the field of urology, it is applied from diagnosis to treatment 
for prostate cancer. However, research in the field of cystoscope is still insufficient. We developed an AI-assisted 
diagnostic device that distinguishes cancer and benign lesions by identifying bladder tumor contour through 
deep learning and confirmed that tumor grades are classified using SVM according to the color of the tumors 
obtained thereby. Our study is still in its infancy, but we hope that it will serve as the foundation for the develop-
ment of a real-time AI-assisted cystoscope in the future.

Methods
Ethic approval.  This study was approved by the institutional ethics committee (Yonsei University Health 
System, Seoul, Korea; approval number: 3-2021-0287) and all procedures were conducted in accordance with the 
ethical standards of the 1964 Declaration of Helsinki and its later amendments. The informed consent require-
ment was waived by ethics committee because this study was based on retrospective, anonymous patient data 
and did not involve patient intervention or the use of human tissue samples.

Images collection and annotated data set.  We retrospectively collected data from 1010 consecutive 
patients who diagnosis bladder cancer by TURBT and 290 consecutive patients who diagnosis benign lesions 
by TURBT or diagnosis normal by cystoscopic exam between January 2017 and December 2020. Data were 
obtained from anonymized cystoscopic images and pathologic results. We collected 16,581 cystoscopic images of 
patients diagnosed with bladder cancer and 3957 cystoscopic images of patients diagnosed with benign lesions. 
All images were captured using flexible cystoscope (CYF-V2, Olympus Medical Systems Corporation, Tokyo, 
Japan). Among the acquired images, images of impacted stone in the bladder lesion, difficult to identify due to 
turbid urine or hematuria or out of focus, tumors except urothelial carcinoma or have no pathologic results were 
excluded. After screening, in order to secure more images of benign images, only images of clearly benign parts 
of cancer patients were additional extracted separately by experienced urologists. In the end, 905 patients with 
bladder cancer (6729 cancer images) and 405 patients with bladder cancer and without bladder cancer (4262 
benign images) were classified, and a total of 10,991 images were learned and tested by AI. One urologist with 
more than 10 years of experience in TURBT identified tumor margins and differentiated between benign from 
malignant lesions by histopathological analysis. Only one image of each lesion was included in the analysis.

AI‑assisted diagnostic device and deep learning.  We commissioned Infinyx Corporation to develop 
an AI-assisted diagnostic device (Robin-Cysto®, Infinyx, Daegu, South Korea) that automated analysis cancer 
and non-cancer through cystoscopic images. The images that we provided were divided into a deep learning 
set (10,091 images) and a test set (900 images, 300 benign images of 100 patients and 600 cancer images of 223 
patients). The 300 benign images of 100 patients without bladder cancer used in the test set were extracted from 
the 290 patients without bladder cancer data set and tested. Among the images of patients with cancers, a benign 
image was not included in test set. The deep learning set was divided into the training set for the predictive 
model (8244 images, 2742 benign images and 5502 cancer images) and the validation set (1847 images, 1220 
benign images and 627 cancer images) by Infinyx Corporation. The training, validation, and testing sets were 
classified on a per-image-basis.

The AI model consisted of a Mask RCNN with a ResNeXt-101-32 × 8d-FPN backbone. Feature maps were 
extracted from each layer using a feature pyramid network. For learning, image data was input into the AI model, 
and the AI model predicted the tumor contour. The AI model compared the real tumor area and the estimated 
tumor area using loss function, and the model weight was corrected using the extracted loss. With regard to loss 
functions, classification used log loss, bbox regression used smooth L1 loss, and mask learning used sigmoid 
cross-entropy loss for each pixel. Total loss was the sum of these three losses. The optimizer applied a momentum 
of 0.9 and a weight decay of 0.0001 to stochastic gradient descent, and the learning rate (LR) started at 0.001 with 
30,000 steps and ended at 0.0001 with 70,000 steps. The accuracy was calculated by inputting the dataset to the 
AI model and the modified model weights, and the above process was repeated, and the weighted model with 
the highest accuracy was saved. The final training was conducted with 90,000 steps, and the batch size per step 
was 6 (Figs. 3, 4). The image size ratio remained unchanged during training, and image height was randomly 
resized to 480, 640, 720, and 1080 pixels. The code was used Python language (version 3.9.9.; Python Software 
Foundation, Wilmington, DE), and the PyTorch library was used.
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Diagnostic performance of AI‑assisted diagnostic device.  The deep learned AI reads the digital 
imaging and communications in medicine format file of the cystoscopy images, and visualizes the contour of 
bladder tumor on the image with bladder tumor (Fig. 5). Sensitivity, specificity, and diagnostic accuracy were 
verified with test set (cancer images: 600, benign images: 300), and the tumor area recognized by AI and the 
tumor area read by physician in the same image were compared with the DSC. The DSC quantifies the overlap 
between two images of manually segmented lesion and AI recognized lesion26.

Data of tumor color.  Among the 8244 images in the training set, color data were collected for the 5568 
images in which the concordance rate of tumor identification by physician and AI were higher than DSC (cancer 
images: 4197, benign images: 1371). Using the embedded function of Robin-Cysto®, data of the color inside the 
tumor recognized by AI were obtained as the average RGB value from all pixels in the image8.

Study endpoint.  The end points were evaluation of diagnostic performance and tumor recognition ability 
through internal verification of the AI-assisted diagnostic device, and confirmation of difference in tumor grade 
according to the color inside the tumor contour identified by AI.

Statistical analysis.  The distinguishing ability of tumor grade using the RGB value was evaluated by 
confirming the optimal cut-off value of the prediction probability using the SVM model. SVM is a branch of 
machine learning for classification that learns the optimal "separation" between the characteristics of each group. 
This training algorithm finds a separating hyperplane with a maximum margin defined as the distance from each 
side to the nearest data point27. The optimal cut-off value was based on the Youden index (sensitivity + speci-
ficity − 1). In the case of three groups, the cut-off value was not able to confirmed because the probability of 
belonging to each group was calculated, so benign and cancer lesions were divided into two groups. Continuous 
variables are expressed as the mean ± standard deviation or median (interquartile range). Categorical variables 
are reported as number and frequency. Divided two groups were compared using the independent t-test for 

Figure 3.   A schematic process for building an AI deep learning model. AI artificial intelligence, bbox bounding 
box, Conv convolutional layer, DICOM digital imaging and communications in medicine, fc fully connected 
layer, Mask R-CNN mask region-based convolutional neural networks, ROI resion of interest, RPN region 
proposal network.

Figure 4.   A practical example of the Mask R-CNN algorithm of an AI deep learning model. AI artificial 
intelligence, bbox bounding box, Conv convolutional layer, Mask R-CNN mask region-based convolutional 
neural networks, ROI region of interest.
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continuous variables. The results of the ability to classify tumor grade according to RGB values were presented 
as area under the receiver operating characteristic curve, sensitivity, specificity, and diagnostic accuracy. Statisti-
cal analyzes were performed using R Statistical Package (version 4.1.1.; Institute for Statistics and Mathematics, 
Vienna, Austria). Statistical significance was set at p < 0.05.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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