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Introduction 	

Post-operative ileus (POI) is the transient cessation of co-
ordinated gastrointestinal (GI) motility after abdominal surgical 
intervention.1-3 It leads to various symptoms such as nausea, vomit-

ing, abdominal discomfort, and inability to pass stools or tolerate a 
solid diet. In addition to these symptoms, POI is associated with 
decreased quality of life, prolonged length of stay in a hospital, 
and increased socioeconomic costs and decreased patients’ satis-
faction with surgery.1-4 “Uncomplicated” or “normal” POI is an 
unavoidable process which generally resolves within 3 days, while 
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Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It 
decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and 
multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of 
corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well 
hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. 
Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts 
with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial 
barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such 
as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening 
affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal 
antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of 
short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and 
factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier 
dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted 
concurrently for efficient POI management. 
(J Neurogastroenterol Motil 2022;28:517-530)
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“prolonged” or “paralytic” post-operative ileus extends beyond the 
duration of 3 days.5-7 The mechanism of POI is suggested to be 
complex and multifactorial, and has been broadly categorized into 
neurogenic and inflammatory phase.8-10 The neurogenic phase is 
short and ends early after the surgery. The second is the inflamma-
tory phase, which starts 3-4 hours after surgery and persists much 
longer.1,10,11 Therefore, this review highlights the factors that induce 
inflammation and how it impairs gut physiology in the POI. It will 
provide an opportunity and direction for effective management and 
treatments options to ease the burden of POI. 

Neuroinflammation and Barrier Dysfunction 	

Neural pathways are complicated, and are influenced by the 
number of factors including intensity of the stimulus or stress.1,11,12 
Briefly, incision of the skin and laparotomy induce the activation 
of inhibitory spinal and sympathetic reflexes or the adrenergic 
inhibitory pathway.1,2,12 Furthermore, the handling of the bowel 
stimulates supra-spinal pathway to activate the hypothalamic–
pituitary–adrenal (HPA) axis.1,2,12 The sensory afferent neurons 
of this pathway then send signals to the central nervous system 
to release stress neuropeptides, such as substance P, calcitonin-

gene related peptide (CGRP), and corticotropin-releasing factor 
(CRF).11-14 Several studies reported activation of CRF neurons 
and CRF release in the brain due to the abdominal surgery.11,12,15,16 
The POI model of our study corroborate these findings, as CRF 
expression in the hypothalamus increased significantly compared 
to the control group.12 The release of CRF is considered to be a 
key molecule in neuroinflammation (Fig. 1).1,11,12,15-18 This leads to 
de novo synthesis of central proinflammatory cytokines such IL-
1β, IL-6, and TNF-α.19,20 CRF triggers stress pathways through 
receptors, CRF receptor type 1 (CRF1) and type 2.21,22 The central 
CRF is expressed predominantly in the paraventricular nucleus of 
the hypothalamus,23,24 and is involved in alteration of autonomic 
nervous system activity in the brain to secrete catecholamine to 
diminish gastric vagal efferent activity and inhibit GI motility.25,26 
Several studies reported a parallel between central CRF mediated 
autonomic response as well its ability to activate the HPA-stress 
-axis.27,28 Lenz et al,27 showed the independence of these 2 pathways 
in hypophysectomized rats. CRF release activates the HPA axis 
through pituitary CRF1 receptor that leads to secretion of adreno-
corticotropic hormone (ACTH).27,28 Similarly, the level of ACTH 
in POI model of our study was significantly increased compared 
to healthy controls.12 In addition, the higher level of ACTH was 
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Figure 1. Schematic illustration of 
stress–corticotropin-releasing factor 
(CRF) induced neuroinflammation and 
barrier disruption with focus on the 
activation of hypothalamus–pituitary–
adrenal (HPA) axis. HPA axis mediated 
production of cortisol alter gut micro-
biota, increase lipopolysaccharide (LPS), 
and impairs gut barrier via reorientation 
of tight junction proteins. Microbiota 
alteration also affects its metabolites, ie, 
short-chain fatty acids to modify epithe-
lial barrier integrity, exacerbate immune 
cells activation, and add to psychiatric 
morbidities. ACTH, adrenocorticotropic 
hormone; DAMPs, damage associated 
molecular pattern; TLR4, Toll-like 
receptors-4; PAR-2, protease activated 
receptor-2; EEC, enteroendocrine cells.
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directly linked to the inhibition of GI motility.12 ACTH further ac-
tivates the adrenal glands to release high levels of cortisol.27-31 There 
is an increasing evidence that shows the involvement of cortisol in 
dysbiosis and increase in gut permeability.28,31 Stress (non-infectious) 
induced cortisol increased endotoxemia such as lipopolysaccharides 
(LPS), and it corresponded LPS from the commensal flora.28,31,32 
Interestingly, stress alone could induce adequate LPS from the 
commensals to initiate the disruption of the intestinal barrier and 
increase in gut permeability.28,31,32 So a threshold level of CRF or 
cortisol is enough to initiate the disruption of the intestinal barrier 
and increase in permeability.33-36 It has been reported that corticoid 
receptors regulates the expression of tight junction proteins (TJPs) 
such as claudin-1 and occludin.37,38 Additionally, dysbiosis decreases 
bacterial metabolites, short chain fatty acids (SCFAs) such as bu-
tyrate, acetate, and propionate to alter gut barrier integrity.28,31,39-42 
Therefore, stress induced cortisol not only alters gut microbiota but 
also impairs barrier integrity via modifying TJPs (Fig. 1). Impaired 
gut barrier induces bacterial translocation resulting in activation of 
the local immune system and inflammation, thereby increasing the 
release of the cytokines.11,43,44 Several studies reported CRF medi-
ated increase in the expression of Toll-like receptor 4 (TLR4) on 
macrophages and high level of inflammatory cytokines production 
via stress induced LPS.43,44

Peripheral Corticotropin-releasing Factor, 
Immune Cell Activation, and Epithelial  
Barrier Dysfunction 	

Recent studies have shown that CRF ligands and receptors 
are not only expressed in the brain but also in peripheral organs 
including GI tract.31,45 Peripheral CRF (pCRF) is released from 
cells such as neuronal, enterochromaffin, and immune cells (mast 
cells) in the lamina propria, submucosa, and muscle layers.45-49 
CRF1 are expressed by neurons in both myenteric and submucosal 
plexuses of the enteric nervous system.50 Interestingly, both central 
and peripheral administration of CRF and its receptor antagonists 
results in similar gut transit alterations, though mechanisms and 
sites of action are distinct.51-53 Similarly, we also reported significant 
increase in GI transit when treated (subcutaneously) with higher 
doses of selective non-peptide CRF1 antagonist CP-154 526 
in a POI model compared to sham controls.12 Our finding was 
consistent with previous study that showed the CRF1 antagonist 
improve delayed gastric emptying induced by laparotomy plus cecal 
manipulation in mice.54 Peripheral treatment with human/rat CRF, 
an agonist for CRF receptor, modifies the delayed GI transit in our 

POI model.12 In addition, exogenous pCRF induced alterations of 
gastric transit was reversed by CRF receptor blockade by astressin (a 
non-selective CRF receptor antagonist).35 The data from our study 
strengthen the notion that CRF acts through pCRF pathways, and 
corroborated earlier findings that pCRF is a key player in stress 
induced gastric emptying and colonic transit.35,51-54 Lenz et al27 has 
shown that the peripherally injected CRF did not activate CRF 
receptors in the brain. This supports the fact that peripheral release 
of CRF ligand from afferent nerve terminals and other cells of GI 
tract is under the influence of autonomic pathways.55 Several studies 
reported close proximity of the afferent nerve terminals to the mast 
cells in the mesentery and mucosa of GI tract (Fig. 2).56-62 Periph-
eral CRF functions as a local effector, and it interacts with the CRF 
receptors present on mast cells.31,47,54,63-65 Peripheral CRF-receptor 
interactions activate mast cells to degranulate and release chemical 
mediators such as serine proteases (tryptase) and TNF-α to impair 
epithelial barrier integrity via modifying TJPs.33,63 However, epithe-
lial barrier disruption via TNF-α and proteases involves different 
mechanisms.63,66 TNF-α enhances epithelial permeability through 
increased myosin light-chain kinase (MLCK) expression, activation 
of nuclear factor kappa B (NF-κB) pathway, and reorientation and 
downregulation of TJPs of the gut.67 The modified TJPs increase 
gut permeability, luminal translocation, and immune activation that 
complements inflammatory cascades.

Mast Cell Protease-mediated Protease  
Activated Receptor-2 Activation and  
Barrier Disruption 	

Neuropeptides such as substance P and CGRP initiate pro-
teases mediated epithelial barrier disruption via protease-activated 
receptor-2 (PAR-2) signaling mechanisms.68-70 PARs are 7 trans-
membrane-spanning, G-protein-coupled receptors, activated by the 
cleavage of their N-terminal domain by proteases such as tryptase 
or trypsin.71 PAR-2 can be activated by both endogenous and lumi-
nal proteases and it is localized on both basolateral and apical sites 
of enterocytes and is involved in multiple functions including the 
maintenance of gut permeability (Fig. 2).68,72,73 Activation of either 
luminal or internal basolateral PAR-2 affects gut paracellular per-
meability by modulating the degree of cytoskeleton contraction.70-75 
We explored the role of PAR-2 in POI stress model, and there 
was an increase in PAR-2 expression in the POI groups compare 
to sham in the colon.10 The increase in PAR-2 expression cor-
related with enhanced initiation and activation of mast cells in the 
colon.10 Though there was marked increase in PAR-2 expression 
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in the colon, it failed to prove statistical significance, indicating that 
other mediators such as histamines, cytokines, and TNF-α operate 
along with PAR-2 during the genesis of POI.67 PAR-2 facilitates 
cytoskeleton contraction to trigger phosphorylation of myosin 
light chain catalyzed by the MLCK.68 Epithelial cell cytoskeletal 
contraction re-orient TJPs such as occludin, claudins, junctional 
adhesion molecule-1, and zonula occludens-1, and opening of the 
epithelial barrier junction. We also identified the changes in gut 
paracellular permeability through the expression of claudins, and 
there was decreased expression of claudin-1 but increased expres-
sion of claudin-2 in the POI groups compared to sham.10 Claudins 
are classified as either barrier forming or pore forming. Among 
approximately 24 claudin genes, claudin-1 is known as a barrier-
forming protein that decreases paracellular permeability.76 On the 
other hand, claudin-2 is a pore-forming protein that increases para-
cellular permeability through the formation of channels.77 These 
events affect the selectivity of this pathway and hence permeation 
of luminal noxious molecules (bacteria, LPS) and solutes in GI 
tract that induce a perturbation of the mucosal immune system and 
inflammation.68-70,78 LPS is a ligand of TLR4 on macrophages, and 
its interaction activates TLR4-cytokine signaling and contributes in 
the inflammatory cascade.31,43,78-80 

Dysbiosis, Inflammatory Response, and  
Barrier Disruption 	

During metabolism, the host and its gut microbiota coproduce 
a spectrum of metabolites, such as SCFAs that are essential for 
health.81 SCFAs mainly consist of acetate, propionate, and butyr-
ate, and it functions through either G protein coupled receptors 
(GPCRs) or histone deacetylases.82,83 SCFAs are a vital fuel for 
intestinal epithelial cells and are known to strengthen the gut barrier 
function.84-87 Butyrate has been demonstrated to play a key role in 
the maintenance of the intestinal barrier function84-88 and immuno-
modulation.89-91 It also triggers differentiation of colonic regulatory 
T cells to assist in suppressing inflammatory reactions.43,89-91 Surgi-
cal interventions which represents one of the physiologic stress are 
reported to induce a numerical and compositional shift in the gut 
microbiota.19,31,92-94 The relative shift in its composition also affects 
the bacterial metabolites.92-94 The POI model of our study clearly 
reported a distinct change in the microbial community.94 The popu-
lation size of the lactic acid-producing bacteria, including the genera 
Bifidobacterium and Lactobacillus decreased, and the population 
sizes of Bacteroides and Blautia increased in the POI groups.94 Our 
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Figure 2. Schematic illustration of 
autonomic nerve stimulation and in-
crease in gut permeability. The release 
of stress peptides such as substance P, 
calcitonin gene-related peptide (CGPR), 
and corticotropin-releasing factor (CRF) 
from afferent nerve endings activates 
mast cells in the mesentery as well as in 
the mucosal layer. Activated mast cells 
release chemical mediators such as pro-
teases (tryptase) to modify tight junction 
proteins (TJPs) and increase intestinal 
permeability and further activation of 
immune cells. TLR4, Toll-like receptors 
4; PAR-2, protease activated receptor-2; 
EEC, enteroendocrine cells; LPS, lipo-
polysaccharide.
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study also demonstrated a significant change in the microbial com-
munity that reduces the fecal butyrate level.94 Apart from the POI 
stress model, repeated water avoidance stress also decreased oc-
cludin expression with reduced butyrate-producing microbiota.39,40 
Parada Venegas et al95 clearly showed significant decrease in butyr-
ate-producing bacteria, especially Faecalibacterium prausnitzii, that 
diminish the SCFAs in feces. Notably, these findings are consistent 
with previous studies showing that dysbiosis-related decrease in the 
synthesis of SCFAs was associated with epithelial barrier dysfunc-
tion, increased mucosal permeability, and activation of inflamma-
tory response.83-88,95 The exact mechanism associated with immune 
activation and increase permeability has not been investigated in 
detail, but probiotics-treated dysbiotic subjects showed restoration 
of SCFAs and increase the expression of GPCRs such as GPR41, 
GPR43, and GPR109A on macrophages. SCFAs and receptors 
interactions facilitate repair of epithelial barrier function and thereby 
activating anti-inflammatory signaling cascades.81,94,96 Interest-
ingly, Muller et al97 demonstrated that luminal microbiota regulate 
crosstalk between muscularis macrophages (MMs) and enteric 
neurons to normal regulation of intestinal motility. Related studies 
also reported severe dysmotility in germ-free rodents,98 Tlr4–/– and 
Myd88–/– mice,99 and our POI model.94 

Prospective Factors That Could Trigger  
Activation of Macrophages 	

Multiple pathways or potential mechanisms activate macro-
phages to initiate inflammatory phase in POI. First, molecules 
released in response to cell damage or damage-associated molecular 
patterns (DAMPs) such as ATP, uric acid, heat-shock proteins, or 
S100 proteins diffuse in the blood.11,100,101 These products through 
circulation leak out to the site of injury and stimulate muscular 
monocytes and macrophages.100-102 Second, cortisol produced 
through HPA stress axis alter gut microbial diversity (dysbiosis), 
and impairs gut barrier via modifying TJPs.28,31,95 Dysbiosis dis-
turbs the crosstalk between MMs and enteric neurons to activate 
the network of resident macrophages.97,103-107 Third, the activation 
and degranulation of mast cells in the peritoneal cavity changes its 
micro-environment. The change in peritoneal environment may 
directly activate the resident macrophage to release proinflamma-
tory molecules.1,11,108 Fourth, stress induced pCRF release, and its 
interaction with CRF receptors that could stimulate TLR4 on the 
macrophages.38,109,110 These are some of the major events that would 
trigger activation of macrophages in surgical intestinal manipulation 
(IM) (Fig. 3). 
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Figure 3. Prospective factors involved 
in the initiation of inflammatory phase in 
post-operative ileus (POI). These events 
or pathways converge to abet vicious 
cycle of inflammation. DAMPs, dam-
age associated molecular patterns; pCRF, 
peripheral corticotropin-releasing fac-
tor; TJPs, tight junction proteins; LPS, 
lipopolysaccharide; HSPs, heat shocks 
proteins; TLR4, Toll-like receptors 4; 
RAGE, receptor for advanced glycation 
end products; NF-κB, nuclear factor-
kappa B; p38 MAPK, p38 mitogen-
activated protein kinase; STAT, signal 
transducer and activator of transcrip-
tion; JNK, c-Jun N-terminal kinase; 
SAP, stress-activated protein; ICAM-1, 
intercellular adhesion molecules-1; NO, 
nitric oxide; PGs, prostaglandins; GI, 
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Muscularis Macrophage Activation and  
Initiation of Intracellular Signaling  
Pathways 	

Macrophages play a key role in the pathogenesis of POI. Local 
inflammation is initiated by macrophages residing in the muscularis 
layer, which triggers onset of POI (Fig. 4).10,11,111-117 These MMs 
lie in close proximity to neurons within the myenteric plexus, cir-
cular and longitudinal smooth muscle layers, and interstitial cells of 
Cajal.111 MMs exist in different subsets based on their morphologi-
cal (stellate and bipolar) structure, however their precise role is still 
ambiguous.111-115 Stellate resident macrophages are long-lived self-
maintaining and arise from both embryonic precursors and adult 
bone marrow-derived monocytes, and persists throughout adult-
hood.111 On the other hand, macrophages lying within the muscle 
layer exhibit a bipolar morphology.111,113 Recently, De Schepper 

et al116 demonstrated depletion of self-maintaining macrophages 
resulted in morphological abnormalities in the submucosal vas-
culature and loss of enteric neurons, leading to vascular leakage, 
impaired secretion, and reduced intestinal motility. In the course of 
surgical stress, the strategic role of self-maintaining MMs had been 
highlighted and data indicate the central role of MMs in initiating 
inflammatory cascade.116 The POI model of our study also dem-
onstrated significant increase in the expression of calprotectin in the 
muscularis externa and serosa in the colon, while expression in the 
mucosal layer was insignificant (unpublished data). The inflamma-
tory cascade of events in the muscularis externa is initiated by MMs 
via TLR or receptors for advanced glycation end-products within 
an hour of IM.1,11,111 It activates intracellular signaling pathways 
such as p38 mitogen-activated protein kinase, c-Jun N-terminal 
kinases/stress-activated protein, NF-κB, signal transducer and 
activator of transcription, and extracellular signal-regulated kinase 
1/2.1,11,118 These pathways are regulated by series of kinases that 
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Figure 4. Stepwise events involved in stress induced localized inflammation and barrier dysfunction. ❶ Stress induced autonomic nerve stimula-
tion, release of peripheral corticotropin-releasing factor (CRF) and muscularis macrophages receptors activation, further strengthened by damage 
associated molecular patterns (DAMPs) mediated immune cells activation. ❷ Nuclear activation and release of pro-inflammatory chemokines and 
cytokines. ❸ Upregulation of intercellular adhesion molecules-1 (ICAM-1) in the endothelial cells of blood vessels. ❹ Influx of leukocytes in the 
muscularis. ❺ Increase synthesis of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes in the muscularis resident 
macrophages, release of inflammatory substances (prostaglandins [PGs] and nitric oxide [NO]) in the muscularis to cause localized inflamma-
tion. ❻ Mast cell and cortisol mediated barrier disruption cause translocation of luminal antigens (lipopolysaccharide [LPS]). ❼ LPS induce 
pathogen associated molecular patterns (PAMPs) mediated activation of mucosal immune cells to further exacerbate inflammation. ❽ The luminal 
antigen drainage through lymphatics and activation of dendritic cells along activation of inhibitory sympathetic and vagal nerve cause generalized 
inflammation through gastrointestinal tract to induce post-operative ileus. Th, T helper cells; MM, muscularis macrophages; MCP-1, monocyte 
chemoattractant protein-1; MIP-1α, macrophage inflammatory protein-1α; SM, smooth muscle; LM, longitudinal muscle.
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finally lead to phosphorylation of transcription factors (TFs). The 
phosphorylated TFs translocate to the nucleus to start the transcrip-
tion of proinflammatory genes to express cytokines, chemokines, 
and other inflammatory molecules.1,11,117,119,120 Cytokines TNF-α, 
IL-6, IL-1β, and chemokines (monocyte chemoattractant protein-1 
and macrophage inflammatory protein-1α [MIP-1α] are secreted 
by the resident macrophages.11,119-121 This inflammatory process fa-
vors the upregulation of intercellular adhesion molecules (ICAM-
1), on the vascular endothelium lining the muscularis.108,118-123 It 
has been reported that the ICAM-1 mRNA is expressed in the 
muscularis within 15 minutes of IM,123 may be triggered by mast 
cells or DAMPs-mediated activation of MMs.11 ICAM-1 along 
with macrophage-derived chemokines initiate the recruitment of 
circulating leukocytes such as neutrophils and monocytes to the 
site of injury in the muscularis externa.103,108,119,120-127 Kalff et al121 
also showed the influx of leucocytes into the muscularis started ap-
proximately 3 hours after manipulation, gradually increasing until 
24 hours postoperatively, with monocytes, neutrophils, and mast 
cells as predominantly infiltrating leucocytes. The POI model of 
our study showed association between the degree of inflammation 
and the recovery time of each segment of GI tract.10,128 We detected 
significant increase in the degree of inflammation in each segment 
of the GI tract, but the highest degree of inflammation was obtained 
in the colon.10,128 These findings were further substantiated by the 
predominant expression of calprotectin in the colon 6 hours after 

IM in POI groups.10,114,128 Calprotectin is generally expressed in 
neutrophils and macrophages, especially activated macrophages and 
monocytes in the acute inflammatory state.128-131 In addition, Snoek 
et al69 detected the appearance of luminal products in the mus-
cularis externa 6 hours after IM. It validates the observation that 
translocated bacterial antigens may not trigger muscularis immune 
responses, but may exacerbate immune responses.69,122 The local ac-
tivated macrophages-mediated molecular inflammatory response is 
followed by ICAM-1, chemokines-initiated cellular inflammatory 
phase, leading to the additional recruitment of circulating leucocytes 
(monocytes and neutrophils) into the muscularis externa.123 Finally, 
IM induces the synthesis of enzymes such as inducible nitric ox-
ide synthase and cyclooxygenase-2 in the resident macrophages, 
which mediate the production of nitric oxide, prostaglandins, and 
arachidonic acid in the intestinal muscular layer.132-135 The influx of 
leukocytes along with the accumulation of prostaglandins and nitric 
oxide inhibits smooth muscle contractility.122,133-138 Hence, the role 
of MMs in triggering inflammatory pathway is further established.

Generalized Inflammation and Inhibition of 
Contractility in Unmanipulated Segments of 
Gastrointestinal Tract 	

However, it remains unclear how local inflammation can lead to 
a generalized intestinal paralysis. There are few hypotheses that de-
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Figure 5. Potential drug target sites in the complex events of post-operative ileus (POI). Several potential sites could be targeted to dampen the ef-
fect of POI. Four main intertwined events could be targeted: ❶ Neuroinflammation, ❷ Inflammatory pathways, ❸ Epithelial barrier disruption, 
and ❹ Gut microbiota. CRF, corticotropin-releasing factor; HPA, hypothalamic–pituitary–adrenal; TJPs, tight junction proteins; PAR-2, prote-
ase activated receptor-2; CAIP, cholinergic anti-inflammatory pathway; 5-HT4, 5-hydroxytryptamine 4 receptor; ICAM-1, intercellular adhesion 
molecules-1; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2. X means inhibition of POI.
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fine this paralysis in unmanipulated area; MMs release IL-12 and 
activate memory T helper 1 cells to produce IFN-γ, which in turn 
migrate to intact areas of the gut and spread inflammation.132,139,140 
Second, lamina propria macrophages transfer the luminal antigens 
to dendritic cells, which may not lead to mucosal inflammation.111 
The activated dendritic cells drain into the lymphatics to initiate 
inflammatory cascade in the unmanipulated area, leading to the 
pathogenesis of POI in unmanipulated areas.1,10-12,69,132,137-140 

Treatment Options and Management of 
Post-operative Ileus 	

The review explores and sheds light on neuro-inflammation 
and related events such as barrier disruption, dysbiosis, and cascad-
ing inflammatory reactions. Therefore, these events will be obvious 
drug targets to manage and treat POI (Fig. 5). 

Attenuation of Hypothalamic–Pituitary–Adrenal Axis 
to Inhibit Corticotropin-releasing Factor Cascading 
Affects 

Attenuation of HPA stress axis may be an important drug 
target. It would probably inhibit the release of CRF or stimulation 
of supra-spinal pathway during surgical stress.12,28,31 Our study ex-
hibited normalizing effect of prokinetic agent DA-9701 (formulated 
with Pharbitis semen and Corydalis tuber) on POI model, showing 
decreased plasma ACTH level and central CRF expression.12 We 
hypothesize that DA-9701 possibly act through central CRF path-
way to improve POI.12 In another stress model, Jung et al30 showed 
that DA-9701 improves delay in gastric emptying and inhibits 
plasma ACTH level. Furthermore, Ait-Belgnaoui et al28 exploited 
a probiotic strain Lactobacillus farciminis to attenuate HPA stress 
axis. The central effects of L. farciminis enhance intestinal epithelial 
barrier and decrease endotoxemia and corticosteronemia.28,33 Based 
on their findings HPA regulatory or anti-cortisol myosin light 
chain regulatory drugs are key to control enterocytes cytoskeleton 
contraction-related barrier opening (Fig. 5). 

Peripheral Corticotropin-releasing Factor–
Corticotropin-releasing Factor Receptors 
Antagonists 

The activation of CRF signaling pathways are known to play a 
key role in the pathogenesis of POI.51,54 Animal studies also estab-
lished the role of CRF1 in the early phase of postoperative gastric 
ileus.12,54 Peripheral CRF increase epithelial permeability which 
are mediated via TLR4 and cytokine signaling.63,79 These findings 

specify a potential new therapeutic venue to alleviate the early phase 
of postoperative ileus with CRF1 antagonist such as CP-154 526 
(Fig. 5).12,54

Mast Cell Stabilization and Regulation of Protease 
Activated Receptor-2 

CRF or neuropeptides-activated mast cells release chemical 
mediators (tryptase) that activate PAR-2 to initiate inflammatory 
response and disruption of barrier integrity into the pathogenies 
of POI.8,10,11,57,67-69 Therefore, mast cell stabilization should be the 
earliest strategy to be taken into consideration to restore epithelial 
barrier integrity, decreased permeability, and ameliorate POI re-
covery.69 In our study, the expression of mast cell tryptase increased 
significantly in the proximal colon, that was effectively decreased by 
ketotifen (Fig. 5).128 Ketotifen is a mast cell-stabilizing agent that 
blocks the release of mast cell granules.141 Additionally, PAR-2 re-
ceptors should be downregulated to modulate pathways involved in 
gut permeability to prevent POI. Therefore, PAR-2 is a new target 
in the therapeutic approach of digestive diseases. One such drug is 
I-287A, a selective and potent PAR-2 inhibitor for the treatment of 
inflammation.142

Restoration of Microbial Diversity 
Increasing evidence has indicated that surgical stress causes 

numerical and compositional shift in the gut microbiota.92-94,142 In 
addition, loss of microbial diversity is involved in surgical complica-
tions.143 Therefore, it is imperative to compensate the lost microbial 
population that could repair intestinal barrier damage and promote 
anti-inflammatory functions. Our study demonstrated that pretreat-
ment of probiotics before surgery restores the beneficial bacterial 
species, butyrate production, and bowel movement.94 The modula-
tion of gut microbiota may help the treatment and prevention of 
POI (Fig. 5). Separately, water avoidance stress-induced changes 
in TJPs were restored by the administration of butyrate-producing 
microbiota.39,40 Parada Venegas et al95 reported how empirical mod-
ulation of the microbiota using prebiotics or probiotics can increase 
SCFAs-producing bacteria, hence enriching microbial diversity and 
improving clinical and histological parameters.

Maintenance of Tight Junction Proteins 
Gut paracellular permeability is largely determined by altera-

tions of TJPs.68,78 So, protecting the TJPs will maintain epithelial 
permeability and hence enhance POI recovery. In the POI model 
of our study, there was significant change in the expression of 
claudin-1 and claudin-2 in both the ileum and proximal colon.10,128 
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Interestingly, glutamine significantly reversed the level of claudin-1 
and claudin-2 expression in both the ileum and proximal colon. 
Glutamine maintains intestinal tissue integrity, and one of the sev-
eral mechanisms associated with this function is the induction of 
the expression of TJPs such as claudin-1, occludin, and zonula oc-
cludens.76,144 In addition, glutamine also exhibits anti-inflammatory 
effects by modulating the inflammatory signaling pathways such as 
NF-κB, signal transducer, and activator of transcription pathways 
(Fig. 5).144

Prevention of Macrophage Activation to Inhibit 
Inflammation 

Multiple pathways or potential mechanisms activate macro-
phages and other immune cells to initiate inflammatory phase in 
POI. Practically, multipronged approach should be applied to de-
plete and inactivate resident macrophages to limit the inflammatory 
affect. 

Prokinetic Mediated Activation of Cholinergic  
Anti-inflammatory Pathway 

One such approach is the activation of cholinergic anti-
inflammatory pathway.145 In our study, lower dose (0.3 mg/kg) of 
mosapride significantly decreased the leukocytes infiltration as well 
as calprotectin expression from activated macrophages and neutro-
phils.128 Previous studies indicated anti-inflammatory effect of mo-
sapride that stimulates 5-hydroxytryptamine 4 receptor in myenteric 
plexus nerve to release acetylcholine (ACh) at the distal end of vagal 
efferents.146,147 ACh in turn inhibits the release of TNF-α, IL-6, 
MIP-2, and MIP-1α by macrophages through their α7 nicotinic 
ACh receptors to ameliorate inflammation.11,115,145-148 

Intracellular Signaling Pathway Inhibitors 
Targeting intracellular signaling pathways of the MMs could 

dampen transcription factors, induction of pro-inflammatory gene 
expression, and the release of chemokines and cytokines. This may 
be an interesting alternative approach to treat POI.149 Semapimod, 
a p38 mitogen-activated protein kinase inhibitor indeed reduced 
POI by dampening the expression of the proinflammatory genes 
MIP-1α, IL6, MCP-1, and ICAM-1 and deaccelerate leukocytes 
influx.149 In addition, inhibition of phosphorylation of TFs could be 
the prime drug target to abolish POI effects.11 

Downregulation of Intercellular Adhesion Molecules-1
Once the inflammatory cascade is initiated, adhesion molecules 

such ICAM-1 is upregulated to attract leucocytes from the circula-

tion to impairs smooth muscle contractility. So, a mechanism that 
prevents ICAM-1 expression, ie, antisense mediated inhibition 
of ICAM-1, would be an ideal strategy to dampen the effects of 
POI.150

Inhibition of Inflammatory Enzymes 
The metabolites of inflammatory enzymes have a huge impact 

on smooth muscle contractility. Therefore, selective inhibitions of 
enzymes such as inducible nitric oxide synthase or cyclooxygenase-2 
could prevent POI.136

Conclusions 	

Taken together, this review highlights the vast influence of neu-
roinflammation, altered intestinal permeability, and dysbiosis on the 
inflammatory cascades during surgical stress. The vicious inflam-
matory cycle helps in the recruitment of leukocytes and increased 
production of metabolites into the muscularis to impair the smooth 
muscle contractility and accelerate the pathogenesis of POI. These 
mechanistic observations may lay the foundation for the discovery 
of novel and potential therapeutic agents to alleviate the effects of 
POI. This review concludes that CRF, mast cells, macrophages 
and gut microbiota should be targeted concurrently for efficient 
POI management. However, further studies are needed to verify 
the pathological role of heterogeneous macrophages in the GI tract 
as well as its interaction with gut microbiota and enteric neurons. In 
addition, POI-specific changes in the gut bacterial species need to 
be recognized among microbial population. 
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