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Abstract: We developed a machine-learning-based model that could predict a decrease in one-year
graft function after kidney transplantation, and investigated the risk factors of the decreased function.
A total of 4317 cases were included from the Korean Organ Transplant Registry (2014–2019). An
XGBoost model was trained to predict the recipient’s one-year estimated glomerular filtration rate
(eGFR) below 45 mL/min/1.73 m2 using 112 pre- and peri-transplantation variables. The network of
model factors was drawn using inter-factor partial correlations and the statistical significance of each
factor. The model with seven features achieved an area under the curve of 0.82, sensitivity of 0.73,
and specificity of 0.79. The model prediction was associated with five-year graft and rejection-free
survival. Post-transplantation hospitalization >25 days and eGFR ≥ 88.0 were the prominent risk
and preventive factors, respectively. Donor age and post-transplantation eGFR < 59.8 were connected
to multiple risk factors on the network. Therefore, careful donor–recipient matching in older donors,
and avoiding pre-transplantation risk factors, would reduce the risk of graft dysfunction. The model
might improve long-term graft outcomes by supporting early detection of graft dysfunction, and
proactive risk factor control.

Keywords: kidney transplantation; machine learning; risk factors; graft survival

1. Introduction

Kidney transplantation is the treatment of choice for patients with end-stage kidney
disease, and offers improved survival compared with dialysis [1]. Although short-term
renal allograft survival has increased substantially over the past three decades, long-term
graft survival has remained unsatisfactory [2–4]. Therefore, identifying patients at risk of
graft loss, and timely intervention, are necessary to prevent late graft failure, and improve
long-term graft function [5].
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Various factors are associated with late allograft failures, and the serum creatinine
level at one year after transplantation can predict long-term renal allograft survival [6–8].
Therefore, measuring serum creatinine and estimated glomerular filtration rate (eGFR)
is recommended to detect renal allograft dysfunction, according to the KDIGO (Kidney
Disease: Improving Global Outcomes) guideline [8]. eGFR is a simple, inexpensive, and
universally available method for the assessment of graft function, and can be calculated
based on age, sex, and serum creatinine [9].

Notably, prospective observational studies have reported that one-year eGFR is the
best predictor of long-term graft function after kidney transplantation [10,11]. Clinical
factors associated with eGFR < 65 mL/min/1.73 m2 at one-year post-transplantation
included an advanced age of the donor and recipient, acute rejection within one year,
delayed graft function, deceased donor, and the number of human leukocyte antigen
(HLA) mismatches [10]. The risk of late renal allograft failure increased gradually with
a lower one-year eGFR, particularly in recipients exhibiting a one-year eGFR of less than
45 mL/min/1.73 m2 [11]. Therefore, prediction of the one-year post-transplant eGFR
decrease may help to improve long-term graft function and survival.

Machine learning has been used to predict acute rejection, delayed graft function, graft
survival, and chronic allograft nephropathy in kidney transplantation, and has advantages
over conventional statistics in terms of better performance and the identification of complex
associations among predictive factors [12]. A study attempted to predict one-year eGFR in
707 recipients who underwent deceased donor kidney transplantation [13]. The best model
for predicting eGFR < 45 mL/min/1.73 m2 was a Gaussian support vector machine with
recursive feature elimination using five features (donor age, donor death code, recipient
weight, recipient height, and recipient sex) from 56 input variables. However, the model
performance was unsatisfactory (area under the curve (AUC) = 0.72) [13].

We designed this study to upgrade the model predicting one-year eGFR decline by
incorporating up-to-date techniques, such as the extreme gradient boosting (XGBoost)
machine learning algorithm [14], automated genetic programming (tree-based pipeline
optimization tool, TPOT) for XGBoost hyperparameter tuning [15], and the Boruta algo-
rithm for feature selection [16]. XGBoost enables high-performance boosting decision tree
models, and dominates classification problems on structured datasets [17]. Additionally,
a factor network was constructed using model-chosen factors, and risk-control targets
were explored.

2. Materials and Methods
2.1. Development and External Validation Data

The Korean Organ Transplant Registry (KOTRY) is a prospective multicenter transplan-
tation registry, which includes more than 900 clinical variables [18]. Data of 6129 recipients
who underwent kidney transplantation from April 2014 to December 2019 were collected
(Figure 1). After excluding 1812 cases with missing data or outliers (donor age under
14 years, donor eGFR over 200 mL/min/1.73 m2), a total of 4317 recipients were finally
enrolled in this study. All available variables were selected from the recipient and donor
in the pre- and peri-transplantation period before postoperative hospital discharge, and
donor–recipient relationship variables and immunologic variables (ABO incompatibility,
number of HLA mismatches) were extracted (Table 1). We calculated eGFR by the CKD-EPI
(Chronic Kidney Disease Epidemiology Collaboration) formula, whereas the Schwartz
formula was applied to donors under 19 years old (Supplementary Materials). The model
outcome was set as eGFR under 45 mL/min/1.73 m2 at one year after kidney transplanta-
tion, and the development data were split 8:2 between the training and testing sets, with
equal proportions of the model outcome.
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Figure 1. Flow diagram showing data processing and study methods. Abbreviations: KOTRY, Ko-
rean Organ Transplant Registry; eGFR, estimated glomerular filtration rate (mL/min/1.73 m2); 
XGBoost, extreme gradient boosting; TPOT, tree-based pipeline optimization tool; AUC, area under 
the curve; SHAP, shapley additive explanation. 

Table 1. Study variables. 

Recipient Variables 
General characteristics 
age, sex, BMI, smoking, primary renal disease, dialysis vintage, dialysis type, transplantation his-
tory, medication a 
Comorbidities 
diabetes, hypertension, cardiovascular disease, tumor 
Laboratory findings 
WBC count, neutrophil count (%), hemoglobin, hematocrit, platelet, BUN, creatinine, eGFR, uric 
acid, albumin, calcium b, phosphorus, fasting serum glucose, hsCRP c, PTH level c, total choles-
terol, LDL, HDL, triglyceride 
Immunology and immunosuppression 
ABO incompatibility; T and B cell crossmatch; HLA A, B, DR mismatch numbers; donor-specific 
antibody; desensitization; induction immunosuppression d; maintenance immunosuppression e 
Perioperative findings 
delayed graft function, creatinine at discharge c, eGFR at discharge c, post-transplantation stay c 

Donor Variables 
General characteristics 
age, sex, BMI, smoking, donor type f, cold ischemic time c, donation after cardiac death 
Comorbidities 
diabetes, hypertension, cardiovascular disease, tumor 
Laboratory findings 
WBC count c, neutrophil count (%) c, hemoglobin c, hematocrit c, platelet c, BUN c, creatinine c, 
eGFR c, uric acid c, albumin c, calcium b,c, phosphorus c, fasting serum glucose c, hsCRP c, total cho-
lesterol c, proteinuria 
Donor–recipient Relationship Variables 
age difference, sex match, height difference, weight difference, BSA ratio, viral serostatus g 

a Aspirin, statin, or vitamin D analog. b Corrected calcium = total calcium + 0.8 × (4 − albumin), 
where calcium in mg/dL, and albumin in g/dL. c Discretized to low, mid, high categories. d 

Figure 1. Flow diagram showing data processing and study methods. Abbreviations: KOTRY, Korean
Organ Transplant Registry; eGFR, estimated glomerular filtration rate (mL/min/1.73 m2); XGBoost,
extreme gradient boosting; TPOT, tree-based pipeline optimization tool; AUC, area under the curve;
SHAP, shapley additive explanation.

Additionally, data of recipients who underwent kidney transplantation between 2010
and 2014, but were not included in the KOTRY cohort, were collected from the Bundang
CHA Medical Center for external validation. The study was reviewed and approved by
the Institutional Review Board of each transplantation center. The study was conducted
following the Declaration of Helsinki, and adhered to the Declaration of Istanbul.

Table 1. Study variables.

Recipient Variables

General characteristics
age, sex, BMI, smoking, primary renal disease, dialysis vintage, dialysis type, transplantation
history, medication a

Comorbidities
diabetes, hypertension, cardiovascular disease, tumor

Laboratory findings
WBC count, neutrophil count (%), hemoglobin, hematocrit, platelet, BUN, creatinine, eGFR, uric
acid, albumin, calcium b, phosphorus, fasting serum glucose, hsCRP c, PTH level c, total
cholesterol, LDL, HDL, triglyceride

Immunology and immunosuppression
ABO incompatibility; T and B cell crossmatch; HLA A, B, DR mismatch numbers; donor-specific
antibody; desensitization; induction immunosuppression d; maintenance immunosuppression e

Perioperative findings
delayed graft function, creatinine at discharge c, eGFR at discharge c, post-transplantation stay c

Donor Variables

General characteristics
age, sex, BMI, smoking, donor type f, cold ischemic time c, donation after cardiac death

Comorbidities
diabetes, hypertension, cardiovascular disease, tumor
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Table 1. Cont.

Laboratory findings
WBC count c, neutrophil count (%) c, hemoglobin c, hematocrit c, platelet c, BUN c, creatinine c,
eGFR c, uric acid c, albumin c, calcium b,c, phosphorus c, fasting serum glucose c, hsCRP c, total
cholesterol c, proteinuria

Donor–recipient Relationship Variables
age difference, sex match, height difference, weight difference, BSA ratio, viral serostatus g

a Aspirin, statin, or vitamin D analog. b Corrected calcium = total calcium + 0.8 × (4 − albumin), where calcium in
mg/dL, and albumin in g/dL. c Discretized to low, mid, high categories. d Basiliximab, anti-thymocyte globulin,
or both. e Steroid, tacrolimus, cyclosporine, mycophenolate mofetil. f Deceased or living. g For hepatitis B virus,
positive if donor hepatitis B surface antigen (HBsAg) is positive and recipient hepatitis B surface antibody (HbsAb)
is negative. For hepatitis C virus, Epstein–Barr virus, and cytomegalovirus, positive if donor IgG serostatus is
positive and recipient IgG serostatus is negative. Abbreviations: BMI, body mass index; WBC, white blood cell;
HLA, human leukocyte antigen; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; hsCRP,
high-sensitivity c-reactive protein; PTH, parathyroid hormone; LDL, low-density lipoprotein; HDL, high-density
lipoprotein; BSA, body surface area.

2.2. Data Preprocessing: Imputation, Discretization, One-Hot Encoding, and Standardization

Univariate and multivariate imputations were employed for missing categorical and
continuous values, respectively. When the skewness or outliers needed to be addressed,
the continuous variable was discretized into three categories, low, mid (reference), and
high, using discretized k-means clustering (Table 1) [19]. Categorical variables with three
or more unique values were one-hot encoded while dropping the reference category, and
continuous variables were standardized using z-scores.

2.3. Training and Testing of the XGBoost Model

GPU-accelerated TPOT was used to tune nine hyperparameters of XGBoost (Supple-
mentary Materials). Then, a subset of relevant features was identified using the Boruta-
SHAP algorithm, and used to train a sparse model (Supplementary Materials). The per-
formance of the sparse model was tested using metrics (AUC, sensitivity, specificity), and
explained using Shapley additive explanation (SHAP) values in the test set [20]. A threshold
was the Youden index for the training set, which was applied in testing and validation.

2.4. Survival Analysis of the Model Prediction

Time-to-event analyses on death-censored graft loss and biopsy-proven rejection were
performed according to the model prediction for the right-censored development data
(Supplementary Materials). The total numbers of cases were 4305 and 4317 for graft and
rejection-free survival, respectively. Twelve patients who experienced graft loss within one
year were excluded from the graft survival analysis.

2.5. Statistical and Network Analyses of Model Factors

The statistical significance of the model or known factors was calculated using multiple
logistic regression for the development data. In addition to model factors, the age and sex
of the donor and recipient were included as covariates.

A partial correlation matrix of factors was then generated, and a thresholded extended
Bayesian information criterium (EBIC) graphical lasso network was plotted (Supplementary
Materials). The network was simplified by excluding spurious connections using graphical
lasso regularization with EBIC model selection [21]. The node size of the factor was
calculated using the effective size of the odds ratio, and each edge weight reflected the
correlation strength between two nodes after controlling all other network correlations.

2.6. Statistics and Software

Two programming languages were used: Python (version 3.7.10, Python Software
Foundation, Wilmington, DE, USA) for preprocessing, machine learning, and survival
analysis; and R (3.6.3, R Foundation for Statistical Computing, Vienna, Austria) for multiple
logistic regression and network analysis. DeLong’s confidence intervals of AUC were
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calculated using the pROC package of R [22]. Detailed software usage is described in
Supplementary Materials.

3. Results
3.1. Selected Model Features

The mean one-year eGFR was 70 (SD 20) (95% CI, 69–70) mL/min/1.73 m2, and
the proportion of recipients exhibiting one-year eGFR < 45 mL/min/1.73 m2 was 11%
(378/3453) in the training set. Hyperparameter optimization of XGBoost was attempted
with 112 variables, and none of the variables were dropped by the regularization of XGBoost.
However, a sparse model with seven variables (6% of total variables), which included donor
and recipient age, low eGFR at discharge, high eGFR at discharge, serum creatinine at
discharge, post-transplantation stay, and height difference between donors and recipients,
was built by feature selection using the Boruta algorithm.

3.2. Model Performance and Explanation

The prediction model with seven variables showed a moderate performance, with an
AUC of 0.82 (95% CI, 0.77–0.86, DeLong), sensitivity of 0.73, and specificity of 0.79 on the
test data (Figure 2). External validation with 51 recipients showed similar performance,
with an AUC of 0.83, sensitivity of 0.76 (13/17), and specificity of 0.71 (24/34). According
to the SHAP values, donor age had the most significant impact, and eGFR at discharge
ranked second (Figure 2). Several factors had elongated tails in the SHAP summary plot,
specifically, an elderly donor, eGFR at discharge <59.8 mL/min/1.73 m2, and a post-
transplantation hospitalization longer than 25 days increased the probability of a decline in
one-year eGFR up to 0.29, 0.15, and 0.15, respectively (Figure 2). A group of high SHAP
probabilities for donor age was found on the plot with a median age of 72 (range, 70–81)
years and their median SHAP value of 0.27 (range, 0.24–0.29) (Figure 2). By contrast, a
young donor and eGFR at discharge ≥88 mL/min/1.73 m2 reduced the probability up to
0.23 and 0.16, respectively (Figure 2). Notably, the SHAP value distribution of the recipient
age was non-linear; the probability increased in both high (over 57 years) and low (less
than 29 years) recipient ages (Figure 2).
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Figure 2. Performance of the XGBoost model to predict a decline in eGFR at one year after kidney
transplantation. (A) Receiver operating characteristic curve; (B) summary plot of Shapley additive
explanations (SHAP). Model features are sorted along the y axis of the summary plot by the sum
of SHAP value (probability) magnitudes over all cases in the test data, and the distribution of each
feature’s impacts is plotted using SHAP values of individual cases. Binary features have 1 if present,
or 0 if absent. Abbreviations: AUC, area under the curve; eGFR, estimated glomerular filtration rate
(mL/min/1.73 m2); sCr, serum creatinine (mg/dL); D, donor; R, recipient.
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3.3. Graft and Rejection-Free Survival for Model Prediction

The graft survival rate was significantly worse, and the cumulative incidence of
rejection was significantly higher in recipients with predicted eGFR < 45 mL/min/1.73 m2

than in those with predicted eGFR > 45 mL/min/1.73 m2 (adjusted hazard ratios of 1.9 and
1.6, p = 0.02 and 0.007, respectively; Figure 3).
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Figure 3. Kidney transplant outcomes according to predicted one-year eGFR levels of the recipient.
Predicted eGFR decline was associated with a significant decrease in graft survival (A) and increase
in cumulative incidence of biopsy-proven rejection (B) (adjusted hazard ratios of 1.9 and 1.6, p = 0.02
and p = 0.007, respectively, Cox proportional hazard regression with age and sex). Abbreviations:
eGFR, estimated glomerular filtration rate (mL/min/1.73 m2).

3.4. Statistical Significance of Model Features

All seven model factors had a statistically significant association with a decline in
one-year eGFR (Table 2). Both low and high recipient ages were significantly associated
with reduced one-year eGFR when the recipient age was categorized into low (19–28 years),
medium (29–57 years, reference), and high (58–76 years) groups according to SHAP value
distribution (Figure 2 and Table 2).

Additionally, being a female recipient was a risk factor when the recipient’s sex was
added as a covariate (Table 2). Among the reported non-model factors, that is, deceased
donor, delayed graft function, and the number of HLA mismatches, the number of HLA
mismatches remained a significant factor (Table 2) [10].
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Table 2. Factor analysis for one-year renal allograft dysfunction (multiple logistic regression).

eGFR ≥ 45
(N = 3453)

eGFR < 45
(N = 864)

OR
(95% CI) p Value

Categorical Factors n (%) n (%)
eGFR (mL/min/1.73 m2) a

<59.8 871 (23%) 315 (67%) 2.1 (1.5–2.9) <0.001
59.8–88.0 1725 (45%) 133 (28%) NA NA
≥88.0 1248 (32%) 25 (5.3%) 0.4 (0.2–0.6) <0.001

Recipient age (year) b

<29 214 (5.6%) 29 (6.1%) 2.3 (1.5–3.7) <0.001
29–57 2755 (72%) 263 (56%) NA NA
>57 875 (23%) 181 (38%) 1.5 (1.2–1.9) <0.001

Post-transplantation stay (day) a

≤25 3501 (91%) 354 (75%) NA NA
>25 343 (8.9%) 119 (25%) 2.4 (1.8–3.2) <0.001

Serum creatinine (mg/dL) a

≤1.24 2787 (73%) 151 (32%) NA NA
>1.24 1057 (27%) 322 (68%) 2.0 (1.4–2.8) <0.001

Female recipient c 1602 (42%) 162 (34%) 1.6 (1.2–2.2) 0.002
Deceased donor d 1331 (35%) 253 (53%) 1.2 (1.0–1.6) 0.08
Male donor c 2064 (54%) 238 (50%) 1.1 (0.8–1.5) 0.49
Delayed graft function d 116 (3.0%) 43 (9.1%) 1.1 (0.7–1.7) 0.68

Continuous Factors mean (SE) mean (SE)
Donor Age (year) 46 (0.2) 56 (0.5) 1.9 (1.7–2.2) e <0.001
Height (R)−Height (D) (cm) −1 (0.2) 3 (0.6) 1.3 (1.1–1.5) e 0.007
HLA mismatch numbers d (range 0–6) 3.2 (0.03) 3.6 (0.07) 1.1 (1.0–1.3) e 0.04

a Measured at discharge in recipients. b Not significant (p = 0.39) when a continuous factor. c Not model factors,
but included to control sex effect. d Not model factors, but reported risk factors [10]. e Standardized odds ratio.
Abbreviations: eGFR, estimated glomerular filtration rate; OR, odds ratio; CI, confidence intervals; SE, standard
error; R, recipient; D, donor; HLA, human leukocyte antigen; NA, not available for a reference category.

3.5. Network Analysis of Model Predictors

The largest node was “eGFR at discharge ≥88.0”, and the most prominent risk node
was “Post-transplantation stay >25” (Figure 4). In addition, two risk nodes could build
up the risk effect together with other factors. The node with the highest potential was
“eGFR at discharge <59.8”, which was positively connected to five risk nodes: “Post-
transplantation stay >25”, “Serum creatinine at discharge >1.24”, “Donor age”, “Female
recipient”, and “Recipient age > 57”, and negatively connected to a preventive factor, “eGFR
at discharge ≥88.0”. Second, “Donor age” was positively associated with four risk nodes:
“eGFR at discharge <59.8”, “Female recipient”, “Recipient age > 57”, and “Donor-recipient
height difference”, and negatively associated with a preventive node, “eGFR at discharge
≥88.0”. Consequently, adjusted odds ratios of “eGFR at discharge <59.8” and “Donor
age” were 2.1 and 1.9, respectively (multiple logistic regression, Table 2), but the crude
odds ratios increased to 4.7 (95% CI, 3.8–5.8, 59.8–88.0 mL/min/1.73 m2 as the reference)
and 2.6 (95% CI 2.3–2.9), respectively, by the effect of associated risk factors (univariate
logistic regression).
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The nodes are positively (risk) or negatively (protective) related to graft function decline. Green
and red edges represent positive and negative correlations between the nodes, respectively. The
edge with the highest absolute weight has full-color saturation and the widest width. Abbreviations:
R, recipient; D, donor; eGFR, estimated glomerular filtration rate (mL/min/1.73 m2); sCr, serum
creatinine (mg/dL); HLA, human leukocyte antigen.

Two insignificant risk nodes, “Deceased donor” and “Delayed graft function”, were
simultaneously connected to two significant risk nodes: “Post-transplantation stay >25” and
“eGFR at discharge <59.8” (Figure 4). “Deceased donor” without “eGFR at discharge <59.8”,
and “Delayed graft function” without “eGFR at discharge <59.8” and “Post-transplantation
stay >25” were statistically significant (p = 0.03 and p = 0.049, respectively; multiple logistic
regression).

4. Discussion
4.1. Principal Findings

One-year eGFR < 45 mL/min/1.73 m2 was successfully predicted using seven factors
(donor and recipient ages, low and high eGFR levels after transplantation, high serum
creatinine after transplantation, height difference between the donor and recipient, and
post-transplantation stay), and the predicted decline in one-year eGFR was related to long-
term allograft outcomes. Two risk factors, donor age and low eGFR after transplantation,
were noticeable on the network because of their multiple positive connections to other
risk factors.

4.2. Improving the Performance of the XGBoost Model

A higher performance (AUC = 0.8) of the model was obtained when predicting the
one-year eGFR < 45 mL/min/1.73 m2 than in the previous report (AUC = 0.7) [13]; however,
the current and previous studies could not be directly compared because of the difference
in development data size (4317 vs. 707), transplantation period (2014–2019 vs. 1998–2008),
ethnicity (Asian vs. European), donor type (living and deceased vs. deceased only), and
machine learning type (classifier vs. regressor). However, the following techniques were
used to improve the model performance.
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4.2.1. Automated Machine Learning

A developer configures the XGBoost hyperparameters to obtain the best performance,
and the results can vary according to the developer’s experience [17]. This study used
the GPU-accelerated TPOT, one of the most effective automated machine learning tools.
TPOT uses genetic algorithms to find the best combination of hyperparameters, and GPUs
increase the chance that TPOT finds more advanced combinations by accelerating its
computation time [23].

4.2.2. Addressing the Imbalanced Classification Problem

The minority class is more difficult to predict because a model may focus on learning
the characteristics of the abundant cases from the majority class [24]. This study had a
moderate imbalance problem of 11% of the one-year eGFR < 45 mL/min/1.73 m2 (positive
class), which was addressed using class-weighted XGBoost [24]. In detail, the model was
eight times more likely to correct errors in the positive class, and successfully achieved
balanced sensitivity and specificity.

4.3. Clinical Relevance of Discretized Factors

Some numerical variables were discretized to categorical variables, and the data-
driven discretization criteria had clinical relevance. For example, eGFR < 59.8 and ≥ 88.0
mL/min/1.73 m2 correspond to GFR categories in chronic kidney disease, that is, “mildly
to moderately decreased” (GFR 45–59, G3 or higher category) and “normal or high”
(GFR ≥ 90, G1 category), respectively [25]. For post-transplantation stay >25 days, longer
than 14 days is a risk factor of five-year mortality, and longer than 30 days was reported in
1% of recipients [26].

4.4. Factors Associated with a Decline in One-Year Renal Allograft Function
4.4.1. Donor Age, the Most Influential Factor in the Model Prediction

Donor age has been reported as the most critical factor governing graft survival
and patient mortality after kidney transplantation [1]. “Donor age” had long tails in low
and high SHAP values on the summary plot, which meant that the probability varied
considerably with age (Figure 2). Age > 70 years required special attention because of a
dramatic increase in the probability of one-year eGFR decrease in this group (Figure 2), and
this finding has been consistently demonstrated [27–29].

4.4.2. eGFR at Discharge, the Most Statistically Significant Factor

The factor eGFR at discharge ≥88.0 mL/min/1.73 m2 showed the strongest asso-
ciation with a one-year eGFR decrease, and eGFR at discharge <59.8 mL/min/1.73 m2

was a potent risk factor (Table 2 and Figure 2). The KDIGO guideline recommends daily
measurement of serum creatinine, and calculation of eGFR until hospital discharge after
kidney transplantation to detect acute changes in renal allograft function, such as acute
rejection, obstruction, urine leak, vascular compromise, and recurrent infection diseases,
which are more common early after transplantation [30].

4.4.3. Other Significant Model Factors

“Post-transplantation stay >25” was a significant risk node, and positively connected
to “eGFR at discharge <59.8” on the factor network, which means that hospitalization
length might be associated with early renal allograft function (Figures 2 and 4). Prolonged
hospitalization can be caused by early renal allograft dysfunction, and patients with
poor fitness or health for transplantation tend to have an extended length of stay during
transplant admission [1,30].

A tall recipient for a short donor was another significant risk factor (Table 2 and
Figure 2). Since body height is correlated with kidney length, the results imply that
a relatively small donor kidney may not be sufficient for a tall recipient [31,32]. An
explanation for the kidney size mismatch problem is nephron dosing, suggesting that the
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graft size should match the recipient’s physiologic demand to prevent renal damage by
glomerular hyperfiltration.

A recipient age under 29 years or over 57 years was significantly related to a decline in
one-year eGFR (Table 2). A recipient age≥ 60 years is a risk factor for one-year eGFR decline,
and affects the five-year eGFR by lowering one-year eGFR [10]. In addition, previous studies
have demonstrated that renal allograft survival is the worst in young recipients between
10 and 20 years of age [33,34]. It should also be noted that the proposed network showed
that the recipient age < 29 years was associated with high eGFR at discharge, whereas
the recipient age > 57 years was related to low eGFR at discharge (Figure 4). Accordingly,
low and high recipient ages would have different reasons for a one-year eGFR drop. The
increased risk of graft failure in young adults is partly explained by non-adherence to
immunosuppressive medications, and vulnerability to graft rejection [35,36].

4.4.4. Significant Non-Model Factors

Two significant non-model factors, the female recipient and the number of HLA
mismatches, were included as a covariate and known factor, respectively. Female recipients
show higher graft failure risks than male recipients, especially when their donors are male,
presumably because of sex-determined minor histocompatibility antigens, or the influence
of sex hormones on immune activation [37,38]. HLA mismatch is a known risk factor for
low one-year eGFR [10] and graft loss one-year post-transplantation [39].

4.5. Application of Factor Network for Finding Control Targets and Confounders

Two significant risk nodes, “eGFR at discharge <59.8” and “Donor age”, had multiple
positive connections to other risk factors in the network (Figure 4). These connections
explained the increase in the factors’ unadjusted odds ratios to 2.2 and 1.4 times their
adjusted odds ratios, respectively. Therefore, controlling these two risk factors might
considerably reduce the risk of declining one-year eGFR.

For “eGFR at discharge <59.8”, there might be a causal relationship with pre-
transplantation risk factors, such as “Donor age”, “Female recipient”, and “Recipient
age > 57”, which occurred temporally before “eGFR at discharge <59.8” (Figure 4). For
example, a graft from an older donor reduced the number of viable nephrons, and led to
early graft dysfunction [40].

“Donor age” was positively connected to “Female recipient”, “Recipient age > 57”,
“Height(R)−Height(D)”, and “Number of HLA mismatches”, which means that care should
be taken when matching a recipient with an older donor (Figure 4). For example, better
HLA matching offsets the disadvantages of the older donor in deceased donor kidney
transplantation [41]. Lastly, the positive connection between “Donor age” and “eGFR at
discharge <59.8” should be emphasized because donor age could affect the one-year eGFR
and long-term outcome through low eGFR at discharge (Figures 3 and 4).

The factor network revealed that two known risk nodes, “Deceased donor” and
“Delayed graft function”, could be confounded by “eGFR at discharge <59.8” and “Post-
transplantation stay >25” through their positive connections (Figure 4). For a deceased
donor, a prolonged ischemia–reperfusion injury is usually an inevitable event affecting early
kidney allograft function [42]. The injury also causes delayed graft function (see the positive
connection between nodes 9 and 12 in Figure 4), which is reported to be associated with a
decreased eGFR at discharge, and increased length of stay after transplantation [26,43].

4.6. Limitations

First, the relationships among the factors on the network should be considered as-
sociative, not causal. However, causal relationships between factors can be suggested
if they had temporality and plausibility [44]. Second, the results may change because
of the different ethnicities of the recipients and donors, and the discharge policies after
transplantation. Third, there might be unfound pre-, peri-, and post-transplantation factors,
such as medication adherence, that would significantly alter the one-year eGFR [13].
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5. Conclusions

An XGBoost-based model successfully predicted the one-year eGFR reduction in
kidney transplant recipients with good performance. In addition to the reported factors,
novel pre- and peri-transplantation factors were discovered by selecting all relevant features
from nationwide cohort data. Donor age and eGFR at discharge had the highest impact
on model prediction, and could be primary risk factor control targets. Therefore, this
study could help control one-year eGFR-associated risk factors before and after kidney
transplantation, and allow physicians to plan preemptive measures when the graft function
would be compromised. A practice using the proposed model and network could provide
clinical benefits, as model-predicted graft dysfunction is related to long-term graft survival
and rejection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11051259/s1; eGFR calculation, TPOT, XGBoos, feature selection
using the Boruta algorithm, survival analysis, multiple logistic regression, network graph, and Scikit-
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