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INTRODUCTION

The development of next-generation sequencing technologies 
has greatly reduced the cost of genetic diagnostics, paving the 
way for the diagnosis of rare pathogenic mutations in the clinic. 
Previously unknown genetic variants are frequently being dis-
covered in both inherited and acquired disorders, and tools to 
correct these pathogenic variants are rapidly evolving. The 
field of genome editing has taken a big leap since the discov-

ery of clustered regularly interspaced short palindromic re-
peats (CRISPR)/CRISPR-associated (Cas) systems, which were 
first introduced in 2012.1 Since their debut, CRISPR-based ge-
nome editing technologies have advanced enormously in just 
under 10 years, giving hope to many patients suffering from 
genetic disorders lacking effective treatment. Applications of 
CRISPR-based genome editing for the treatment of human dis-
eases holds great potential in the future, and some possible 
therapies are already being tested in human clinical trials. In 
this review, we will discuss the basic principles of CRISPR-based 
genome editing and evaluate its therapeutic possibilities by fo-
cusing on recently published clinical trials and animal studies.

BASIC PRINCIPLES OF CRISPR-BASED 
GENOME EDITING 

Mechanisms of CRISPR-based genome editing
The CRISPR-Cas system is a programmable RNA-guided en-
donuclease system that consists of 1) a Cas enzyme and 2) a 
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guide RNA (Fig. 1A). Briefly, the Cas enzyme modifies a tem-
plate by creating a double-strand break at a specific location, 
and guide RNA “guides” the Cas enzyme to the target sequence 
by simple Watson-Crick base pairing.2 Here, the single guide 
RNA (sgRNA) consists of two linked components, the CRISPR-
RNA (crRNA) and the trans-activating crRNA (tracrRNA). The 
target sequence (also called the protospacer) is recognized by 
the crRNA, which can easily be designed by an individual and 
thus makes the system programmable. The protospacer adja-
cent motif (PAM) is a short sequence directly after the proto-

spacer that is recognized by the Cas enzyme and triggers its 
activity. The location of the double-strand break is related to 
the PAM, occurring three bases upstream of the PAM in the 
case of Cas9 (Fig. 1A).

The actual genome editing occurs in the process of repair-
ing double-strand breaks created by the CRISPR-Cas system. 
Two main pathways are responsible for such repair: homolo-
gy-directed repair and non-homologous end joining (NHEJ), 
with NHEJ predominant in mammalian cells (Fig. 1A). The ho-
mology-directed repair strategy requires a donor template with 

Fig. 1. CRISPR-based genome editors. A: Schematics of CRISPR-Cas9 and the results of CRISPR-Cas9-mediated genome editing. B: Schematics of base 
editors and the results of base editing. C: Schematics of prime editors and the results of prime editing. Cas9-induced cleavage sites are indicated with red 
vertical dashed lines. sgRNA, single guide RNA; PAM, protospacer adjacent motif; pegRNA, prime editing guide RNA; RT, reverse transcriptase.
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homology to the context sequence, which integrates into a dou-
ble-strand break site and results in precise genome editing. 
Genome editing with homology-directed repair has been per-
formed for quite a long time, but the efficiency of this process 
has been greatly enhanced by the CRISPR-Cas system. By us-
ing homology-directed repair, precise corrections, insertion of 
mutations, or insertion of genes of interest can all be done, al-
though the co-delivery of donor templates is needed. Addition-
ally, the efficiencies are generally low, and the process only oc-
curs in dividing cells. On the other hand, NHEJ repairs a double-
strand break in an almost stochastic manner, which results in 
small insertions or deletions at the double-strand break site. 
The final outcomes can vary depending on the repair, which 
frequently induces frameshift mutations resulting in depletion 
of target gene function. Although this strategy cannot induce 
precise mutations, it does not require a donor template, occurs 
in both dividing and non-dividing cells, and is generally more 
efficient. 

Advances involving Cas9 variants
Since the first introduction of the CRISPR-Cas9 system, nu-
merous Cas9 variants have been discovered or engineered. 
First, Cas9 orthologs from various bacterial species were dis-
covered. Cas9 from Streptococcus pyogenes (SpCas9)1,3,4 was 
the version initially used in genome editing, and smaller-sized 
variants, such as Cas9 from Streptococcus aureus (SaCas9),5 
Neisseria meningitides (NmeCas9),6 or Campylobacter jejuni 
(CjeCas9),7 were found later. These variants recognize different 
PAM sequences and differ greatly in protein size, adding diver-
sity to the toolkit. Second, different types of Cas enzymes have 
been discovered, and now several types of templates can be 
modified depending on the type of Cas enzyme. For example, 
Cas9 and Cas12 enzymes can cut DNA sequences, whereas 
Cas13 enzymes target RNA sequences.8 Third, high-fidelity 
variants, such as eSpCas9(1.1),9 SpCas9-HF1,10 HypaCas9,11 
and evoCas9,12 were engineered to increase the specificity and 
clinical safety of genome editing outcomes. In general, increased 
fidelity is associated with reduced editing efficiency.13 Fourth, 
variants recognizing different PAMs were engineered to widen 
the targetable range of Cas9. Variants, such as xCas9,14 Cas9-
NG,15 and SpRY,16 each recognize distinct PAM sequences, 
which enables the editing of previously non-targetable ge-
nomic sites.

Advances involving new genome editors 
With the development of Cas9 variants, new genome editors 
were engineered to enable precise genome editing in a differ-
ent way. First, the fusion of a Cas9 nickase with a cytidine or ad-
enosine deaminase resulted in the invention of base editors 
(Fig. 1B), which enabled single nucleotide conversions in the 
genome. The guide RNA works the same way as before, guid-
ing the Cas nickase to the target site. Then, the deaminase at-
tached to the Cas9 nickase converts a single nucleotide within 

the editing window, which is normally between the 3rd to 8th 
nucleotide of the protospacer. Specifically, cytosine base edi-
tors use a cytidine deaminase to convert C to T,17 and adenine 
base editors use an adenosine deaminase to convert A to G.18 
Because point mutations account for more than half of all known 
pathogenic genetic variants in humans,19 base editors hold 
large therapeutic potential for correcting disease-causing mu-
tations in the clinic. Most importantly, Cas9 nickases rarely in-
duce double-strand breaks and greatly decrease unnecessary 
NHEJ-mediated genomic alterations, which is critical for clin-
ical applications.

Most recently, researchers attached a reverse transcriptase 
onto a Cas9 nickase, resulting in the creation of prime editors 
(Fig. 1C), which can generate almost any type of genome edit 
and therefore hold the greatest potential among systems de-
veloped to date.20 Here, the reverse transcriptase is paired with 
a prime editing guide RNA (pegRNA), which acts both as a guide 
RNA for the Cas9 nickase and an RNA template for the reverse 
transcriptase to deliver the desired edit into the genome. With 
prime editing, all types of point mutations, insertions, and de-
letions can be precisely inserted or corrected simply by design-
ing the appropriate pegRNA sequence, greatly expanding the 
capacity of the genome editing toolkit. Prime editing also pro-
duces very low levels of unintended edits, compared to con-
ventional genome editors, and thus would be much safer to 
use. Therefore, although there is still much to be developed in 
this area, these new genome editors point to a brighter future 
for the application of CRISPR-based genome editing. 

Delivery of the CRISPR system
Delivering the CRISPR system to a therapeutic target is critical 
for achieving efficient genome editing.21 Delivery methods can 
differ a great deal depending on the therapeutic approach, which 
can be divided into ex vivo and in vivo strategies. In an ex vivo 
strategy, genome editing takes place in isolated patient-de-
rived cells, after which the engineered cells can be expanded 
and re-introduced into the patient. In this case, the CRISPR sys-
tem can be delivered into the cells using plasmid vectors, ribo-
nucleoprotein complexes, nanoparticles, or viral vectors. Ex 
vivo delivery has several advantages. First, the delivery occurs 
on a cellular level, where the efficiency is generally higher, and 
can be easily assessed before clinical application of the cells. 
Additionally, the CRISPR system is not introduced into the body, 
which decreases the possibility of unnecessary genomic chang-
es in non-target tissues. Finally, patient-derived cells are used, 
so there is less concern about host immune responses. How-
ever, patient-derived cells can be difficult to isolate, culture, and 
expand, which greatly limits the range of treatable disorders. In 
addition, when these genome-edited cells are re-introduced 
into patients, often only a limited fraction of the cells function-
ally integrate into the relevant tissue. 

On the other hand, in vivo genome editing takes place inside 
human tissues and can be applied to a broader range of dis-
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eases. In this case, the CRISPR system is mostly delivered by 
nanoparticles or viral vectors. However, this method is much 
more complicated than an ex vivo strategy because multiple 
physical barriers may exist and host immune responses can 
occur, decreasing the efficiency of CRISPR system delivery and 
resulting in lower rates of intended genome editing. 

Adeno-associated virus (AAV) has been widely used for in 
vivo genome editing due to its high transduction efficiency. The 
biggest challenge with using AAVs is that there is a size limit for 
the delivered gene of interest, which is approximately 4.7 kilo-
bases, limiting the delivery of sequences encoding large pro-
teins, such as SpCas9, base editors, and prime editors, togeth-
er with sequences encoding the guide RNAs. Several strategies 
have been developed to solve this problem: the genome editor 
can be split into two parts and delivered separately, which can 
later be combined and become fully functional, using splice re-
ceptors or inteins,22-24 or smaller-sized Cas9 variants encoded 
by sequences that fall below the size limit, such as SaCas95 or 
CjCas9,7 can be used. However, recent studies have reported 
integrations of the AAV genome into double-strand break sites 
generated by Cas925 and immune responses against AAV cap-
sid proteins after exposure,26 raising safety and efficacy issues; 
this problem must be addressed in future research. 

Compared to viral vectors, non-viral delivery systems pos-
sess many advantages: their cargo size is more flexible, they 
elicit less of an immune response, and they can be modified to 
target specific organs.27 Many types of non-viral delivery vec-
tors, including lipid nanoparticles, gold nanoparticles, and ex-
tracellular vesicles, are being explored for use in the delivery 
of the CRISPR system.28 Recently, lipid nanoparticles were used 
to deliver CRISPR-Cas9 for the treatment of a genetic disease 
in a human clinical trial,29 highlighting the importance of bio-
material science in clinical applications. There is still much to 
be understood in this emerging field, which we believe will pave 
the road to safe and efficient gene therapy in the near future. 

CLINICAL APPLICATIONS OF 
CRISPR-BASED GENOME EDITING 

Ex vivo genome editing 
The first clinical trial on CRISPR-based ex vivo genome edit-
ing attempted to treat human immunodeficiency virus type 1 
(HIV-1) infection.30 Disruption of the CCR5 gene, which en-
codes an important co-receptor for viral entry, was induced by 
nucleofection of ribonucleoprotein complexes targeting CCR5 
into patient-derived hematopoietic stem and progenitor cells 
(HSPCs), which were subsequently transferred back to the pa-
tient. A 27-year-old male with HIV-1 infection and acute lym-
phoblastic leukemia received the treatment and showed suc-
cessful transplantation and long-term engraftment of CRISPR-
edited HSPCs. CCR5 disruption efficiencies ranged from 5.2% 
to 8.3% in bone marrow cells over 19 months, which was not 

adequate to achieve the curative target (ClinicalTrials.gov, 
NCT03164135).

Recently, a clinical trial attempting to treat severe monoge-
netic diseases with CRISPR-based genome editing reported 
promising results.31 Sickle cell disease and beta-thalassemia 
represent distinct groups of inherited hemoglobinopathies 
caused by mutations in the hemoglobin beta-subunit (HBB) 
gene, which lead to mutant, reduced, or absent beta-globin 
proteins. In this study, rather than the pathogenic HBB gene it-
self, an enhancer of the BCL11A gene, which is a transcription 
factor repressing gamma-globin synthesis, was targeted to re-
store the production of fetal hemoglobin and compensate for 
the mutated HBB gene. Patient-derived HSPCs were edited 
with CRISPR-Cas9 with a sgRNA targeting the BCL11A enhanc-
er to produce gene-edited HSPCs called CTX001. One patient 
with transfusion-dependent beta-thalassemia and one patient 
with sickle cell disease were infused with a single dose of CTX001 
after myeloablation. High edited allele frequencies and levels 
of fetal hemoglobin were maintained, and both patients avoid-
ed disease-related transfusion events over 21.5 and 16.6 months. 
Although a few serious adverse events were present in both 
patients (neutropenic pneumonia and veno-occlusive liver 
disease with sinusoidal obstruction syndrome in Patient 1; 
sepsis with neutropenia, cholelithiasis, and abdominal pain 
in Patient 2), they resolved with appropriate treatment. These 
trials are ongoing, with additional preliminary results broadly 
consistent with the original findings32,33 (ClinicalTrials.gov, 
NCT03655678, NCT03745287).

CRISPR-based ex vivo genome editing has also been applied 
to the treatment of refractory cancers.34-36 The basic concept 
here is to enhance the natural anti-tumor responses of cyto-
toxic T cells by the removal of immune checkpoint modulator 
genes via CRISPR-Cas9. Two clinical trials using this strategy 
were recently published, with mixed success. In the first report, 
researchers attempted to treat various advanced, refractory 
cancers, including multiple myeloma and liposarcoma, via 
CRISPR-Cas9 genome editing.34 For this purpose, T cells were 
isolated from cancer patients and engineered with CRISPR-
Cas9 to remove the endogenous T cell receptor (TCR) and im-
mune checkpoint molecule programmed cell death protein 1 
(PD-1). Specifically, deletion of the TCR α chain (TRAC) gene, 
TCR β chain (TRBC) gene, and PDCD1 gene was induced by 
electroporation of ribonucleoprotein complexes into patient-
derived T cells. The edited T cells, named “NYCE” (NY-ESO-1–
transduced CRISPR 3X edited cells), were subsequently inject-
ed into the patients intravenously. A total of 3 patients received 
treatment and showed stable engraftment of engineered T 
cells, although editing frequencies of the target genes in periph-
eral blood mononuclear cells were relatively low at 5% to 10%. 
No significant off-target editing or serious adverse events were 
noted. Clinically, only one patient showed tumor regression 
limited to early stages of treatment, and all tumors eventually 
progressed, resulting in termination of the trial (ClinicalTrials.
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gov, NCT03399448).
Another similar trial, reported shortly thereafter, attempted 

to treat refractory non-small cell lung cancer with CRISPR-en-
gineered patient-derived T cells by targeting the PD-1 gene.35 
Specifically, disruption of the second exon of the PD-1 gene 
was induced by electroporation of Cas9- and sgRNA-encoding 
plasmids into patient-derived T cells. A total of 12 patients were 
treated; they showed stable viability and expansion of edited 
T cells, although the median gene editing efficiency was quite 
low at 5.81%. No significant off-target editing or serious ad-
verse events were present. Clinically, only 2 patients showed 
stable disease at 8 weeks, all patients eventually had disease 
progression, and 11 patients died of disease progression (Clini-
calTrials.gov, NCT02793856). 

In vivo genome editing 
In the first report of CRISPR-based in vivo genome editing, this 
technology was applied to transthyretin amyloidosis, or ATTR 
amyloidosis, which results from the accumulation of misfold-
ed transthyretin (TTR) protein in tissues.29 ATTR amyloidosis is 
a monogenic disease, and almost all TTR proteins are produced 
in the liver, which makes the condition an excellent target for 
CRISPR-based in vivo genome editing. NTLA-2001, a liver-tro-
phic lipid nanoparticle system containing Cas9 mRNA and 
sgRNA targeting the human TTR gene, was designed to reduce 
circulating TTR protein levels in humans. Six patients with TTR 
mutations and sensory polyneuropathy were treated with a 
single injection of NTLA-2001, which reduced serum TTR lev-
els by 52% in the low-dose group and 87% in the high-dose 
group after 4 weeks, with minimal side effects. The study is 
currently ongoing; serial measurements will continue to con-
firm the long-term durability and safety of the treatment (Clin-
icalTrials.gov, NCT04601051). 

Although the results have not been reported yet, many groups 
are attempting to use CRISPR-based in vivo genome editing to 
treat monogenic diseases, including Leber congenital amauro-
sis 10 (ClinicalTrials.gov, NCT03872479). Tables 1 and 2 list on-
going clinical trials using ex vivo and in vivo CRISPR-based ge-
nome editing. Furthermore, extensive research on animal models 
continues to provide promising targets for further applications, 
which will be discussed in the next section.

Animal studies in the laboratory
Leber congenital amaurosis (LCA, OMIM #204000) comprises 
a group of early-onset childhood retinal dystrophies, with each 
subtype caused by mutations in different genes. LCA type 10 
(LCA10, OMIM #611755) is caused by mutations in the CEP290 
gene. CRISPR-based genome editing has been applied to hu-
manized LCA10 mouse models; wild-type CEP290 expression 
was effectively restored by subretinal injection of a single AAV 
encoding both SaCas9 and sgRNA.37 LCA type 2 (LCA2, OMIM 
#204100) is caused by mutations in the RPE65 gene. The rd12 
mouse model of LCA2 was subjected to subretinal injection of Ta
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two AAVs encoding 1) SpCas9 and 2) sgRNA and donor DNA, 
resulting in the recovery of retinal function.38 Recently, the 
same mouse model was successfully treated with subretinal 
injection of adenine base editors using RNPs39 or intein-medi-
ated split AAV vectors,40 and prime editors using trans-splicing 
split AAV vectors,41 showing promise in therapeutic genome 
editing with new genome editors. 

Retinitis pigmentosa (OMIM #268000), which refers to a het-
erogeneous group of inherited ocular diseases that result in 
progressive retinal degeneration, consists of 92 different phe-
notypes and is caused by mutations in over 200 genes. AAV-
mediated gene transfer to treat retinitis pigmentosa has already 
been approved as the first AAV gene therapy in history,42 but 
basic studies on CRISPR-based genome editing for this purpose 
only started in 2016. Since then, many CRISPR-based approach-
es, each targeting a different gene (Nrl,43,44 Mertk,45 Pde6b,46,47 
Rho,48,49 and RPGR50), have achieved success in animal models. 
Specifically, the Nrl gene was depleted via NHEJ or repressed 
via an approach called CRISPR interference, both instigated 
by AAV vector delivery of CRISPR components, and the Mertk 
gene was corrected with a novel method called homology-in-
dependent targeted integration. The Pde6b gene was corrected 
via homology-directed repair, and the Rho gene was depleted 
via NHEJ, both induced by in vivo electroporation of Cas9-en-
coding plasmids. 

Hereditary tyrosinemia type 1 (HT1, OMIM #276700), a le-
thal genetic disorder caused by mutations in the fumarylace-
toacetate hydrolase gene, results in the accumulation of toxic 
metabolites that lead to severe liver damage. CRISPR-based ge-
nome editing was first used in humanized mouse models of 
HT1 in 2014, and resulted in correction of the pathogenic mu-
tations and rescue of the lethal phenotype.51 Mutation-correct-
ed hepatocytes, which display a growth advantage over mutat-
ed hepatocytes, can repopulate the liver even at a very low 
editing frequency. Following this initial work, Cas9 variants 
(NmeCas9,52 St1Cas953), base editors,54,55 and prime editors41 
have successfully rescued the lethal HT1 phenotype in adult 
mouse models. 

Phenylketonuria (PKU, OMIM #261600) is an autosomal re-
cessive liver disease caused by mutations in the phenylalanine 
hydroxylase gene, which may cause mental retardation due to 
the neurotoxicity of metabolites. In adult mouse models, intra-
venous injection of AAVs encoding an intein-split cytosine base 
editor successfully restored blood phenylalanine levels and re-

versed the PKU-associated fur color.56 Later, the conventional 
homology-directed repair approach also successfully amelio-
rated symptoms with the help of chemical modifiers.57,58 

Ornithine transcarbamylase (OTC) deficiency (OMIM #311250), 
an X-linked metabolic disorder characterized by hyperammo-
nemia, is caused by mutations in the OTC gene (OMIM *300461). 
Using a dual AAV system containing 1) SaCas9-encoding se-
quences and 2) sgRNA-encoding sequences and donor DNA, 
OTC mutations were corrected by homology-directed repair, 
resulting in increased survival in mouse models.59

Duchenne muscular dystrophy (DMD, OMIM #310200) is 
an inherited X-linked disease caused by mutations in the dys-
trophin gene. CRISPR-based genome editing was first used to 
correct mutations and restore expression of dystrophin in 
mouse zygotes in 2014.60 After this initial work, many research 
groups reported successful CRISPR-Cas9-mediated restora-
tion of dystrophin expression, in adult mouse,61-63 dog,64 and 
pig65 models of DMD. Adenine base editing also effectively re-
versed DMD pathology in mouse embryos and adult mouse 
models.66

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disorder in which the progressive death of motor neurons re-
sults in paralysis. Several causative genes have been identified 
as underlying hereditary ALS, and mutations in SOD1 (OMIM 
*147450) are responsible for most cases of ALS type 1 (ALS1, 
OMIM #105400). Recently, intravenous injection of AAV en-
coding SaCas9 and SOD1-targeting sgRNA was shown to de-
lay disease onset and improve motor functions in ALS mouse 
models.67

Glycogen storage disease Ia (GSD1A, OMIM #232200), also 
known as von Gierke disease, is caused by pathogenic muta-
tions in the glucose-6-phosphatase alpha subunit (G6PC) gene 
that result in the accumulation of glycogen throughout the body. 
Recently, the highly prevalent G6PC p.R83C variant was sub-
jected to in vivo CRISPR-based genome editing in mouse mod-
els using two AAVs, one encoding SaCas9 and the other encod-
ing sgRNA,68 resulting in normalization of G6Pase activity, 
reductions in serum insulin levels, and long-term survival.

Hutchinson-Gilford progeria syndrome (HGPS, OMIM 
#176670) is caused by mutations in the lamin A (LMNA) gene. 
Recently, the LMNA c.1824 C>T mutation, which is found in 
over 90% of patients with HGPS, was corrected in transgenic 
mouse models using AAVs encoding split versions of the ade-
nine base editor, resulting in improvement of vascular pathol-

Table 2. Clinical Trials Involving In Vivo CRISPR-Based Genome Editing

Status Disease Target Gene Drug Delivery Started Phase Clinical Trial No Ref
Recruiting Leber congenital amaurosis 10 CEP290 EDIT-101 AAV, serotype 5 Mar 2019 Phase I/II NCT03872479

Active Refractory herpetic viral keratitis UL8, UL29 BD111
mRNA, 
  Lentiviral particle

Sep 2020 Phase I/II NCT04560790

Recruiting Hereditary transthyretin amyloidosis TTR NTLA-2001
mRNA, 
  Lipid nanoparticle

Nov 2020 Phase I NCT04601051 [29]

AAV, adeno-associated virus.
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ogy and extension of life span.69 This report demonstrated the 
potential of new genome editors for directly correcting point 
mutations to treat genetic disorders.

FUTURE DIRECTIONS

In the future, the application of base editors and prime editors 
in human trials will be very exciting to watch, because many 
genetic disorders are caused by point mutations, which can be 
corrected by new types of genome editors with very low levels 
of unintended genomic alterations. Basic researchers are striv-
ing to increase the editing efficiency of base editors and prime 
editors, and given that positive reports in animal studies have 
already been achieved, we expect a striking increase in the num-
ber of clinical trials involving CRISPR-based genome editing 
with these new tools. 

Additionally, another exciting possibility is on the horizon: 
treating common, non-Mendelian disorders, such as osteoar-
thritis,70 hypertension,71 inflammatory skin disorders,72 and Al-
zheimer’s disease,73,74 with CRISPR-based genome editing. 
These studies attempt to prevent the development or progres-
sion of multifactorial diseases by targeting genes with critical 
roles in disease pathophysiology. For instance, interleukin-1β 
and MMP13, which are among the main catabolic factors in-
volved in osteoarthritis development, were ablated to prevent 
the progression of osteoarthritis in surgically induced mouse 
models.70 Angiotensinogen, a key player in the renin-angioten-
sin system that regulates blood pressure, was deleted to pre-
vent the development of hypertension in spontaneous hyper-
tensive rats.71 The NLRP3 inflammasome, which is responsible 
for the activation of inflammatory responses, was disrupted in 
order to alleviate common inflammatory skin disorders, such 
as psoriasis or atopic dermatitis, in mouse models.72 Finally, 
beta-secretase 1, which is required for the production of amy-
loid beta proteins, was targeted to suppress cognitive deficits 
in mouse models of Alzheimer’s disease.74 Although there is 
still very much to be developed, targeting just the right genes 
that can inhibit pathologic pathways might provide effective 
treatments for chronic disorders for which there are currently 
only a few treatment options and no definite cure.

In conclusion, extensive research in the CRISPR-based ge-
nome editing field is bringing cures for human genetic diseas-
es closer to being in our grasp. Although efficacy and safety is-
sues remain a large concern, we cannot deny that CRISPR-based 
genome editing will soon be prevalent in clinical practice. We 
watch with great enthusiasm, as we delete the letters ‘im’ from 
‘impossible’ with CRISPR-based genome editing to make things 
‘possible’. 
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