
Ketogenic diets are high in fat, low in carbohydrates, and contain an adequate amount of pro-
tein. In addition to the classic ketogenic diet, three alternative types of ketogenic diet therapies 
(KDTs) have emerged. In addition to clarifying the indications for early treatment using KDTs, on-
going research over the past decades has led to the recognition of their contraindications and 
adverse effects. Recent studies focusing on the targeted therapeutic range of KDTs are expected 
to elucidate the precise mechanisms by which they alleviate certain epilepsy syndromes and oth-
er disorders. In this review, we discuss recent advances in KDTs, focusing on six issues: the selec-
tion of a specific KDT; the use of KDTs for febrile infection-related epilepsy syndrome and su-
per-refractory status epilepticus; the use of KDTs for infants with refractory epilepsy; links be-
tween the gut-brain axis and KDTs; triheptanoin; and the use of KDTs for disorders other than 
pediatric epilepsy.
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Introduction 

Ketogenic diet therapies (KDTs) are the first-line treatment for 
glucose transporter 1 deficiency syndrome (Glut1DS) and pyru-
vate dehydrogenase deficiency. KDTs are also an early course of 
treatment for several epilepsy syndromes, including Dravet syn-
drome, West syndrome (WS), and epilepsy with myoclonic atonic 
seizures, and should be offered to children who fail to benefit from 
two anti-epileptic drugs (AEDs) [1]. Based on clinical experience 
and research over the last decade, Kossoff et al. [1] updated recom-
mendations for the use of dietary therapies for pediatric epilepsy in 
2018 to include new indications, including febrile infection-related 
epilepsy syndrome (FIRES)/super-refractory status epilepticus 
(SRSE), Angelman syndrome, complex 1 mitochondrial disorders, 
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and Ohtahara syndrome. The updated recommendations also 
state that most centers prefer a non-fasting state at initiation of a 
KDT, making hospital admission optional; that although a diet can 
be selected from four major KDTs, the classic ketogenic diet (KD) 
is associated with a higher likelihood of a seizure-free outcome for 
children under 2 years of age, whereas alternatives to the classic KD 
are favored for adolescents and adults; and that additional lab tests 
(e.g., selenium, free and total carnitine) and electroencephalogra-
phy (EEG) should be performed. 

High-fat/low-carbohydrate diets induce production of ketone 
bodies (KBs), which become the primary source of energy for cell 
metabolism instead of glucose [2]. KDTs have a broad-spectrum 
therapeutic range than medications due to their multi-mechanism 
properties, with KBs directly inhibiting vesicular glutamate trans-
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port, altering metabolism by inhibiting glycolysis and increasing 
mitochondrial adenosine triphosphate (ATP) production, acti-
vating ATP-sensitive potassium channels to prevent neuronal ex-
citability, and increasing polyunsaturated fatty acid and decreasing 
reactive oxygen species by stimulating mitochondrial uncoupling 
proteins [3,4]. Thus, KDTs not only inhibit neuronal hyperexcit-
ability but also have neuroprotective effects that correct cellular 
energy failure and guard against epileptic brain damage [3]. Some 
researchers anticipate that KDTs will be replaced by drugs that 
mimic the actions of KDTs or directly stimulate ketogenesis in the 
liver, making these dietary treatments more similar to pharmaco-
logical therapy [5-7]. At present, however, this possibility seems 
questionable because different KDTs involve different subsets of 
anti-seizure mechanisms that can be targeted to individual pa-
tients. In this review, we focus on recent advances in KDTs for pe-
diatric epilepsy considering the following issues: selection of a 
specific KDT; use of KDTs for status epilepticus; use of KDTs for 
infants with refractory epilepsy (RE); links between the gut-brain 
axis and KDTs; triheptanoin; and use of KDTs for disorders other 
than pediatric epilepsy. 

Selection of a Specific KDT 

As compliance with the strict regimen of the classic KD is difficult, 
more flexible alternative variants have been employed. In addition 
to the classic KD, three other major dietary treatments—the mod-
ified Atkins diet (MAD), low glycemic index treatment (LGIT), 
and medium chain triglyceride (MCT) diet—are now available for 
patients with epilepsy. 

The MAD typically consists of a 1:1 to 1.5:1 ketogenic ratio, 
achieves more than 50% seizure reduction in two-thirds of children 
with RE [8-11], and is well tolerated by adolescents and adults [12] 
and those who do not adhere to the classic KD. Some studies re-
port that the MAD is as effective as the classic KD; although, the 
classic KD is associated with a higher likelihood of seizure freedom 
in children under 2 years of age with RE [13,14] and epileptic indi-
viduals with myoclonic atonic seizures [13]. In addition to its ad-
vantages in regard to growth and physical abilities, the MAD can 
be a good option for long-term maintenance for Glut1DS patients 
[15]. Nevertheless, for infants with Glut1DS, the classic KD is still 
considered superior in the early course of treatment and is recom-
mended for long-term maintenance if possible [1]. 

The LGIT involves swapping high glycemic index (GI) foods 
for low GI alternatives. The GI describes the tendency of foods to 
increase blood glucose, compared with an equivalent amount of 
reference carbohydrate, usually glucose. Thus, the LGIT uses a lib-
eralized but still low carbohydrate intake, with carbohydrates sup-

plied only in the form of low GI foods and allows a more flexible 
lifestyle for patients by permitting increased intake of carbohy-
drates [16]. It achieves around 50% seizure reduction in half of pe-
diatric patients with RE [17,18] and is useful for those who cannot 
tolerate the classic KD or MAD [17]. Considering its high efficacy, 
the LGIT is used as an alternative or supplementary treatment for 
Angelman syndrome [19,20]. 

The MCT diet, which produces MCT (C6-12) that are more 
ketogenic than long-chain triglycerides, was introduced by Hutten-
locher in 1971 [21]. The efficacy of the MCT diet is comparable 
to that of the classic KD; over half of children achieve more than 
50% seizure reduction with good tolerance and few side effects 
[22,23]. In animal models with MCT diet, KB concentrations in 
blood plasma are poorly correlated with seizure control [24,25], 
and there is a lack of evidence that KBs participate in stopping sei-
zures [26]. This suggests that MCTs, rather than KBs, block sei-
zure onset and raise the seizure threshold [27-29]. MCTs, which 
consist of approximately 60% octanoic acid (C8) and 40% deca-
noic acid (C10), exert anti-seizure effects via α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) re-
ceptor inhibition [26] as well as peroxisome proliferator-activated 
receptor γ (PPARγ) activation and mitochondrial biosynthesis 
[29] by using decanoic acid rather than octanoic acid [26,29,30]. 
In an animal model of acute seizures, decanoic acid increased sei-
zure thresholds in both the 6 Hz stimulation test (a model of 
drug-resistant seizures) and maximal electroshock test (a model of 
tonic-clonic seizures), although it did not block pentetrazol-in-
duced seizures (proposed to be a model of absence seizures) [30]. 
Decanoic acid is considered to be a PPARγ agonist that increases 
brain mitochondrial function and ATP synthesis, thereby increas-
ing seizure threshold [29,31], but it does not alter glycolytic en-
zymes [32]. MCTs have the direct and selective action of inhibit-
ing AMPA receptors in an animal model, which has been consid-
ered to be the first targeted anti-seizure mechanism of the MCT 
diet [26]. This gives rise to the question of whether the MCT diet 
can be replaced by AMPA receptor-blocking agents such as peram-
panel [33]. However, a recent study showed a synergistic interac-
tion between perampanel and decanoic acid, as perampanel binds 
at a different AMPA receptor site than decanoic acid [34].  

Use of KDTs for Status Epilepticus 

Although FIRES and SRSE are included in the updated recom-
mendations, the efficacy of KDTs was first shown for refractory 
status epilepticus (RSE) as described by Kossoff and Nabbout 
[35] in 2013. At that time, 10 retrospective studies including 32 
children and adults with RSE showed dramatic beneficial effects of 
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stable at long-term follow-up. Another study reports specific etio-
logic differences in long-term seizure-free outcomes among 115 
patients who initiated KDTs before 1 year of age and shows that 
seizure freedom within the first 3 months could be a predictor of 
long-term seizure freedom [55]. A similar study including 109 pa-
tients with RE under 3 years of age with different etiologies re-
ports that patients with a genetic etiology were particularly good 
responders to KDTs [54], with nearly half of patients with a con-
firmed genetic abnormality showing more than a 50% reduction 
in seizure frequency. Nevertheless, most studies report a high effi-
cacy of KDTs for some specific epilepsy syndromes such as WS 
[53,56-59], epilepsy with myoclonic atonic seizures [14], and 
Dravet syndrome [60]. Around two-thirds of patients with WS 
experience a reduction in seizures with KDTs, and many show im-
provements in development, EEG activity, and number of concur-
rent AEDs [58]. Adrenocorticotropic hormone (ACTH) treat-
ment is associated with a high responder rate and quick cessation 
of spasms, but it has higher rates of relapse and adverse effects than 
KDTs [53]. In a recent study comparing efficacy and safety be-
tween KDTs and standard high-dose ACTH treatment in WS in-
fants [59], ACTH was associated with a higher rate of short-term 
remission among infants without prior treatment history of vigaba-
trin (VGB); however, it was also associated with a higher rate of re-
lapse and similar rate of seizure-free outcome as KDTs at long-term 
follow-up. Also, KDTs had a higher rate of seizure freedom in long-
term follow-up and a lower relapse rate in the short-term in infants 
with a prior treatment history of VGB. This study suggests that af-
ter VGB failure, a KDT could be a second-line treatment for WS. 

The Gut-Brain Axis and KDTs 

Several studies show that diversity in the diet significantly influenc-
es the composition of gut microbiota and the subsequent health of 
individuals [61]. Differences in the composition of gut microbiota 
between drug-sensitive/healthy control individuals and drug-resis-
tant epilepsy patients indicates the possible involvement of dysbio-
sis in the development of drug-resistant epilepsy [62]. Dysbiosis 
may enhance susceptibility to seizures and accelerate illness result-
ing from chronic stress; thus, restoration and remodeling of a 
healthy gut microbial population could control seizures and boost 
quality of life [63,64]. In this regard, KDTs may positively impact 
seizures via alteration of the gut microbiota. In two mouse models, 
KDTs altered the composition of gut microbiota, including reduc-
ing bacterial alpha diversity and increasing certain bacteria [65]. 
Moreover, high-dose antibiotics, which deplete gut microbiota, in-
crease seizure vulnerability in wild-type and Kna1–/– mice receiv-
ing KDTs. In this study, gut microbiota and KDTs with antiseizure 

KDTs, with 78% of patients becoming seizure-free and most re-
sponding within 7 to 10 days. Patients with FIRES are also report-
ed to be good responders to KDTs [36]. 

Recent studies with 10 or more patients report good outcomes 
of KDTs regardless of etiology and a low rate of complications in 
critically ill patients with RSE/SRSE [37-40]. For instance, more 
than half of patients achieved more than 50% seizure reduction 
within a median of 7 days, desired ketosis was reached within a 
median of 4 days, and most patients successfully weaned off con-
tinuous infusion of anesthesia within 2 weeks after initiation of a 
KDT. Relatively low rates of adverse effects were noted, but these 
included gastrointestinal disturbances, electrolyte imbalance, and 
ketoacidosis, with the main causes of discontinuation being pan-
creatitis and hypertriglyceridemia [38,39]. These outcomes are 
consistent with those of other studies with fewer than 10 patients 
[41-49], and patients with FIRES have also been found to respond 
quickly after KDT initiation [40,46,47]. Most patients are good re-
sponders, weaning off infusion and successfully reaching ketosis, 
but the number of AEDs did not change significantly before and 
after undertaking a KDT [40,43]. The age of patients has varied 
across studies, but even 6 to 10-week-old neonates with RE are re-
ported to tolerate KDTs well [42,50]. Intravenous (IV) KDT is 
recommended for patients with underlying concomitant ileus 
[41,44,48], and early administration of IV KDT should be consid-
ered before switching to an enteral route [44]. There are no signifi-
cant differences in the time to reach ketosis between IV and enteral 
routes, although hypertriglyceridemia and pancreatitis are fre-
quently associated with IV KDT. Considering that critically ill pa-
tients with FIRES/SRSE receive many concurrent medications 
and are prone to malabsorption, IV KDT could be temporarily 
substituted for an enteral route [41]. Nonetheless, before evaluat-
ing the efficiency and safety of KDTs among FIRES/SRSE pa-
tients, factors such as concomitant treatments, variations in timing 
before the initiation of KDTs, the specific outcomes assessed, and 
possible publication bias should be considered [38]. 

Use of KDTs for Infants with RE 

Contrary to a conventional view, under 2 years of age may be the 
optimum time to initiate a KDT because of the metabolic advan-
tages of infants [50-55]. Numerous studies provide evidence for 
the advantages of using KDTs in infants with RE. Infants under 1.5 
years of age have a higher chance of achieving seizure freedom than 
children over 1.5 years of age, and, interestingly, infants under 9 
months of age also have a higher likelihood of achieving seizure 
freedom, demonstrating the ease of KDT administration and good 
outcomes before solid feeding [51]. These outcomes remained 
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properties were correlated with decreases in systemic gamma-glu-
tamylated amino acid and enhanced γ-aminobutylic acid (GABA) 
levels in the hippocampus. 

Similar to the results of animal studies, children with RE show 
alterations in the specific richness and diversity of gut microbiota, 
such as increased Bacteroidetes and decreased Firmicutes and Actin-
obacteria, after 6 months of KDT [66]. Moreover, the abundance 
of Clostridiales, Clostridia, Ruminococcaceae, Lachnospiraceae, Alisti-
pes, and Rikenellaceae were significantly increased in those who 
failed to respond to KDT compared with good responders. The 
authors of this study speculated that specific microbiota might be 
therapeutic targets in the treatment of epilepsy and could serve as 
biomarkers indicating the efficacy of KDT. 

Triheptanoin 

Triheptanoin is a triglyceride composed of three heptanoate (C7 
fatty acid) that is an artificial tasteless oil easily dissolved in food. 
Triheptanoin is used to treat many metabolic disorders because it 
has an anaplerotic role that replenishes substrates involved in the 
tricarboxylic acid (TCA) cycle and the ability to bypass metabolic 
blockade induced by enzyme deficiency [67]. Several studies using 
acute and chronic seizure mouse models demonstrate that trihep-
tanoin exerts anti-seizure effects by increasing TCA intermediates 
and activating mitochondrial function, known as anaplerosis 
[68,69]. Calvert et al. [70] performed a study including 12 chil-
dren with RE aged 3 to 18 years old and found that (1) children 
tolerated 30 to 100 mL triheptanoin per day (median, 55.5 mL); 
(2) the most frequent adverse effect was gastrointestinal distur-
bance; (3) eight children completed the trial, of whom four safely 
completed an extended treatment period up to 909 days; (4) five 
children showed > 50% reduction in seizure frequency, including 
one patient who was seizure-free for 6 months; (5) children who 
previously received KDT showed better tolerance and outcomes 
than those who initiated KDT for the first time, presumably as a 
result of good parental compliance; and (6) no drug interactions 
were observed. Therefore, triheptanoin could possibly adminis-
tered concurrently with AEDs. Another study in adults with RE 
reported that MCT or triheptanoin treatment was safe, feasible, 
and well tolerated as an add-on treatment [71]. In this dou-
ble-blind study including 34 patients who took triheptanoin 
(n = 17) or MCT oil (n = 17) mixed into food, 11 and nine pa-
tients completed the study and showed good tolerance of the 
treatment at a median dose of 55 and 59 mL for 3 months, respec-
tively, with reported side effects of diarrhea and abdominal pain. 
Although the aim of this study was not to investigate the efficacy 
of KDTs, it showed that MCT had good outcomes for focal un-

aware seizures. Recent studies examining the use triheptanoin for 
treating Glut1DS [72-74] show that besides reducing glucose, its 
main benefit is a reduction in non-paroxysmal events.  

KDTs for Other Neurologic Disorders 

KDTs have been used for many neurologic disorders other than 
pediatric epilepsy, such as adult epilepsy, autism, Alzheimer’s dis-
ease, and brain tumors [75]. The use of KDTs for treating autism 
is increasingly reported and, according to a systematic review in 
2015, eight studies (five human and three animal) had tested the 
effect of KDTs in autism [76]. A prospective pilot study showed 
that 18 out of 30 children with autism showed better scores on an 
autism rating scale after KDT [77]. In addition, MCT was de-
scribed as a potential supplement for mild Alzheimer’s disease 
[78], and KDTs were proposed as a treatment for Down syn-
drome [79]. 

Another current interest is the potential anti-tumor effect of 
KDTs. Studies suggest that KDTs inhibit tumor cell growth by al-
tering cell metabolism, which seems to enhance the response of 
other anti-tumor treatments [80,81]. A study with two glioma pa-
tients reported that KDTs as a monotherapy seemed ineffective in 
retarding tumor growth but had more promising effects when 
combined with standard treatments [82]. These patients received 
an energy-restricted KD that seemed effective in controlling the 
progression of primary brain tumors. 

Conclusion 

KDTs have diversified to alternative forms for different indications 
that can be selected based on the specific family and child situation. 
Recommendations for the use of KDTs have been strengthened by 
an increasing number of studies testing targeted therapeutic ranges. 
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