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INTRODUCTION

Organ transplantation is the preferred treatment for end-stage 
organ failure. However, due to the alloimmune response, the 
life-long use of immunosuppressants is essential. Currently, 
combination immunosuppressive therapy is applied to sup-
press alloimmune responses and minimize the detrimental 
side effects of immunosuppressants.1 The standard immuno-
suppressants are directed at various stages of lymphocyte acti-
vation/proliferation, especially T cells, and are often combined 
with anti-inflammatory drugs to inhibit cytokine synthesis.2 
However, these prominent immunosuppressants have immu-
nodeficiency complications inducing infection, malignancy, 
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and nonimmune complications such as nephrotoxicity, car-
diovascular, and metabolic risks.3 Future immunosuppressive 
therapy is targeted at reducing immunosuppression-related 
complications and increasing graft survival. Current strategies 
include developing highly selective immunosuppressive agents, 
immunomodulation, and induction of tolerance.4

Thalidomide (TM) was prescribed as a sedative and antiemet-
ic for morning sickness in the 1950s. However, it was withdrawn 
from the market in the early 1960s due to its teratogenic com-
plications.5 TM was recognized as an effective treatment for 
erythema nodosum leprosum in 1965 and was subsequently 
researched for other potential therapeutic applications.6,7 There-
after, the anti-angiogenic, anti-neoplastic, and immunomodu-
latory features of TM have been reported.8 TM has been proven 
to be clinically effective on myelodysplasia and multiple my-
eloma (MM).9 Further clinical studies with TM were performed 
on selected malignancies and autoimmune diseases.5 The im-
munomodulatory effect of TM is attributed to the suppression 
of tumor necrosis factor (TNF)-α associated anti-inflammato-
ry activity, regulation of nuclear transcription factor-κB, and cy-
tokine production such as interferon-γ, chemokines, interleu-
kin (IL)-6, IL-12, and cyclooxygenase-2.5,10

Corticosteroids are one of the most potent anti-inflammato-
ry agents with immunosuppressive effects.11 Corticosteroids, 
such as dexamethasone (DX) or prednisolone, are associated 
with decreased cytokine production, lymphocyte proliferation, 
and changes in cellular trafficking.9 Due to these properties, 
corticosteroids have been used in the treatment of inflammato-
ry, autoimmune disease, and immunosuppressive protocols for 
organ transplantation.12 However, there are side effects involv-
ing most major organ systems that are associated with long-
term corticosteroid therapy.13,14 Therefore, the risk and benefits 
must be considered with corticosteroid usage. One strategy to 
minimize the side effects of corticosteroids is combining more 
specific anti-inflammatory or immunosuppressive drugs, pro-
moting a synergistic effect to reduce corticosteroid therapy.15 
Combinatorial therapy of TM and DX has been effective in the 
treatment of newly diagnosed MM and relapsed myeloma in the 
clinical field.16,17 TM and prednisolone combinatorial therapy 
was shown to be effective for nephritis in lupus-prone mice.18

Immune cells, such as T cells, B cells, macrophages, and den-
dritic cells (DCs), can participate in graft rejection or promote 
tolerogenic immune responses.19 Regulatory T cells (Tregs) play 
an imperative role in immunologic tolerance.19 Tregs inhibit ef-
fector T cell (Teffs) proliferation and promote tolerance through 
various signals, such as the production of IL-10, transforming 
growth factor (TGF)-β, and inhibition of antigen-presenting cells 
(APC) function.19,20 In clinical transplantation, allograft outcome, 
rejection, or tolerance often depends on the balance between 
Teffs and Tregs.21,22 Therefore, Tregs have been researched as a 
prospective target for inducing allograft tolerance.23,24 DCs are 
potent APCs, which play an important role in stimulating T 
cells and initiating primary immune responses.25,26 DCs have 

also been found to play a role in central and peripheral toler-
ance.19 DCs tolerize T cells to self-antigens, achieving self-toler-
ance, and alteration of this system may result in autoimmune 
diseases.26 In transplantation, allograft rejection is the result of 
both innate and adaptive immunity. Since DCs function in 
both immune responses and control immunity and tolerance, 
they are an important factor for immunosuppression and im-
munomodulation.27

Previous studies in our group have suggested that TM has 
immunomodulating effects by selectively suppressing CD4+ T 
cell subsets and changing the expression of selected TNF recep-
tor super families, including OX40, 4-1BB, and glucocorticoid-
induced TNF receptor-related protein.28 Co-treatment of TM 
and DX (TM/DX) increased cytotoxic T lymphocyte associated 
antigen-4 expression in CD4+ Teffs and CD4+ Tregs and in-
creased the corresponding ligands (CD80, CD86) of DCs, sug-
gesting the activation of DC-mediated tolerance effects.29-31 The 
competency of TM/DX combinatorial treatments for maintain-
ing a tolerogenic state or immune homeostasis was suggested.

Accordingly, we recognized TM/DX treatment as a prospec-
tive immunomodulatory drug in the transplantation field. The 
current study investigated the effects of TM and the combina-
torial treatment with DX on immune cells using a murine car-
diac allograft transplantation model. The effects on CD4+ T cell 
subsets and CD11c+ cells were analysed. We also examined the 
change of tolerogenic markers on DCs and their part in immu-
nomodulation with TM/DX treatment.

MATERIALS AND METHODS

Mice and reagents
For this study, 8- to 9-week-old male BALB/c (H-2d) mice and 
C57BL/6 (H-2b) mice were purchased from Orient Bio Inc. 
(Seongnam, Korea) and maintained according to the ethical 
guidelines of our institution.

The PE-Cy7-conjugated anti-mouse CD8, PerCP-Cy5.5-con-
jugated anti-mouse CD11c, PE-conjugated anti-mouse CD85k, 
FITC-conjugated anti-mouse CD44, PerCP-Cy5.5-conjugated 
anti-mouse FOXP3 antibodies, and the Fixation/Permeabili-
zation kit were purchased from eBioscience (San Diego, CA, 
USA). APC-Cy7-conjugated anti-mouse CD4 antibodies were 
purchased from Biolegend (San Diego, CA, USA). TM, DX, and 
red blood cell lysis buffer, and Histopaque 1.083 were purchased 
from Sigma-Aldrich (St Louis, MO, USA). Mouse IL-6 enzyme-
linked immunosorbent assay (ELISA) kit was purchased from 
BD Bioscience (San Jose, CA, USA).

Heterotopic cardiac transplantation and drug treatment
The animals were anesthetised with isoflurane during the en-
tire surgical procedure. Intraabdominal transplant of cardiac 
allografts from BALB/c (H-2d) donors to C57BL/6 (H-2b) recipi-
ents was performed as described by Niimi.32 The donor aorta 
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was anastomosed to the recipient’s abdominal aorta, and the 
donor pulmonary artery was anastomosed to the recipient’s 
adjacent vena cava using standard microvascular techniques 
with 10–0 nylon suture. Graft function was assessed daily by 
palpation. After transplantation, mice were injected daily with 
TM 100 mg/kg or DX 0.1 mg/kg or a combination of both TM 
and DX by intraperitoneal route until the time of graft loss, 
which was defined as the cessation of a palpable cardiac con-
traction.

Flow cytometry
To examine the effects of the drug treatments on immune cells, 
peripheral blood mononuclear cells (PBMC) and splenocytes 
were collected from recipient mice on postoperative day 7. Iso-
lated PBMC and splenocytes were incubated with the appro-
priately diluted antibodies for 40 min at 4°C. Activated CD4+ T 
cells (CD4+ Teffs) were stained with APC-Cy7-conjugated anti-
mouse CD4 and FITC-conjugated anti-mouse CD44 antibod-
ies, whereas CD4+ Tregs were fixed/permeabilized after stain-
ing with CD4 antibody for intracellular PerCP-Cy5.5-conjugated 
anti-mouse FOXP3 staining. Activated CD8+ T cells were stained 
with PE-Cy7-conjugated anti-mouse CD8 and FITC-conjugat-
ed anti-mouse CD44 antibodies. CD11c+ was used for DC mark-
ers. Flow cytometry was performed using a FACS Verse I or FACS 
Verse II flow cytometer (BD Biosciences). Data were analysed 
using FlowJo software, v10.0.7 (Tree Star, Inc., San Carlos, CA, 
USA). All experimental groups were compared to a sham con-
trol group (negative control group), which performed all surgi-
cal issues without a cardiac transplantation. Each experiment 
was repeated five times in each of the five groups; sham control 
(-), untreated (CTL), TM, DX, and TM/DX.

ELISA
Serum samples were collected from recipient mice on postop-
erative day 7 and immediately placed in -80°C until measure-
ment. IL-6 levels were measured by ELISA according to the 
manufacturer’s protocols (BD Bioscience).

Statistical analysis
Data are presented as means±standard error. The significanc-
es of experiments or intergroup differences were determined 
using the one-way ANOVA or Student’s t-test. The analysis was 
conducted with  Sigma plot 2.0 (Systat Software Inc., San Jose, 
CA, USA), and statistical significance was accepted for p val-
ues <0.05.

RESULTS

Graft survival on cardiac allograft transplantation 
model
The mean graft survival time of the untreated group (control; 
CTL) was 6.86±0.38 days. Single drug treatments of TM (100 

mg/kg) or DX (0.1 mg/kg) showed graft survivals of 7.5±0.55 
or 7.7±0.52 days, respectively. The combinatorial treatment of 
TM/DX exhibited the longest graft survival compared to the un-
treated, TM, and DX treated groups (10.0±0.89 days, p<0.01) 
(Fig. 1).

T cell subset change
In the PBMC analysis, CD4+CD44hi T cells, which indicate CD4+ 
Teffs, were increased in the untreated cardiac transplant group 
(115.1±9.56%) compared to the sham control group and were 
decreased with DX or TM/DX treatment. TM/DX treatment 
showed higher potency compared to DX treatment (TM/DX, 
88.6±2.96%; DX, 102.9±2.97%, p<0.001) (Fig. 2A and C). How-
ever, splenic CD4+ Teffs showed no difference between the treat-
ment groups (Fig. 2B and D). 

The frequencies of CD4+ Tregs (CD4+FOXP3+) increased and 
showed similar tendencies in both PBMC and spleen, which 
decreased after transplant (PBMC, 86.4±7.81%; spleen, 81.6± 
3.6%). The cell count recovered with TM treatment or combi-
natorial treatment of TM/DX. Interestingly, TM/DX treatment 
showed an up-regulating effect of the CD4+ Treg population 
compared not only with the untreated group, but also with the 
DX treatment group (Fig. 2). 

The frequencies of CD8+CD44hi T cells were not influenced 
by drug treatments in both PBMC and spleen (Supplementary 
Fig. 1, only online).

We analysed the ratio of CD4+FOXP3+/CD4+CD44hi T cells 
in PBMC and spleen. The ratio decreased after cardiac trans-
plantation (PBMC, 77.6±9.84%; spleen, 78.0±4.33%), and recov-

Group n Individual graft survival time (days) Mean graft survival time (days)

CTL 7 6, 7, 7, 7, 7, 7, 7 6.86±0.38

TM 6 7, 7, 7, 8, 8, 8   7.5±0.55

DX 6 7, 7, 8, 8, 8, 8   7.7±0.52

TM/DX 6 9, 9, 10, 10, 11, 11 10.0±0.89
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Fig. 1. Survival effects of thalidomide (TM) or dexamethasone (DX) or a 
combination of both TM and DX (TM/DX) treatments on murine hetero-
topic cardiac allograft transplantation model. The combinatorial treat-
ment of TM/DX exhibited the longest graft survival. (A) Mean graft sur-
vival time (control; CTL). (B) Percentage (%) of survival. Combinatorial 
treatment of TM/DX exhibited the longest graft survival compared to 
other treated groups (***p<0.001 vs. CTL, ##p<0.01 vs. DX).
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ered with TM (PBMC, 86.6±1.7%; spleen, 97.0±5.7%) or DX 
(PBMC, 90.6±4.4%; spleen, 96.4±4.78%) treatments. TM/DX 
combinatorial treatment significantly increased (PBMC, 90.6± 
4.4%; spleen, 96.4±4.78%) the ratio of CD4+FOXP3+ T cell/CD4+ 

CD44hi T cell in both sites (Fig. 2C and D). 

CD11c+ cell changes
The population of CD11c+ cells was significantly increased af-
ter transplantation and tended to show a higher increment in 
PBMC (CTL, 337.9±22.14; TM, 304.5±51.97; DX, 336.0±32.26; 
and TM/DX, 334.9±33.02) than in spleen (CTL, 154.4±4.43; TM, 
169.5±3.79; DX, 150.3±7.66; and TM/DX, 179.0±6.86). However, 

there were no differences between the untreated and treated 
groups. These tendencies were similar in both PBMC and 
spleen (Fig. 3).

CD11c+CD85k+ cell changes
The frequencies of CD11c+CD85k+ cells, expressing a tolerogen-
ic marker of DCs, were increased by transplantation in both 
PBMC (CTL, 187.1±12.82; TM, 180.2±2.20; DX, 184.5±16.38; and 
TM/DX, 181.0±7.81) and spleen (CTL, 123.1±6.17; TM, 127.4± 
5.70; DX, 126.1±6.35; and TM/DX, 145.5±4.96). Combinatorial 
treatment of TM with DX significantly increased CD11c+CD85k+ 
cells in spleen (p<0.05). However, the cell frequency in PBMC 

Fig. 2. The CD4+ T cell subset changes and the ratio of CD4+FOXP3+ T cells to CD4+CD44hi T cell of peripheral blood mononuclear cells (PBMC) or 
spleen measured by flow cytometry analysis. (A and B) Contour plots of CD4+CD44hi and CD4+FOXP3+ T cells (A, PBMC; B, Spleen). Representative fig-
ures of five experiments. (C and D) Relative cell numbers to the sham control group [(-), (%)], and the ratio of CD4+FOXP3+ T cells to CD4+CD44hi T cell 
(C, PBMC; D, Spleen). (A and C) Total CD4+ T cells were consistent, regardless of treatment. CD4+CD44hi T cells decreased with TM/DX treatment 
compared to the CTL or DX treatment. (B and D) Total CD4+ T cells were consistent, regardless of treatment. CD4+CD44hi T cells showed no change. 
CD4+FOXP3+ T cells increased with TM/DX treatment. CD4+FOXP3+ T cells increased with TM/DX. TM/DX combinatorial treatment significantly in-
creased the ratio of CD4+FOXP3+ T cell/CD4+CD44hi T cell both PBMC and spleen (*p<0.05, **p<0.01, ***p<0.001 vs. CTL, †p<0.05, ††p<0.01 vs. TM, 
##p<0.01, ###p<0.001 vs. DX. Each experiment was repeated five times in each of the five groups). TM, thalidomide; DX, dexamethasone; TM/DX, thalid-
omide and dexamethasone; CTL, control.
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was not affected. The median fluorescence intensity (MFI) of 
CD85k+ expressions on CD11c+ cells were enhanced by TM/
DX treatment compared to DX treatment in both PBMC and 
spleen (Fig. 4).

Serum IL-6 levels
The serum IL-6 levels were significantly down-regulated by TM 
or TM/DX treatment compared to the untreated CTL group. 
Moreover, TM/DX also significantly decreased serum IL-6 com-

pared to DX treatment. DX treatment did not affect the IL-6 lev-
els (p<0.05) (Fig. 5).

DISCUSSION

Previously, we reported on the effects of TM and DX on immune 
cells and their co-stimulatory, co-inhibitory molecules in vitro 
and in vivo.28-31 This study utilises a murine cardiac transplant 
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model to verify our preceding findings and elucidate the immu-
nomodulating affinity of TM. As previously described, TM/DX 
treatment affected CD4+ T cell subsets by down-regulating Teffs 
while preserving Tregs in both in vitro. And in in vivo setting, 
Treg population was slightly increased by TM/DX treatment.29 
Fig. 2 shows similar results to our previous reports with TM/DX 
treatment significantly suppressing Teff counts and increasing 
Treg, and its tendency was prominent in PBMC. In the clinical 
setting, the balance between immunological injury and regu-
lation can be controlled by methods decreasing the Teffs or in-
creasing the Tregs.21 Therefore, the Treg/Teff ratio may be more 
crucial than the absolute number of Tregs. As shown in Fig. 2, 
the ratio of CD4+FOXP3+/CD4+CD44hi T cells significantly in-
creased with TM/DX treatment in both PBMC and spleen with-
out total CD4+ T cell depletion. Many immunosuppressive drugs 
commonly reduce the total number of T cell and also decrease 
the Treg population.19 Consequently, increasing the ratio of 
Tregs without changing the number of CD4+ T cells implies a 
potent selective immunomodulating effect of TM/DX therapy.

Altering differences in CD4+CD44hi or CD4+FOXP3+ T cells 
by TM/DX in spleen or PBMC may be due to the differences in 
complex combinations of different immune cell interactions, 
co-stimulatory molecules, and cytokines in PBMC and spleen. 
This may have contributed to the diversity of the CD4+ T cell 
population at each location. Despite the cell population differ-
ences, we have demonstrated that the combination treatment 
of TM/DX significantly increased the ratio of CD4+FOXP3+ T 
cell/CD4+CD44hi T cell in both sites.

DCs are the most efficient APCs which determine the fate of 
T cells. Due to this interrelation, we demonstrated the inhibi-
tory functions of TM/DX treated DCs on T cell proliferation by 
performing mixed lymphocyte reactions in a previous study.31 
In this mouse cardiac transplantation model, CD11c+ cell pop-

ulation (DCs) increased after transplantation but showed no 
difference in cell frequency regardless of drug treatment (Fig. 3). 
However, on analysis of CD11c+CD85k+ cells (Fig. 4), the MFI of 
the CD85k+ significantly increased with TM/DX treatment in 
both PBMC and spleen, in contrast to DX alone, comparable to 
our previous results.31 CD85k (ILT3), an immunoglobulin-like 
transcript (ILT), is one of the biomarkers expressed on tolero-
genic CD11c+ cells, and an enhanced expression of CD11c+ 
cells with TM/DX combination may indicate the induction of 
tolerogenic characteristics of DCs.33 Tregs are developed in the 
thymus and extrathymic sites, such as secondary lymphoid or-
gans (SLOs).34 Tolerogenic DCs in SLOs promote the differen-
tiation and proliferations of Tregs.35 The significant increase in 
cell frequency and MFI of CD11c+CD85k+ cells by TM/DX 
treatment may suggest that CD11c+CD85k+ cells, tolerized 
DCs, possibly influence the Tregs induction by homing to the 
spleen. This may be one of the reasons for the increase of Tregs 
population due to TM/DX treatment. 

IL-6 is a pleiotropic cytokine with pro-inflammatory features 
which is secreted by most stromal and immune cells.36 It is a 
critical cytokine in innate immune response and adaptive im-
munity. In transplantation, IL-6 plays an important role in cell-
mediated rejection, antibody-mediated rejection, and chronic 
allograft vasculopathy.37 Our results showed that TM/DX treat-
ment improved allograft survival and increased the proportion 
of Tregs and tolerogenic characteristics of DCs, validating our 
hypothesis of immunomodulating effect of TM/DX combina-
tion. Therefore, we analysed the representative pro-inflamma-
tory cytokine, IL-6, to support our hypothesis (Fig. 5). Interest-
ingly, significant inhibition of IL-6 by TM alone and TM/DX 
treatment was shown. According to the literature, DX has been 
known to inhibit IL-6.11,38 Especially, Prelovsek, et al.39 reported 
high dose of DX inhibited the secretion of IL-6 from human mus-
cle. However, in our setting, DX alone did not influence the IL-6 
level. This might be due to minimal dose of DX, which also ex-
plains the limited effect on IL-6. Therefore, our results suggest 
that the decrease in IL-6 production may be attributed to the 
effect of TM independent of DX.

Based on these results, TM/DX combinatorial treatment may 
affect IL-6 secretion and increase tolerogenic characteristics on 
DCs, which have the ability to subsequently expand Tregs con-
sistent with immunomodulation, and influence the outcome 
of graft survival in this mouse cardiac allograft transplantation 
model. However, DX or TM alone failed to show graft survival 
benefits (Fig. 1). 

Conventional immunosuppressive agents, such as calcineu-
rin inhibitors (CNI) and steroids, are currently some of the most 
effective immunosuppressants in transplantation in the clinical 
setting. However, increasing graft survival and reducing the long-
term side effects of current immunosuppressants have been 
major concerns in the transplantation field. These immunosup-
pressive agents generally lack specificity and broadly suppress 
the immune cells. Considering our results, the TM/DX combi-
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Fig. 5. The serum IL-6 levels induced by TM, DX, or TM/DX treatment on 
murine cardiac allograft transplantation model. The levels of serum IL-6 
were down-regulated by TM/DX treatment more than by CTL or DX 
treatment (*p<0.05 vs. CTL, ††p<0.01 vs. TM, #p<0.05 vs. DX). IL, interleu-
kin; TM, thalidomide; DX, dexamethasone; TM/DX, thalidomide and 
dexamethasone; CTL, control.
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nation treatment shows distinct mechanisms by specifically 
targeting T cell subsets, such as increasing Tregs or suppressing 
Teffs. These selective immunomodulatory effects were synergis-
tically increased by combination with DX. Compared to con-
ventional immunosuppressive agents, the TM/DX treatments 
show a more targeted immunosuppressive effect. Moreover, 
the minimization of side effects by these immunomodulatory 
functions is expected, including during long-term treatments. 

This research, however, has some limitations. We applied a 
murine cardiac transplantation model using allografts from 
BALB/c (H-2d) donors to C57BL/6 (H-2b) recipients. This model 
is a fully major histocompatibility complex-mismatched model 
that induces acute rejection and results in short-term graft sur-
vival.40 Despite the survival differences in each treatment group, 
no distinct histopathological differences were observed, possibly 
due to this acute response (data not shown). Future studies re-
quire a less immunologic murine model which enables the TM/
DX treatment to sufficiently exert its immunomodulatory ef-
fects. We speculate a chronic rejection model would be more 
appropriate for further studies.

B cells, DC subset analysis, and various pro-inflammatory 
and anti-inflammatory cytokines must be investigated to fur-
ther clarify the mechanism of the immunomodulatory effect. 
Especially, IL-10 and TGF-β must be checked for the evaluation 
of tolerogenic effect by TM/DX treatment. In addition, histo-
pathological evidence must also be confirmed. Combination 
of conventional CNI and anti-metabolite therapy is also need-
ed to assess the complementary effects of TM/DX treatment.

In conclusion, TM/DX treatment showed various evidences 
of immunomodulatory effects, different from the mechanisms 
of the standard immunosuppressants, and graft survival bene-
fits in the murine cardiac transplant model. Therefore, we con-
sider the TM/DX combinatorial treatment as a prospective im-
munomodulatory approach for preventing allograft rejection 
by inducing immunomodulatory effects in transplantation.
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