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Histogram‑derived modified 
thresholds for coronary artery 
calcium scoring with lower tube 
voltage
Sungwon Kim1,3, Chan Joo Lee2,3, Kyunghwa Han1, Kye Ho Lee1, Hye‑Jeong Lee1* & 
Sungha Park2*

We aimed to determine the proper modified thresholds for detecting and weighting CAC scores at 
100 kV through histogram matching in comparison with 120 kV as a standard reference. From the 
training set (680 participants), modified thresholds at 100 kV were obtained through histogram 
matching of calcium pixels to 120 kV. From the validation set (213 participants), a standard CAC score 
at 120 kV, and modified CAC score at 100 kV using modified thresholds were compare through the 
paired t test and the Bland–Altman plot. Agreement for risk categories (no, minimal, mild, moderate, 
and severe) was evaluated using kappa statistics. Radiation doses were also compared. For the 
validation set, there was no significant difference between standard (median, 18.7; IQR, 0.0–207.0) 
and modified (median, 17.3; IQR, 0.0–220.9) CAC scores (P = 0.689). A small bias was achieved (0.74) 
with 95% limits of agreement from − 52.35 to 53.83. Agreements for risk categories were excellent 
(κ = 0.994). The mean dose‑length‑product of 100‑kV scanning (30.1 ± 0.8 mGy * cm) was significantly 
decreased compared to 120‑kV scanning (42.9 ± 0.6 mGy * cm) (P < 0.001). Histogram‑derived modified 
thresholds at 100 kV can enable accurate CAC scoring while reducing radiation exposure.

Non-contrast cardiac computed tomography (CT) is used to determine the presence and extent of calcified ath-
erosclerotic burdens in the coronary arteries and this burden is quantified as the coronary artery calcium (CAC) 
 score1. The CAC score is a well-established reliable and reproducible predictor of coronary artery disease, and its 
addition to traditional risk assessment models has provided incremental information to predict future outcomes 
in certain  populations2. Hence, recent guidelines recommend CAC scoring to determine when to initiate statin 
therapy in intermediate-risk  patients3.

Formal CAC scoring was introduced in 1990 by Agatston et al.4. The Agatston score is not only easy to obtain 
with acceptable inter-scan and inter-observer reproducibility, cumulative clinical evidence supports its use for 
risk stratification in primary prevention  settings2. Hence, it remains the gold standard and the most commonly 
used CAC score in clinical practice even though the Agatston scores tend to show a large degree of  arbitrariness5. 
However, the potential benefits of CAC scoring need to be weighed against its potential risks, along with reflec-
tions on exposure to ionizing radiation. The current trend is to gradually lower radiation exposure during CT 
scans following the ‘as low as reasonably achievable (ALARA)’ principle because of public concerns due to the 
theoretical association between cancer and ionizing  radiation6. In contrast to coronary CT angiography which 
now incorporates advanced imaging acquisition and reconstruction techniques to reduce radiation exposure, 
the CAC scanning protocol remains largely unchanged from the initial technique proposed in 1990, especially 
for tube voltage settings. Lowering tube voltage remains a challenge for CAC scoring because the CT attenuation 
of calcium is closely related to photon energy; thus the thresholds established by Agatston are not applicable to 
other tube  voltages7. Nevertheless, prior researchers have studied the feasibility of lower tube voltages in CAC 
scoring since a marked reduction of radiation dose can be achieved. However, there have been conflicting results 
as prior studies include only small populations and are based on different assumptions on coronary calcifications. 
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Therefore, we aimed to determine modified thresholds appropriate for detecting and weighting CAC scores at 
100 kV through an intuitive and eidetic method using histograms with a large-scale population and temporal 
independent validation.

Methods
Study population. The study protocol adhered to the principles of the Declaration of Helsinki, and the 
institutional review board of Severance Hospital, Yonsei university-affiliated tertiary referral hospital, approved 
this prospective study (IRB 4-2013-0581). All study participants gave informed consent. We prospectively 
included 902 participants from the Cardiovascular and Metabolic Disease Etiology Research Center-High Risk 
Cohort (CMERC-HI; clinicaltrials.gov: NCT02003781) from January 2017 to July  20188. These participants were 
divided two data sets with consecutive cohorts based on a specific point in time for temporal  validation9. The 
first (training) set consisted of consecutive participants from January 2017 to February 2018, and the second 
(temporal independent validation) consisted of consecutive participants from March 2018 to July 2018.

CAC scanning. CAC scans were performed with the latest 256-slice CT scanner (Revolution, GE Health-
care) for all study participants, and the scan consisted of standard scanning at 120 kV and additional scanning 
at 100 kV. Tube currents were set to 200 mA for both scans. All scans were done with prospective ECG-gated 
acquisitions at mid-diastole (70% of the R-R interval). Other scanning parameters were a 512 × 512 pixel matrix, 
256 × 0.625 mm slice collimation, and 0.28 s rotation time. Scan range and field of view were adjusted according 
to heart size. After scanning, axial images were reconstructed with a 2.5 mm slice thickness and 2.5 mm incre-
ment interval through a medium-smooth convolution kernel using filtered back projection. Volumetric CT dose 
index (CTDI) and dose-length-product (DLP) were recorded. Effective radiation doses were estimated using a 
conversion factor for cardiac CT (0.026 mSv/mGy * cm)10.

Image analysis. All CT images were transferred to a commercially available workstation (Aquarius iNtui-
tion V4.4.6; TeraRecon). An observer (H-J. L., 12 years of experience in cardiac imaging) measured the signal-
to-noise ratio (SNR) from CT images. The proximal ascending aorta was evaluated at the level of the main 
pulmonary artery bifurcation using an approximately 200  mm2 circular region of interest to measure mean 
attenuation and standard deviation in Hounsfield units (HU). Afterward, all cardiac CT images were trans-
formed to the NRRD (Nearly Raw Raster Data) files from the DICOM (Digital Imaging and Communications in 
Medicine) imaging data set using the Insight Segmentation and Registration Toolkit, or ITK, package (V5.2.0) 
(https:// www. itk. org)11. Our personal computer-based in-house software program (V1.1) in MATLAB (Matlab 
R2018a; Mathworks) was used for CAC scoring with the NRRD files. Contiguous voxels ≥ 1  mm2 in areas with 
CT attenuation ≥ a threshold of 130 HU were automatically colored as calcifications by the in-house software 
for both 100 kV and 120 kV images (Supplementary Fig. S1). As the observer selected colored lesions along 
the coronary vessels, information on the total lesion area with volume, and density in pixels were collected as 
the CAC score was calculated. To validate our in-house software, the observer measured the CAC score for a 
selected population of the training set using a commercially available workstation (Aquarius iNtuition V4.4.6; 
TeraRecon) as the reference standard, and inter-test agreements were assessed. For inter-observer agreement, an 
additional observer (K. H. L., 7 years of experience in cardiac imaging) evaluated CT images using the in-house 
software for the same selected population in both 100 kV and 120 kV images. CAC scoring was based on the 
Agatston score as described  previously4.

Modified thresholds for CAC scoring at 100 kV. All processing steps were conducted in Python (ver-
sion 3.6.6; Python Software Foundation), and are described in Fig. 1. From the training set, all pixels more than 
130 HU of coronary calcium on 120 kV and 100 kV images were selected, and arranged according to HU. As 
mentioned earlier, the attenuation of calcium is higher at 100 kV, so there were more pixels on 100 kV images. 
Pixels near 130 HU on 100 kV images would not be recognized at 120 kV. Therefore, we selected pixels from 
100 kV images in descending order from the largest HU when counting the total number of calcium pixels 
between 120 and 100 kV. Afterwards, we plotted histograms for the selected pixels of the 100 kV images and 
performed histogram matching using the cumulative distribution function with the 120 kV  histogram11. Points 
in the 100 kV histogram that corresponded to 130, 200, 300, and 400 HU in the 120 kV histogram were identi-
fied for the modified thresholds with 100 kV. The standard CAC score was calculated from 120 kV images with 
the original thresholds of 130, 200, 300, and 400 HU. The modified CAC score was calculated from 100 kV 
images with the newly obtained modified thresholds. In addition, based on the standard and modified CAC 
scores respectively, each participant was classified into the following risk categories: no calcium (CAC score = 0), 
minimal (≤ 10), mild (> 10, ≤ 100), moderate (> 100, ≤ 400), severe (> 400)12.

Statistical analysis. Statistical analyses were performed using commercially available statistical software 
(SPSS, version 25.0; IBM SPSS Statistics). CAC scores were presented as median with corresponding interquar-
tile range (IQR). Other continuous variables were described as means with standard deviation after confirm-
ing normality through the Shapiro–Wilk test. Categorical variables were expressed as the participant numbers. 
A subgroup population was selected from the training set by random number generation to validate the in-
house software and evaluate inter-observer agreements. Inter-test agreements for software validation and inter-
observer agreements were analyzed with the intraclass correlation coefficient (ICC). Baseline characteristics were 
compared between the training set and validation set with the Student t test and the Pearson’s chi-square test. 
Between 100 and 120 kV, CT characteristics were compared with the paired t test and median values of standard 
and modified CAC scores were compared with Wilcoxon’s signed rank test. Additionally, Bland–Altman plot 
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were used to calculate agreements between the both CAC scores. Agreements for risk categories between the 
two scores was evaluated using kappa statistics and contingency tables. A P value < 0.05 was interpreted as being 
statistically significant.

Results
Baseline characteristics. Of 902 participants, 9 were excluded because technical problems did not allow 
their CT images to be processed for this study. Thus, 893 participants were included and grouped into two data 
sets. The first data set (training) consisted of 680 consecutive participants (363 men and 317 women; mean age, 
58.2 ± 11.3 years; range, 20–80 years). The second data set (temporal validation) consisted of 213 consecutive 
participants (102 men and 111 women; mean age, 58.1 ± 11.0 years; range, 26–80 years). Baseline clinical char-
acteristics of the study population are summarized in Table 1.

Baseline CT characteristics are described in Table 2. For the training set, DLP was 30.1 ± 0.8 mGy * cm 
in 100 kV and 42.9 ± 0.6 mGy * cm in 120 kV. Corresponding effective radiation dose was 0.42 ± 0.01 and 
0.60 ± 0.01 mSv, respectively. The mean SNRs of 100 kV and 120 kV were 1.55 ± 0.19 and 1.63 ± 0.23, respec-
tively. For the validation set, DLP was 30.1 ± 0.8 mGy * cm in 100 kV and 42.9 ± 0.6 mGy * cm for 120 kV. Cor-
responding effective radiation dose was 0.42 ± 0.01 and 0.60 ± 0.01 mSv, respectively. The mean SNRs of 100 kV 
and 120 kV were 1.57 ± 0.20 and 1.66 ± 0.26, respectively. For both training and validation sets, even though 
SNR significantly decreased in 100 kV (P < 0.001 for both sets), the radiation dose showed significant reduction 
compared to 120 kV (P < 0.001 for both sets). Baseline CT characteristics did not differ between the training 
and validation sets.

Modified CAC scoring at 100 kV. From the training set, the median standard CAC score at 120 kV was 
17.6 (IQR, 0.0–164.5), and 250 (36.8%, 250/680) participants had scores of zero. The 120 kV histogram showed a 
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Figure 1.  Histogram matching using the cumulative distribution function to obtain modified thresholds 
for 100 kV. The 120 kV histogram showed CT numbers of 130 HU through 1887 HU for 260,104 pixels from 
coronary calcium (a). The 100 kV histogram demonstrated 280,737 pixels with CT numbers from 130 HU 
to 2059 HU (b). The overlapping two histograms (a,b) showed more pixels from 100 kV images (c). After 
excluding 20,633 pixels (280,737 – 260,104 = 20,633) from the 130 HU of the 100 kV histogram, the two 
histograms were almost identical (d). Afterwards, we found matching points in the 100 kV histogram.
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wide range of CT numbers from 130 HU to 1887 HU for 260,104 pixels of coronary calcium. A total of 280,737 
pixels from coronary calcium at 100 kV demonstrated CT numbers from 130 HU to 2059 HU (Fig. 1). Through 
histogram matching after arranging pixels, we obtained modified thresholds of 143 HU for calcium detection 
instead of 130 HU, and additionally 220 HU, 329 HU, and 439 HU for weighting scores of 2, 3, and 4 at 100 kV, 
respectively.

The median modified CAC score with the modified threshold at 100 kV was 18.6 (IQR, 0.0–159.9). There 
was no significant difference between the median values of the standard and modified CAC scores (P = 0.696). 

Table 1.  Clinical characteristics of participants in the training and validation sets. Data are absolute 
participant numbers and percentages in brackets or means ± standard deviations. BMI body mass index, SBP 
systolic blood pressure, DBP diastolic blood pressure, BUN blood urea nitrogen.

Variables
Total
(n = 893)

Training
(n = 680)

Validation
(n = 213) P value

Male 465 (52.1%) 363 (53.4%) 102 (47.9%) 0.161

Age (years) 58.1 ± 11.5 58.2 ± 11.3 58.1 ± 11.0 0.985

BMI (kg/m2) 26.0 ± 3.6 26.0 ± 3.5 25.9 ± 3.9 0.977

SBP (mmHg) 126.9 ± 16.4 127.2 ± 17.0 125.9 ± 14.4 0.313

DBP (mmHg) 76.5 ± 10.3 76.9 ± 10.3 75.3 ± 10.2 0.054

Medical history

Smoking 126 (14.1%) 95 (14.0%) 31 (14.6%) 0.831

Hypertension 718 (80.4%) 565 (83.1%) 153 (71.8%)  < 0.001

Diabetes 521 (58.3%) 366 (53.8%) 155 (72.8%)  < 0.001

Dyslipidemia 639 (71.6%) 462 (67.9%) 177 (83.1%)  < 0.001

Laboratory findings

Fasting glucose (mg/dL) 120.4 ± 36.8 119.5 ± 34.8 123.2 ± 42.7 0.196

Total cholesterol (mg/dL) 173.1 ± 43.3 175.1 ± 45.2 166.9 ± 35.8 0.016

BUN (mg/dL) 21.2 ± 13.8 21.8 ± 14.6 19.1 ± 10.6 0.011

Serum creatinine (mg/dL) 1.4 ± 1.7 1.5 ± 1.9 1.1 ± 1.1 0.014

Table 2.  CT characteristics of participants in the training and validation sets. Data are means ± standard 
deviations. CTDI volumetric CT dose index, DLP dose-length-product. a Between the training set and 
validation set. b Between the 100-kV and 120-kV images.

Total
(n = 893)

Training set
(n = 680)

Validation set
(n = 213) P  valuea

Heart rates (bpm) 66.4 ± 11.5 66.0 ± 11.4 67.7 ± 11.7 0.070

CTDI (mGy)

100 kV 1.9 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 0.234

 120 kV 2.8 ± 0.0 2.8 ± 0.1 2.8 ± 0.0 0.622

 P  valueb  < 0.001  < 0.001  < 0.001

DLP (mGy * cm)

100 kV 30.1 ± 0.8 30.1 ± 0.8 30.1 ± 0.8 0.234

 120 kV 42.9 ± 0.6 42.9 ± 0.6 42.9 ± 0.6 0.622

 P  valueb  < 0.001  < 0.001  < 0.001

Signal (HU)

 100 kV 43.4 ± 4.3 43.3 ± 4.2 43.9 ± 4.3 0.073

 120 kV 42.1 ± 4.8 42.0 ± 4.8 42.5 ± 4.7 0.114

 P  valueb  < 0.001  < 0.001 0.001

Noise (HU)

100 kV 28.2 ± 2.6 28.2 ± 2.7 28.1 ± 2.5 0.809

 120 kV 25.9 ± 2.9 25.9 ± 2.9 26.0 ± 2.8 0.955

P  valueb  < 0.001  < 0.001  < 0.001

Signal-to-noise ratio

 100 kV 1.55 ± 0.20 1.55 ± 0.19 1.57 ± 0.20 0.111

 120 kV 1.64 ± 0.24 1.63 ± 0.23 1.66 ± 0.26 0.154

P  valueb  < 0.001  < 0.001  < 0.001
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A small bias was calculated (0.65), with 95% limits of agreement of − 57.04 and 58.34 through the Bland–Alt-
man plot (Fig. 2). Agreements between the standard and modified CAC scores for risk categories are shown in 
Table 3. For the training set, 29 (4.2%, 29/680) participants showed changes in risk categories with the modified 
CAC score, and excellent agreement (κ = 0.943) between the standard and modified CAC scores.

Inter‑test and inter‑observer agreements. The subpopulation from the training set selected for the 
inter-test agreement and inter-observer agreements consisted of 70 participants (10.3%, 70/680) (37 men and 33 
women; mean age, 56.5 ± 12.6 years; range, 20–78 years). Inter-test agreement was excellent (ICC = 1.000) for the 
standard CAC score between our in-house software (median, 14.9; IQR, 0.0–69.9) and the commercially availa-
ble workstation (median, 15.2; IQR, 0.0–70.3). The median standard CAC score of the additional observer using 
our software for the same subpopulation was 14.9 (IQR, 0.0–69.9), and inter-observer agreement was excellent 
(ICC = 1.000). The median values of the modified CAC score for the two observers were 14.9 (IQR, 0.0–70.0) and 
15.1 (IQR, 0.0–70.0), respectively, and inter-observer agreement was excellent (ICC = 1.000).

Temporal independent validation. In the validation set, 83 (39.0%, 83/213) participants showed no cor-
onary calcifications. The median standard and modified CAC scores were 18.7 (IQR, 0.0–207.0) and 17.3 (IQR, 
0.0–220.9), respectively, and there was no significant difference between the CAC scores (P = 0.689). In addition, 
the values of the validation set did not significantly differ from those of the training set (P = 0.415 and 0.416, 
respectively). A small bias was achieved (0.74), with 95% limits of agreement from − 52.35 to 53.83 (Fig. 3). Sub-
analyses were additionally performed, and the results are described in Supplementary material. Agreements for 
risk categories between the standard and modified CAC scores are demonstrated in Table 4. In the validation set, 
only 2 (0.9%, 2/213) participants had their risk category change with the modified CAC score. Agreement was 
excellent (κ = 0.994) between the standard and modified CAC scores for risk categories.

A sub-analysis was performed according to the BMI (Fig. 4). In a sub-analysis of 89 participants with 
BMI < 25 kg/m2 (median, 23.1; IQR, 21.6–24.2) (42.8%, 89/213), there was no significant difference between the 
standard and modified CAC scores (median, 29.4; IQR, 0.0–222.3, and median, 22.6; IQR, 0.0–245.5, respec-
tively) (P = 0.439). Thirty-seven participants (41.6%, 37/89) showed no coronary calcifications. A bias of − 1.62 
with 95% limits of agreement from 45.46 to − 48.72 was observed. For the 103 participants with BMI ≥ 25 
and < 30 kg/m2 (median, 26.9; IQR, 26.0–28.2) (48.4%, 103/213), the median standard and modified CAC scores 
were 25.9 (IQR, 0.0–175.2) and 22.9 (IQR, 0.0–178.5), respectively, without significant difference (P = 0.462). 
No coronary calcification was observed in 38 participants (36.9%, 38/103). The bias was 2.55 with 95% limits 
of agreement from 63.47 to − 58.36. In the 21 participants with BMI ≥ 30 kg/m2 (median, 32.8; IQR, 31.4–37.2) 
(9.9%, 21/213), no significant difference was observed between the median standard and modified CAC scores 
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Figure 2.  Bland–Altman plot between the standard and modified CAC scores from the training set (n = 680).

Table 3.  Agreements for risk categories between the standard and modified CAC scores from the training set 
(κ = 0.943). Data are absolute participant numbers. CAC  coronary artery calcium.

Modified CAC score

Standard CAC score

No Minimal Mild Moderate Severe Total

No 249 5 0 0 0 254

Minimal 1 54 3 0 0 58

Mild 0 7 145 5 0 157

Moderate 0 0 3 113 3 119

Severe 0 0 0 2 90 92

Total 250 66 151 120 93 680
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(median, 12.5; IQR, 0.0–129.3, and median, 13.7; IQR, 0.0–127.2, respectively) (P = 0.646). Eight participants 
(38.1%, 8/21) showed no coronary calcifications. A bias of 1.91 was obtained with 95% limits of agreement from 
33.95 to − 30.13.

Discussion
Through our study, we were able to attain modified thresholds for CAC scoring with 100 kV from histograms 
using the cumulative distribution function, and CAC scoring was accurate with good agreement of a small bias 
and acceptable 95% limits of agreement compared to standard CAC scoring with 120 kV. In addition, we obtained 
excellent agreement for risk categories between the standard and modified CAC scores. Further, these findings 
were confirmed through temporal independent validation with similar results. As expected, the SNR significantly 
decreased at 100 kV compared to 120 kV, but the reduction rate was about 5.5%. Foremost, the mean radiation 
dose of 100 kV scanning was further decreased with a reduction rate of 30.0%.

Although a few studies have been conducted to assess the feasibility of lower tube voltages in CAC scanning, 
the results of these studies have not been applied in clinical practice, mostly due to the small size of their study 
populations and insufficient validation. Hence, there have been conflicting results on the application of lower 
tube voltages to CAC scanning despite the great reduction of radiation dose being a common compelling finding. 
In prior studies, the detection threshold for coronary calcifications was adjusted to 147 HU instead of 130 HU at 
100 kV without adjusting weighting thresholds. One of these past studies showed equivalent results compared 
with a standard protocol at 120 kV while another study reported a systematic bias toward overestimation of the 
Agatston  score7,13. The threshold of 147 HU was determined from phantom data by simply calculating the ratio 
of plaque attenuation at 100 kV to 120 kV. Similarly, a few studies with phantoms composed of several calcium 
hydroxyapatite pieces were done to evaluate the feasibility of lower tube  voltages14–18. However, we have to inter-
pret these results with caution, because the size and degree of coronary calcium varies in vivo, and it is thought 
difficult for studies to reflect this broad diversity. In a more recent study, researchers calculated mathematically 
derived novel thresholds for CAC scores at lower tube voltages by assuming a linear relationship between attenu-
ation coefficients and photon energy in a relatively low energy spectrum and calculated the ratio between the 
attenuation coefficients at standard 120 kV photon energy versus lower  kV19. In contrast, we used a more intuitive 
and eidetic method to obtain modified thresholds. We split actual CT attenuations from coronary calcifications 
in vivo into lots of pixels, displayed the values, and matched points of CT attenuations with the highest probability 
between 100 and 120 kV for the detection and weighting thresholds. We obtained modified thresholds of 143 HU, 
220 HU, 320 HU, and 439 HU that were comparable to the mathematically derived thresholds of 145 HU, 223 HU, 
335 HU, and 447 HU. We supposed that our results were slightly lower than those of the prior study because the 
attenuation coefficient and photon energy showed a somewhat downward exponential relationship rather than 
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Figure 3.  Bland–Altman plot between the standard and modified CAC scores from the validation set (n = 213).

Table 4.  Agreement for risk categories between the standard and modified CAC scores from the validation set 
(κ = 0.994). Data are absolute participant numbers. CAC  coronary artery calcium.

Modified CAC score

Standard CAC score

No Minimal Mild Moderate Severe Total

No 82 0 0 0 0 82

Minimal 1 14 1 0 0 16

Mild 0 0 36 0 0 36

Moderate 0 0 0 46 0 46

Severe 0 0 0 0 33 33

Total 83 14 37 46 33 213
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a true linear one. In our results, we obtained good agreement between the standard and modified CAC scores 
with a small bias and acceptable 95% limits of agreement compared to prior studies at 100  kV7,13,20,21. Moreover, 
we showed better agreement for risk categories between 100 and 120 kV with modified thresholds as we obtained 
higher kappa  values7 and lower percentages of participants that had their risk category  change13,20,21 compared 
to prior studies, although a direct comparison with previous studies is currently difficult to perform. Of course, 
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Figure 4.  Bland–Altman plot between the standard and modified CAC scores from sub-analysis according to 
BMI. (a) BMI < 25 kg/m2, (b) 25 ≤ BMI < 30 kg/m2, and (c) BMI ≥ 30 kg/m2.
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a few studies using tin-filtered 100 kV showed good results in comparison with 120 kV for CAC  scoring20,21, but 
there are limitations to the general use of this technique because it is a scanner-specific tool.

Although we regarded 100 kV as low tube voltage, a few prior studies have evaluated the feasibility of the 
lower 70 kV or 80 kV for CAC  scoring19,22. However, although these protocols are useful for small-sized patients, 
they do not seem applicable for large-sized patients as increased image noise would affect the CAC score. On the 
other hand, body size had little effect on the CAC score in the present study at 100 kV as similar results of bias 
and 95% limits of agreement were found among subgroups classified according to the BMI. Still, more studies 
are needed to further lower tube voltage or select BMI-adapted tube voltage appropriate for CAC scoring that 
can also achieve great reduction of radiation exposure.

Our study has several limitations. First, even though our sample size was relatively large, a large portion 
of the participants did not have coronary calcium. Because consecutive participants with no prior history of 
coronary artery disease were prospectively enrolled, it was not possible to limit the number of participants with 
no coronary calcium. However, we obtained similar results even after excluding participants with no coronary 
calcium from the validation set. Second, the study population consisted of a single ethnic Korean population 
with relatively small body size, which inherently limited the generalizability of the study findings. In addition, 
we studied the findings on a single CT scanner. Future studies are needed to investigate the feasibility of applying 
the modified thresholds to different clinical settings that include patients of diverse body sizes. Third, misreg-
istration errors could exist between the 100 kV and 120 kV CT images despite separating CT attenuation from 
coronary calcifications into pixels. The dual-energy technique might help solve misregistration in future studies.

In conclusion, the present study suggests that histogram-derived modified thresholds at 100 kV could allow 
the accurate calculation of CAC scores while still managing to reduce radiation exposure. Our findings are 
further strengthened by the relative large scale of our population and temporal independent validation. Further 
studies using the modified thresholds on different scanning systems might be needed before CAC scoring can 
become an actual clinical utility.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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