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Introduction 

Advances in anticancer treatments have resulted in increasing sur-
vival rates among cancer patients. In South Korea, the overall cancer 
mortality rate decreased by 2.7% annually between 2002 and 2016. 
A significant improvement was also evident in the 5-year survival 
rate, which increased to 70.6% for patients diagnosed with cancer 
between 2012 and 2016, compared with 41.2% for patients diag-
nosed between 1993 and 1995 [1]. Accordingly, the idea that quality 
of life after cancer should be actively considered during cancer treat-
ment has become widely accepted. In particular, the preservation of 
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fertility in younger patients receiving cancer treatment has gradually 
become an essential factor for consideration [2-4]. The main prob-
lems associated with chemotherapy in female cancer survivors in-
clude early menopause and an increased subfertility rate [5]. For fer-
tility preservation in women, embryo and oocyte cryopreservation 
are considered to be the standard practice and are widely available 
[2-4]. However, because embryo and oocyte cryopreservation re-
quires approximately 2 weeks, it is difficult to perform cryopreserva-
tion in patients with cancers for which treatment is more urgent due 
to rapid progression. In addition, cryopreservation may not be an 
option for all women for economic reasons. 

There has been tremendous interest in medical agents that can 
potentially preserve fertility from the ovarian toxicity of chemothera-
py, and gonadotropin-releasing hormone agonists (GnRHa) have 
been considered to be the most likely category of drugs for this pur-
pose. In 1981, an animal study demonstrated that GnRHa adminis-
tration protected male mice from gonadal damage caused by cyclo-
phosphamide [6]. An observational long-term follow-up study of 
children treated with chemotherapy for Hodgkin disease showed 
that prepubertal administration of chemotherapy agents resulted in 
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less ovarian damage than in similarly treated adult patients, and it 
was suggested that GnRHa could exert a protective role by creating a 
temporary “prepubertal” state in women of reproductive age [7]. The 
first randomized controlled trial (RCT) of GnRHa for preserving fertili-
ty during chemotherapy was conducted by Waxman et al. [8] in 
1987. The authors reported that buserelin was not effective in pre-
serving fertility. Since this first RCT was reported, several other RCTs 
and observational studies have been conducted in patients with var-
ious diseases, including breast cancer, hematological malignancies, 
and autoimmune diseases. However, these studies have reported 
conflicting results [9]. 

Although the mechanisms of protection have yet to be fully un-
derstood, as the results of large-scale RCTs were recently released, 
researchers’ understanding of the conditions under which GnRHa 
can preserve fertility has been expanded and clarified. This trend was 
reflected in the 2018 American Society of Clinical Oncology (ASCO) 
guidelines for fertility preservation [4]. The 2018 ASCO guidelines 
stated for the first time that GnRHa may partially help in preserving 
fertility in patients undergoing chemotherapy. These changes in the 
ASCO guidelines have also influenced other guidelines released after 
2018 [10,11]. Nevertheless, evidence regarding the efficacy of GnRHa 
for fertility preservation is still regarded as insufficient, and GnRHa 
use during chemotherapy does not replace established fertility pres-
ervation methods. In this review, we describe the scope of utility and 
limitations of GnRHa in preserving fertility, as well as the mecha-
nisms by which GnRHa protects the ovaries from chemotherapy. 

How do chemotherapeutic agents damage the 
ovary? 

Although controversial [12], it is generally believed that the num-
ber of follicles held within the primordial follicle (PMF) pool is finite. 
PMFs form from 17 weeks of gestation, and consist of an immature 
oocyte in meiotic arrest surrounded by a single layer of granulosa 
cells. During the reproductive age, both the oocyte and surrounding 
granulosa cells undergo stages of sequential growth and develop-
ment, characterized by granulosa cell proliferation and oocyte 
growth, until resumption of meiosis by the ovulatory luteinizing hor-
mone (LH) surge. PMFs are continuously being recruited out of the 
pool of germ cells and activated to grow until few remain. The pres-
ence of fewer than 1,000 remaining oocytes has been associated 
with menopause [13,14]. 

The risk of developing premature ovarian insufficiency (POI) after 
chemotherapy can vary depending on various factors. Some chemo-
therapy regimens are considered more gonadotoxic than others, 
with particularly strong evidence for the high toxicity of alkylating 
agents [14]. Dosage of the treatment used is also an important con-

sideration, and previous studies have shown that early menopause 
occurs in a dose-dependent fashion [15]. In addition, the age of the 
patient at treatment is pivotal, as older women have a much higher 
reported incidence of POI during or immediately after treatment 
[5,16]. Chemotherapy undoubtedly has a detrimental effect directly 
on follicles [14], and previous studies have shown that chemothera-
py acts on the ovary in a wide variety of ways (Table1). 

1. Burnout theory 
Chemotherapy-induced POI has been attributed to the loss of 

PMFs not only through the direct effects of chemotherapeutic 
agents, but also as a result of an increased rate of folliculogenesis to 
replace the damaged developing follicles. Meirow’s group [17,18] 
proposed the “burnout theory” in an attempt to describe enhanced 
follicular demise owing to accelerated folliculogenesis in the ovary 
after gonadotoxic chemotherapy. In animal studies, increased phos-
phorylation of proteins through the phosphatidylinositol 3-kinase 
signaling pathway, which stimulates accelerated PMF activation in 
both oocytes and granulosa cells, was observed after administration 
of alkylating agents, resulting in the burnout effect and marked loss 
of the PMF pool during repeated cycles of anticancer treatment. 
[17,18] Furthermore, there is an extended version of the burnout 
theory explained by the reduced secretion of sex steroid hormones 
and the resulting mechanism of feedback. Gonadotoxic agents have 
been reported to induce acute loss of the growing follicle popula-
tion, resulting in decreased secretion of sex steroid hormones and 
inhibin [19]. Low systemic concentrations of sex steroid hormones 
and inhibin then result in an inhibition of negative feedback on the 
pituitary gland and hypothalamus in order to increase gonadotropin 
secretion, mainly follicle-stimulating hormone (FSH). Increased FSH 
concentrations then enhance the rate of resting preantral follicle re-
cruitment and maturation and the ability to enter the process of fol-
liculogenesis. Due to the active metabolism of dividing cells during 
folliculogenesis, these growing follicles are subjected to the gonado-
toxic effects of chemotherapy, resulting in an accelerated rate of fol-
licular depletion [19,20]. 

2. Target of chemotherapy: germ cells or granulosa cells? 
It has often been assumed that chemotherapy acts directly on the 

oocyte within immature follicles, initiating the death of germ cells. 
However, studies have thus far reported that chemotherapy targets 
not only oocytes [21-24], but also granulosa cells [25-27], and even 
ovarian stromal cells and blood vessels [14,28-30]. Oocytes are held 
in meiotic arrest within immature follicles, although they rapidly 
grow in developing follicles. Because chemotherapeutic agents are 
designed to act upon dividing cells, whether mitotically active gran-
ulosa cells are the target of chemotherapy drugs remains a subject of 
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research. Granulosa cells have been reported to surround the oocyte 
and proliferate during follicle maturation. Considering the bidirec-
tional interaction between the oocyte and the granulosa cells, with 
each regulating the growth and maturation of the other [31], dam-
age to granulosa cells may result in indirect damage to the oocyte, 
which in turn can lead to germ-cell loss [14]. A study of ovarian biop-
sies from 10 girls who underwent treatment for leukemia found 
moderate to severe signs of stromal fibrosis and capillary changes 
[29]. In another human study, injury to blood vessels and focal ovari-
an cortical fibrosis were reported after exposure to chemotherapy, 
suggesting that local ischemia may be a potential additional mecha-
nism by which follicles are lost [28]. 

3. Which stages of follicles are vulnerable to chemotherapy? 
Follicles within the ovary are at various stages of maturation. It is 

possible that specific stages are more susceptible to damage after 
chemotherapy than others. Because previous studies have mainly 
examined the effects of different anticancer drugs on PMFs, there are 
limited data on this question [14]. Cyclophosphamide and its metab-
olites have reportedly decreased the number of PMFs and small pri-
mary follicles in rodent ovaries [32,33]. In humans, ovarian biopsies 
from patients treated with chemotherapy had significantly lower 
PMF counts [34]. Nonetheless, several studies have reported that 
more mature follicles, as well as PMFs, are affected by anticancer 
drugs [24,25,30,35]. Preantral follicles have been shown to be sus-
ceptible to chemotherapy, with deterioration in follicle quality after 
chemotherapy in humans [35]. In conclusion, there is evidence that 
chemotherapy causes damage to follicles at all stages, from primor-
dial to antral follicles [14]. However, no experiment has conducted a 
comparative analysis to determine which follicle stage is more sus-
ceptible to anticancer drugs. 

4. Different mechanisms of different chemotherapeutic agents 
Direct cellular effects on various components of the ovary have 

been determined for various classes of chemotherapies that differ in 
their specific cellular targets. Doxorubicin is an anthracycline often 
used to treat lymphomas, leukemia, breast cancer, and sarcomas. It 
has been hypothesized to intercalate with DNA and prevent its repli-
cation and transcription [22]. Doxorubicin may interfere with the 
electron transport chain, leading to a release of cytochrome c into 
the cytosol. This activates the caspase family of proteins, in turn caus-
ing apoptosis and even cell death. There is evidence that In the cell 
nucleus, doxorubicin upregulates the expression of p53, a DNA repair 
protein that initiates apoptosis in the presence of high levels of DNA 
damage [36]. Doxorubicin could then affect the ovary by all of these 
mechanisms, but it primarily affects mitotically and metabolically ac-
tive cells, as well as granulosa cells, rather than oocytes [37]. 

Cyclophosphamide is an alkylating agent that results in intra- and 
inter-strand crosslinking of DNA, which reportedly interferes with 
cell division [14]. The effects of alkylating agents have been exam-
ined in the granulosa cells of rat ovaries. As with doxorubicin, cyclo-
phosphamide has also shown a mitochondrial effect, as it induces a 
reduction in mitochondrial transmembrane potential and an accu-
mulation of cytochrome c in the cytosol, again leading to the activa-
tion of the caspase family and apoptosis [27]. 

Cisplatin interacts with DNA to form DNA adducts, primarily in-
tra-strand crosslink adducts, which can activate several signal trans-
duction pathways, including those involving ATR, p53, p73, and 
MAPK, culminating in the activation of apoptosis [38]. Cisplatin ad-
ministration to neonatal mouse ovaries has been identified to cause 
an accumulation of Abl, a nonreceptor tyrosine kinase, and TAp63-a, 
a homologue of p53, which is expressed in the oocyte, leading to oo-
cyte death [24,39] 

5. Gonadotoxicity by high gonadotropin concentrations 
High gonadotropin concentrations after chemotherapy have also 

been suggested to affect the resting PMF pool. An in vivo study using 
mice that produced chronically elevated levels of serum LH via ex-
pression of an LH β-subunit transgene reported a significant prema-
ture loss of their primordial and primary follicle pool 3 months after 
birth. These transgenic mice had a similar number of follicles as wild-
type controls at birth. The finding that chronically elevated LH levels 
depleted the PMF pool implies that chronic LH elevation might has-
ten the onset of reproductive senescence [40]. It is believed that 
PMFs and primary follicles are gonadotropin-independent. However, 
several investigations have suggested that these follicles express 
mRNA for FSH and LH receptors [40-49]. These studies have also pro-
vided support for the possibility that even immature follicles, such as 
the primordial and primary follicles, may be gonadotropin-depen-
dent [42-45,49,50]. Moreover, in adult sheep ovaries, FSH was found 
to modulate ovarian germinative stem cells and their progenitors via 
FSH-R3, an isoform of the FSH receptor, to undergo potential self-re-
newal, clonal expansion, and differentiation into oocytes [49]. 

Potential mechanisms through which GnRHa 
minimizes the ovarian toxicity of chemotherapy 

Although there is still controversy regarding the efficacy of GnRHa 
on ovarian protection, recent studies have been able to better clarify 
the efficacy of temporary ovarian suppression with GnRHa during 
chemotherapy, especially in breast cancer patients (Table 1).

1. Simulating the prepubertal hormonal milieu 
The administration of GnRHa has been identified to induce an ini-
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tial release of gonadotropins, which desensitize the GnRH receptors 
on the pituitary gonadotropes, preventing pulsatile GnRH secretion, 
resulting in a hypogonadotropic, prepubertal hormonal milieu. It has 
been suggested that in this hypogonadotropic milieu, the follicles 
remain in the quiescent phase and are thus less vulnerable to che-
motherapy-induced gonadotoxicity [51]. However, this mechanism 
is controversial because of the dogma that primordial and primary 
follicles are not gonadotropin-dependent. However, the growth of 
primordial and primary follicles is affected by many factors, such as 
the transforming growth factor superfamily, the bone morphoge-
netic proteins (-4, -7, and -9), and activin, which is secreted by go-
nadotropin-dependent antral follicles in a paracrine way [44,52,53]. 
These growth factors may also induce the exit of PMFs from the dor-
mant inactive pool [44]. The rate at which PMFs leave the non-active 
resting pool is influenced by the presence or absence of the more 
advanced gonadotropin-dependent growing follicles [14]. Moreover, 
as described above, a few studies support the possibility that even 
immature follicles such as the primordial and primary follicles may 
be gonadotropin-dependent [42-45,49,50].  

Therefore, GnRHa cotreatment, after the initial flare-up effect, de-
creases FSH levels through pituitary desensitization, preventing the 
secretion of growth factors by the more advanced FSH-dependent 
follicles, and secondarily preserves more PMFs in the dormant stage. 

2. Interrupting the burnout effect 
GnRHa may minimize POI by interrupting the burnout effect after 

gonadotoxic agents. Specifically, the administration of GnRHa may 
interfere with the accelerated follicle recruitment induced by chemo-
therapy by desensitizing the GnRH receptors in the pituitary gland, 
preventing an increase in FSH concentration despite low estrogen 
and inhibin levels [14,41,54]. However, there is no experimental sup-
port for this hypothesis; moreover, primordial and primary follicles 
are generally believed to be gonadotropin-independent, as men-
tioned above. 

3. Decreased utero-ovarian perfusion 
Another possible explanation for the beneficial effect of GnRHa 

cotreatment in reducing chemotherapy-associated gonadotoxicity is 
decreased utero-ovarian perfusion, which results from the hy-
poestrogenic milieu generated by pituitary-gonadal desensitization 
[55,56]. High estrogen levels increased ovarian perfusion in a rat 
model, and administration of GnRHa significantly inhibited this ef-
fect in a dose-dependent manner [55]. The decreased utero-ovarian 
perfusion in the hypoestrogenic milieu may result in a reduction of 
the total cumulative exposure of the ovaries to chemotherapeutic 
agents. 

4. A possible direct effect mediated by ovarian GnRH receptors 
Human gonads also contain GnRH receptors, similar to the ovaries 

of rodents, although at a lower concentration [47,48,57-59]. It has 
been observed that activation of the ovarian GnRH receptor may de-
crease apoptosis in ovarian cancer cells [57]. In another study, GnRHa 
slowed doxorubicin-induced granulosa cell damage through a GnRH 
receptor-mediated mechanism regardless of the hypogonadotropic 
milieu [60]. 

5. Possible upregulation of an antiapoptotic molecule 
Sphingosine-1-phosphate (S1P) has been identified as a sphingo-

lipid metabolite that inhibits ceramide-promoted cell death induced 
by radiation and chemotherapy in mice [21,61]. It has been speculat-
ed that GnRHa may upregulate ovarian S1P, thus reducing follicular 
demise [20]. Oocytes lacking the gene for acid sphingomyelinase, 
which degrades S1P and generates ceramide, resisted apoptosis in-
duced by doxorubicin in vitro [61]. It has also been observed that S1P 
exposure prevented cyclophosphamide- and doxorubicin-induced 
oocyte death in vivo in mice [62]. In a primate study, when S1P or 
FTY720, an agonistic analog of S1P, was given by direct intraovarian 
cannulation for a week before ovarian irradiation, rapid resumption 
of menses and maintenance of ovarian follicles were observed [63]. 
Nevertheless, there is no experimental evidence regarding whether 
GnRHa activates the receptors in the ovaries and an intraovarian in-
crease of S1P or other antiapoptotic factors [52]. 

6. Possible protection of ovarian germinative stem cells 
Johnson et al. [12,64] demonstrated that rodent ovaries may have 

mitotically active germ cells that continuously replicate themselves. 
This finding contradicted the doctrine of reproductive medicine, 
whereby mammalian females are born with a fixed, determined, and 
non-increasing reserve of follicles and lose the capacity for germ-cell 
renewal during fetal life [12,64,65]. There is ongoing controversy re-
garding the existence of germinative stem cells and whether or not 
the ovaries of adult mammals can generate follicles de novo [66]. 

In patients undergoing chemotherapy, high menopausal FSH lev-
els and undetectable anti-Müllerian hormone (AMH) levels have 
been observed. Approximately a year after the chemotherapeutic 
ovarian insult, FSH concentrations have been shown to decrease to 
normal levels. In addition, AMH has been found to increase in a large 
number of patients cotreated with GnRHa [66]. Based on these clini-
cal findings, it has been speculated that administration of GnRHa 
may interact with these germ cells through some pathways essential 
for the cell growth and for the activation of PMFs after chemothera-
py exposure [66]. 
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7. Antiapoptotic effects on cumulus cells 
In a recent study, the effect of GnRHa and cyclophosphamide in 

the human oocytes and cumulus cell compartments was evaluated 
using a culture system of ex vivo immature cumulus cell-oocyte com-
plexes [67]. Coadministration of GnRHa inhibited the extrinsic path-
way of apoptosis mediated by BCL2-associated X protein in cumulus 
cells, whereas GnRHa did not directly act on oocytes, which do not 
express GnRH receptors. The authors suggested that GnRHa acts di-
rectly on cumulus cells to protect the oocytes from chemotherapy by 
an antiapoptotic effect. 

Clinical experiences of GnRHa for fertility 
preservation 

1. Recent guidelines for GnRHa to preserve fertility 
In 2006, the ASCO and the American Society for Reproductive 

Medicine published the world’s first guidelines on fertility preserva-
tion in patients with cancer, which was later updated in 2013 and 
2018 [2-4]. The 2006 ASCO guidelines stated that cancer patients do 
not receive sufficient information about fertility preservation op-
tions; furthermore, it considered GnRHa as an experimental method 
of preserving fertility, stressing that cryopreservation of embryos is 
the standard fertility preservation therapy in women. In addition, the 
guidelines mentioned that resumption of menstruation does not al-
ways reflect maintenance of fertility, meaning that the presence of 
regular menstrual cycles after cancer treatment is not tantamount to 
fertility preservation. The basic stance of the ASCO guidelines was 
maintained through the 2006 and 2013 revisions. 

However, there was a remarkable change in the 2018 ASCO guide-
lines regarding the role of GnRHa in fertility preservation. The 2018 
ASCO guidelines recommended that GnRHa may be offered to pa-
tients in the hope of reducing the likelihood of chemotherapy-in-
duced ovarian insufficiency, in case proven fertility preservation 
methods are not feasible, and in the setting of young women with 
breast cancer [4]. This change can be interpreted as partially ac-
knowledging the effect of GnRHa on fertility preservation, at least in 
breast cancer patients. 

Most of the guidelines released after 2018 have shown a tendency 
to follow the ASCO guidelines. In 2020, the Fourth International Con-
sensus Guidelines for Breast Cancer in Young Women by the Europe-
an School of Oncology and the European Society for Medical Oncol-
ogy, stated that the concomitant use of GnRHa with adjuvant che-
motherapy should be offered to all patients who wish to preserve 
ovarian function [10]. In this guideline, the limitations of GnRHa were 
also clearly described, stating that evidence regarding the efficacy of 
GnRHa for fertility protection remains insufficient and that GnRHa 
use during chemotherapy does not replace established fertility pres-

ervation methods. In 2018, the British Fertility Society recommended 
considering the possibility that ovarian suppression with GnRHa 
should be started immediately before and continued during chemo-
therapy, as it may partially preserve ovarian function in premeno-
pausal women with early breast cancer. Furthermore, the British Fer-
tility Society guideline recommended that GnRHa should also be ad-
vised to women with non-breast cancer because it is possible that 
there is a benefit of using GnRHa when other cancers are treated 
with gonadotoxic chemotherapy [11]. 

Nonetheless, other guidelines published just a few months before 
the 2018 ASCO guidelines remained conservative regarding the use 
of GnRHa in fertility preservation. The National Comprehensive Can-
cer Network Adolescent and Young Adult Oncology version 2.2018, 
which focuses on adolescents and young adults with cancer, did not 
recommend GnRHa as an option for fertility preservation because of 
insufficient evidence [68]. FertiPROTEKT, a network founded in 2006 
for the German-speaking sphere, also published guidelines on fertili-
ty preservation for female cancer patients in 2017, stating that GnRH 
agonists appear to reduce the risk of premature ovarian failure by up 
to 50%, but the effect is may not be long-lasting [69]. 

Currently, perceptions of the role of GnRHa as a fertility preserva-
tion treatment are evolving. Attention has been drawn to what 
stance the upcoming Oncofertility Consortium guidelines and 
guidelines of the International Society for Fertility Preservation will 
take on GnRHa [70,71]. 

2. Recent large-scale RCTs on GnRHa in fertility preservation 
To date, more than 17 RCTs have reported on more than 2,100 pa-

tients treated with GnRHa along with chemotherapy (Table 2) [8,72-
87]. In the early days, the use of GnRHa in preserving fertility showed 
conflicting results. However, trials since 2013 have reported that the 
use of GnRHa was relatively helpful for preserving fertility. Crucially, 
three recent, large prospective RCTs in patients with breast cancer 
have shown results supporting the use of GnRHa cotreatment for 
fertility preservation, which influenced the 2018 ASCO guidelines to 
partially recognize the effectiveness of GnRHa in fertility preservation 
[4]. 

The first of these RCTs was the Italian PROMISE-GIM6 study, which 
attempted to evaluate the incidence of chemotherapy-induced early 
menopause, long-term ovarian function, pregnancy, and prognosis 
of breast cancer after GnRHa cotreatment with chemotherapy in pa-
tients with stage I to III breast cancer [82]. In total, 281 patients, most 
of whom were hormone receptor (HR)-positive (n = 226), were en-
rolled with a median follow-up of 7.3 years (range, 6.3–8.2 years). 
The 5-year cumulative incidence estimate of menstrual resumption 
was higher, with borderline significance, in the GnRHa group (hazard 
ratio, 1.28; 95% confidence interval [CI], 0.98–1.68; p = 0.07) and sig-
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nificantly higher after adjustment for age (hazard ratio, 1.48; 95% CI, 
1.12–1.95; p = 0.006). Eight pregnancies occurred in the GnRHa 
group and 3 in the control group, which was not a statistically signifi-
cant difference (hazard ratio, 2.56; 95% CI, 0.68–9.60). Contrary to 
concerns, the 5-year disease-free survival rate in the GnRHa group 
was comparable to that of the control group (GnRHa vs. control: haz-
ard ratio, 1.17; 95% CI, 0.72–1.92). A similar result was reported in a 
subgroup analysis of patients with HR-positive disease. 

The Prevention of Early Menopause Study (POEMS)-The Southwest 
Oncology Group (SWOG)/S0230 study in the United States enrolled 
only HR-negative breast cancer patients, and demonstrated a statis-
tically significant reduction in ovarian failure rate in the GnRHa arms 
24 months after chemotherapy (odds ratio [OR], 0.30; 95% CI, 0.09–
0.97; p = 0.04). Remarkably, the POEMS-SWOG/S0230 study present-
ed pregnancy rates [83]. In the GnRHa arm, 25 patients attempted 
pregnancy, 22 achieved clinical pregnancy, and 18 babies were born. 
In the control group, 18 patients attempted pregnancy, 12 achieved 
clinical pregnancy, and 12 babies were born. Significantly higher live 
birth and ongoing pregnancy rates were observed in the GnRHa arm 
(OR, 2.45; 95% CI, 1.09–5.51; p = 0.03). Although this study included 
only patients with HR-negative breast cancer, women in the GnRHa 
group also showed improved disease-free survival (hazard ratio, 0.49; 
95% CI, 0.24–0.97; p = 0.04) and overall survival (hazard ratio, 0.43; 

95% CI, 0.18–1.00; p = 0.05). 
Meanwhile, the third large, prospective study, the Anglo Celtic 

Group OPTION trial, examined the effect of GnRHa administration 
before and during chemotherapy to 202 stage I to IIIB breast cancer 
patients, including 95 HR-positive subjects [85]. The primary out-
come was amenorrhea between 12 and 24 months after randomiza-
tion, combined with elevated FSH levels. This RCT found that GnRHa 
reduced the prevalence of amenorrhea to 22% between 12 and 24 
months (vs. 38% in the control group; p = 0.015) and the prevalence 
of POI to 18.5% (vs. 34.8% in the control group; p = 0.048). FSH con-
centrations were also found to be lower in all women treated with 
GnRHa at both 12 and 24 months (p = 0.027 and p = 0.001, respec-
tively). An assessment of ovarian reserve using AMH showed a 
marked fall in both groups during treatment to median values of 5% 
of pretreatment levels in the control group and 7% in the goserelin 
group, which were not significantly different between groups. In 
subgroup analysis by age group, GnRHa demonstrated a significantly 
reduced risk of POI only in women younger than 40 years. 

3. Meta-analyses and systematic reviews on GnRHa in fertility 
preservation 

Comparing multiple RCTs through meta-analyses (MAs) or system-
atic reviews (SRs) will aid in determining directions of future research. 

Table 2. Randomized controlled trials of gonadotropin-releasing hormone agonists

Study (trial)
Enrolled  
(control)

Evaluable  
(control)

Type of GnRHa Disease
Follow-up  

(yr)
Primary  

outcome
No. of pregnancies 

(%) (GnRHa/control)
p-value

Zhong et al. (2019) [87] 98 (47) 96 (45) G 3.6 mg Breast 1.25 POF - 0.002
Zhang et al. (2018) [86] 216 (108) 170 (78) G 3.75 mg, L 11.25 mg Breast 4.7 POF - NS
Leonard et al. (2017) (OPTION) [85] 227 (121) 202 (107) G 3.6 mg Breast 5 POV 9 (9)/6 (6) 0.015
Demeestere et al. (2016) [84] 129 (64) 67 (35) T 11.25 mg Lymphoma 5.33 POF 17 (53.1)/14 (42.8) NS
Moore et al. (2015) (POEMS) [83] 257 (131) 218 (113) G 3.6 mg Breast 4.1 POV 22 (21)/12 (11) 0.04
Lambertini et al. (2015)  

(PROMISE-GIM6) [82]
281 (133) 281 (133) T 3.75 mg Breast 7.3 POV 8 (5)/3 (2) 0.006

Karimi-Zarchi et al. (2014) [81] 42 (21) 42 (21) D 3.75 mg Breast 0.5 ROM - < 0.001
Elgindy et al. (2013) [80] 100 (50) 70 (37) T 3.75 mg Breast 1 ROM 1 (4)/1 (4) NS
Song et al. (2013) [79] 220 (110) 183 (94) L Breast 1 POV - 0.04
Munster et al. (2012) [78] 49 (22) 47 (21) T Breast 1.6 POV 0/2 (10) NS
Gerber et al. (2011) (ZORO) [77] 61 (31) 60 (30) G 3.6 mg Breast 4 ROM 1 (3)/1 (3) NS
Behringer et al. (2010) [76] 23 (12) 20 (10) G 3.6 mg Lymphoma 2.1 POF - NR
Sverrisdottir et al. (2009) [75] 285  260 (123) G 3.6 mg Breast ~3.0 ROM - 0.006
Badawy et al. (2009) [74] 80 (40) 78 (39) G 3.6 mg Breast 0.7 ROM - 0.001
Gilani et al. (2007) [73] 30 (15) 30 (15) D3.75 mg Ovary 0.5 FSH, LH, E2 - NR
Giuseppe et al. (2007) [72] 29 (15) 29 (15) T 3.25 mg, 11.25 mg Lymphoma 3.59 ROM 0 (14)/2 (15) NR
Waxman et al. (1987) [8] 18 (10) 18 (10) B (nasal) Lymphoma 2 ROM - NR

GnRHa, gonadotrophin-releasing hormone agonist; G, goserelin; L, leuprorelin; T, triptorelin; D, Diphereline; B, buserelin; POF, premature ovarian failure; POV, 
preservation of ovarian function; ROM, resumption of menses; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol; OPTION, Ovarian 
Protection Trial In Premenopausal Breast Cancer Patients; POEMS, Prevention of Early Menopause Study; PROMISE-GIM6, Prevention of Menopause Induced 
by Chemotherapy: A Study in Early Breast Cancer Patients-Gruppo Italiano Mammella 6; ZORO, Zoladex Rescue of Ovarian function; NS, not significant; NR, 
not reported.
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In recent years, several MAs and SRs have been published (Table 3), 
including the recently released RCTs described above. A number of 
recent RCTs have reported favorable effects of GnRHa on the preven-
tion of chemotherapy-induced POI. Therefore, recent MAs and SRs, 
including the Cochrane review released in 2019, have also reported 
results in favor of adjuvant use of GnRHa with chemotherapy. In this 
section, we will review the areas that need to be clarified regarding 
the role of GnRHa in fertility preservation by comparing MAs and SRs 
published in the last 5 years. 

Lack of a standardized definition of POI after 
chemotherapy 

The lack of a standardized definition of chemotherapy-associated 
POI has been identified in several MAs as a limitation to the interpre-
tation of findings in the literature regarding GnRHa. All MAs covered 
in this review analyzed the amenorrhea rate or resumption of men-
ses as the primary outcome and the rate of spontaneous pregnancy 
as the secondary outcome, except for two studies [88,89]. Three 
studies assessed the results of the primary endpoint without setting 
a specific time point [90-92], one study analyzed the primary out-
come 2 years after completion of treatment [88], and the remaining 
studies included analyses of the primary outcome at 1 year after the 
end of chemotherapy [89,93-96]. The rate of amenorrhea 1 year after 

the end of chemotherapy is a commonly adopted primary endpoint 
in several RCTs [79,80,82,86,87] because menopause is clinically de-
fined as the absence of menstruation for a year, and resumption of 
menses is a clinically relevant and reproducible outcome [93]. 

However, resumption of menses does not necessarily translate 
into restoration of fertility [93]. Oktay and Turan [97] emphasized 
that menstruation or amenorrhea should not be considered surro-
gate markers of GnRHa efficacy in preserving the ovarian reserve. 
However, owing to the lack of data related to pregnancy, controversy 
remains as to whether GnRHa administration will really help future 
pregnancies in premenopausal women receiving chemotherapy. Ten 
SRs and MAs have been published in the past 5 years, seven of which 
have reported results on pregnancy outcomes. Five of the seven MAs 
found significantly higher rates of pregnancy in patients receiving 
chemotherapy and GnRHa than in those receiving chemotherapy 
alone [90,91,93-95]. In particular, studies that included only breast 
cancer patients showed clearer results for efficacy of GnRHa on the 
spontaneous pregnancy rate after chemotherapy [90,93-95]. Howev-
er, as Munhoz et al. [94] noted in their MA, these analyses of preg-
nancy rates are closer to exploratory analyses than to a valid end-
point for a main analysis. The results of pregnancy outcomes in MAs 
might be affected by several biases. First, although pregnancy may 
be the most specific indicator of gonadal function, subfertility can be 
multifactorial, and inability to conceive does not necessarily indicate 

Table 3. The past 5 years’ meta-analyses and systematic reviews regarding the fertility preservation efficacy of GnRH agonists during 
chemotherapy

Study
No. of  

included  
studies

RCT  
addressing 
pregnancy

No. of  
patients

Disease OR (95% CI)
p-value for 

 POF, POV, ROM
OR (95% CI)

p-value for  
pregnancy

Sofiyeva et al. 
(2019) [89]

18 5 1,043 Breast, SLE, hematological malignancy 1.38a) (1.18–1.63) < 0.0001 -

Chen et al. 
(2019) [96]

12 7 1,369 Breast, ovary, lymphoma 0.44a) (0.31–0.61) < 0.00001 1.59a) (0.93–2.70) 0.09

Hickman et al. 
(2018) [88]

10 7 1,051 Breast, ovary, lymphoma 1.83 (1.34–2.49) NR -

Senra et al. 
(2018) [91]

13 9 1,208 Breast, lymphoma 0.6a) (0.45–0.79) 0.0004 1.43a) (1.01–2.02) 0.04

Lambertini et al. 
(2018) [95]

5 3 847 Breast 0.38 (0.26–0.57) < 0.001 1.83b) (1.06–3.15) 0.03

Bai et al.  
(2017) [90]

15 5 1,540 Breast 1.36 (1.19–1.56) < 0.00001 1.9 (1.06–3.41) 0.03

Munhoz et al. 
(2016) [94]

7 NR 1,047 Breast 2.41 (1.40–4.15) 0.002 2.41 (1.02–3.36) 0.04

Elgindy et al. 
(2015) [92]

10 8 427 Breast, ovary, lymphoma 1.12a) (0.99–1.27) NS 1.63a) (0.94–2.82) NS

Lambertini et al. 
(2015) [93]

12 5 359 Breast 0.36 (0.23–0.57) < 0.001 1.83 (1.02–3.28) 0.04

GnRH, gonadotropin-releasing hormone; RCT, randomized controlled trial; OR, odds ratio; CI, confidence interval; POF, premature ovarian failure; POV, 
preservation of ovarian function; ROM, resumption of menses; SLE, systemic lupus erythematosus; NR, not reported; NS, not significant.
a)Relative risk; b)Incidence rate ratio.
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hypogonadism [88]. Second, limited information is available on the 
number of patients interested in future pregnancies at the time of 
randomization and on those who attempted to become pregnant 
[91]. Only one of the RCTs reported the number of women attempt-
ing pregnancy and calculated the pregnancy rate for this subgroup 
[83]. Therefore, most MAs used the number of the entire randomized 
population as the denominator for comparing pregnancy outcomes, 
rather than the number of women who actually attempted pregnan-
cy. However, multiple biases are also possible when using the num-
ber of patients attempting pregnancy as a denominator for the 
pregnancy rate. For example, without blinding, intervention assign-
ment can affect the likelihood of attempting pregnancy. In addition, 
because a significantly lower rate of participants developed POI in 
the group administered GnRHa, the intervention itself had an effect 
on the size of the group in which attempting pregnancy was possi-
ble. Furthermore, as observed in the POEMS-SWOG/S0230 study, 
some pregnancies might occur in women who did not attempt 
pregnancy [83]. Finally, the study period of the RCTs included in the 
MAs varied. A short median follow-up of the studies might be a pos-
sible explanation of the limited number of pregnancies observed, es-
pecially in trials including patients with HR-positive disease who re-
ceived adjuvant endocrine therapy for at least 5 years [78,82,85], 
thus delaying attempts for pregnancy. 

Gonadotoxicity by cancer type and 
chemotherapy regimen 

GnRHa was recently reported to be effective in RCTs including 
breast cancer patients [74,75,79,81-83,85,87], whereas GnRHa was 
found to be ineffective in preserving fertility in a large-scale RCT tar-
geting only lymphoma patients [84]. Conflicting results have been 
reported in MAs. Elgindy et al. [80] observed that GnRHa administra-
tion during chemotherapy did not protect the ovaries from gonadal 
toxicity regardless of cancer type. Senra et al. [91] reported that Gn-
RHa had a significant benefit on the risk of POI in breast cancer pa-
tients (relative risk [RR], 0.57; 95% CI, 0.43–0.77), but not in lympho-
ma patients (RR, 0.70; 95% CI, 0.20–2.47). Meanwhile, Sofiyeva et al. 
[89] observed a gonadoprotective effect of GnRHa in both hemato-
logical malignancies (RR, 1.77; 95% CI, 1.15–2.74) and breast cancer 
(RR, 1.31; 95% CI, 1.05–1.62) . 

In fact, the difference in the efficacy of GnRHa may not be attribut-
able to the type of cancer, but rather to the regimen of chemothera-
py used for each cancer type. It is well known that gonadotoxicity 
varies depending on the type of chemotherapeutic agent and the 
duration of administration [2]. To overcome this heterogeneity, some 
early RCTs enrolled only those who received the same anticancer 
regimen to evaluate the efficacy of GnRHa [74-76]. However, unlike 

in RCTs, it is difficult to control the different anticancer regimens and 
different administration periods of the studies included in MAs. Sev-
eral MAs have reported inconsistent results for risk of POI after ad-
ministering different regimens and agents. A recent MA found that 
women exposed to taxanes demonstrated a lower rate of menstrual 
recovery than those treated with chemotherapy regimens that did 
not contain taxanes (OR, 0.49; 95% CI, 0.30–0.80; p = 0.004) [98]. In 
another MA that included only early breast cancer patients who 
were administered GnRHa for the purpose of fertility preservation, 
whether or not a taxane was included in the anticancer regimen was 
not an independent variable associated with the risk of developing 
chemotherapy-induced POI [95]. In the same MA, the duration of 
chemotherapy ( > 4 months) was also not associated with the risk of 
POI [95]. 

In another MA including breast cancer and lymphoma patients 
[91], when all patients were subdivided according to chemotherapy 
regimen into high toxicity and low to medium toxicity groups, the 
benefit of GnRHa therapy in preventing POI appeared to be of a 
greater magnitude among women treated with low- to medium-tox-
icity chemotherapy (RR, 0.49; 95% CI, 0.29–0.84); this is in compari-
son to women treated with highly toxic chemotherapy (RR, 0.66; 
95% CI, 0.45–0.96). The major mechanism of ovarian protection by 
GnRHa is believed to be the downregulation of pituitary GnRH re-
ceptors with a drastic reduction of serum gonadotropin levels and 
blocking of follicular recruitment [91,99]. The authors assumed that 
the reason for a weaker protection of GnRHa against highly toxic 
chemotherapy was that these agents cause ovarian damage through 
multiple mechanisms beyond follicle destruction, such as cortical fi-
brosis, vascular lesions, and accelerated atresia [91,100]. 

Time to recovery of ovarian function after 
chemotherapy 

To date, there is a paucity of data available on the appropriate fol-
low-up period to observe recovery of ovarian function after antican-
cer treatment. The difference in follow-up duration between groups 
[101] and between studies is a another possible source of heteroge-
neity and bias in the studies selected for MAs, which in turn could 
impact the chance of POI diagnosis and pregnancy outcomes [93]. 
Although there are several RCTs with a follow-up duration of 1 year 
after the end of chemotherapy, recent large-scale RCTs tended to 
have a follow-up duration of 2 years or more [75,78,82-84]. Recently, 
as RCTs have included HR-positive breast cancer patients, the study 
period has also been growing longer. In a trial by Lambertini et al. 
[82], because patients with HR-positive breast cancer were included, 
patients were followed up for more than 5 years to avoid endocrine 
treatment masking resumption of menses (mean follow-up, 7.3 
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years) . Moreover, an RCT showed different results within 2 years of 
follow-up compared with follow-up for only 1 year. For example, 
Sverrisdottir et al. [75] have observed that the proportion of men-
struating women in the GnRHa group showed a statistically signifi-
cant increase between 24 and 36 months, in contrast to all the other 
groups in which menses were unchanged or decreasing in the study. 
A short follow-up period may be responsible for discrepancies be-
tween studies, leading to premature conclusions [102]. 

The time at which ovarian function was evaluated has varied 
widely [88]. Therefore, several MAs have analyzed the outcomes at 
various time points, except for three studies that did not set a specific 
time point for assessing outcomes [90-92]. Eight MAs out of the nine 
studies in listed in Table 3 found a positive impact on preservation of 
ovarian function with GnRHa treatment compared with chemother-
apy alone. Meanwhile, three of the eight MAs reported that the ben-
efits of GnRHa administration may change over time [88,95,96]. 
Hickman et al. [88] reported that the effect of GnRHa treatment on 
ovarian protection was not valid after 2 years (OR, 0.53; 95% CI, 0.22–
1.30). Chen et al. [96] also reported no difference during a follow-up 
period longer than 12 months between the GnRHa group and con-
trols (RR, 1.08; 95% CI, 0.95–1.22). Meanwhile, the incidence of men-
strual recovery was significantly higher in the GnRHa group during a 
follow-up period no longer than 12 months, with an overall effect fa-
voring treatment with GnRHa (RR, 1.60; 95% CI, 1.14–2.24; p = 0.006). 
However, an MA by Lambertini et al. [95] presented a non-signifi-
cantly reduced risk of amenorrhea at 1 year after chemotherapy (OR, 
0.92; 95% CI, 0.66–1.28; p = 0.623). However, they found a signifi-
cantly reduced risk at 2 years (OR, 0.51; 95% CI, 0.31–0.85; p = 0.009) . 
Thus far, the duration of benefits from GnRHa cotreatment appears 
to be unclear and requires further study. 

Age of the patient at the time of treatment 

Age has been identified as a major determinant of the risk of POI 
after chemotherapy [98,103]. This age-related difference is most like-
ly a result of the reduction of the PMF pool with aging, resulting in an 
increase in the risk of developing ovarian failure and infertility in old-
er women after cytotoxic treatment, even at smaller doses [104]. Ac-
cording to recent MAs, this tendency is prominent in patients 40 
years and older [89,90,95,98]. Patient age for eligibility varies consid-
erably across trials, and only four RCTs set age limitations for eligibili-
ty to 40 years [74,76,80,85]. In the studies by Song et al. [79] and 
Munster et al. [78], the mean patient age was 41 and 45 years, re-
spectively, which may have contributed to diminished recovery. Fu-
ture clinical trials verifying the efficacy of GnRHa for ovarian protec-
tion should be designed considering the patient’s age. 

Hormonal receptor status in breast cancer 
patients 

There have been safety concerns regarding the potential negative 
effect of the concurrent use of tamoxifen with chemotherapy based 
on preclinical and clinical evidence [93,105-107]. However, GnRHa 
has been found to have different pharmacodynamic properties from 
those of tamoxifen. Since the 1990s, there have been randomized 
studies that investigated the impact of concurrent ovarian function 
suppression (obtained pharmacologically or with surgery or radio-
therapy) with chemotherapy, and these findings did not demon-
strate differences in patients’ prognoses [108-110]. Moreover, in re-
cently published trials, excellent survival outcomes were reported 
with the use of GnRHa concomitantly with chemotherapy in pa-
tients, including HR-positive patients [82,83,86,111]. In an MA by 
Lambertini et al. [82], no difference was noted in the prognosis of 
breast cancer according to HR status when GnRHa was co-adminis-
tered. An analysis according to HR status showed no significant inter-
action (pinteraction = 0.762); and the adjusted hazard ratios for dis-
ease-free survival were 0.79 (95% CI, 0.24–2.59) and 0.65 (95% CI, 
0.39–1.07) in patients with HR-positive and HR-negative disease, re-
spectively. According to these favorable results, the OPTION trial 
amended its protocol to allow enrollment of women with HR-posi-
tive tumors [85]. The original protocol of the OPTION trial restricted 
enrollment to only those with HR-negative tumors. 

It has also been speculated that GnRHa will not have an ovari-
an-protective effect on HR-positive breast cancers [112]. However, 
recent trials that included HR-positive breast cancer patients demon-
strated favorable outcomes in preventing POI through the concur-
rent use of GnRHa with chemotherapy [75,79,82,85,86]. In an MA by 
Senra et al. [91], HR status was determined not to influence the effect 
of GnRHa on the risk for POI, which was comparable among women 
with receptor-positive (RR, 0.69; 95% CI, 0.48–1.00) and recep-
tor-negative (RR, 0.62; 95% CI, 0.33–1.14) tumors. 

However, opinions still vary among guidelines. Although the St. 
Gallen International Expert Consensus [113] and the National Com-
prehensive Cancer Network Guidelines [112] have recommended 
the use of GnRHa only for patients with HR-negative breast cancer, 
the Breast Cancer in Young Women-2 Panel concluded that a protec-
tive effect was likely in both HR-negative and HR-positive patients, 
without an increased risk of breast cancer recurrence [114]. Recent 
findings further support the position that GnRHa has an ovarian pro-
tection effect in breast cancer patients regardless of HR status. 
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AMH as a surrogate marker for fertility in 
patients who have undergone chemotherapy 

Several studies have reported that AMH was an accurate biomarker 
for assessing the extent of ovarian damage after chemotherapy [115-
120]. Dunlop and Anderson [115] found that pretreatment AMH can 
predict POI or ongoing ovarian activity after chemotherapy. Despite 
the fact that the values of AMH fluctuate before 25 years of age in 
women, there are reports that AMH may be of value for assessing 
ovarian function in prepubertal girls after cancer treatment [116,117]. 
Thus, some trials have analyzed AMH as a secondary outcome to ex-
amine the ovary-protective effect of GnRHa [72,76,77,80,85]. 

However, some researchers are skeptical regarding the role of 
AMH in predicting chemotherapy-associated ovarian dysfunction. It 
is well known that AMH does not predict spontaneous pregnancy. A 
recent prospective time-to-pregnancy cohort study including 750 
women between the ages of 30 and 44 found no association be-
tween AMH levels and rates of spontaneous conception [121]. Simi-
larly, a retrospective study showed that AMH levels did not accurate-
ly predict pregnancy in breast cancer patients who underwent che-
motherapy [122]. As in the study of Demeestere et al. [84], in which 
five patients with protocol-defined POI became pregnant during fol-
low-up, low AMH levels do not necessarily indicate infertility. In addi-
tion, patients who have undergone ovarian tissue cryopreservation 
often have nearly undetectable AMH levels, but decent pregnancy 
rates have been reported [123]. 

Currently, no MAs have analyzed AMH levels as an outcome. The 
RCTs by Giuseppe et al. [72], Elgindy et al. [80], and Leonard et al. [85] 
reported that there was no difference in changes of AMH levels after 
chemotherapy between the GnRHa group and controls, and Gerber 
et al. [77] reported incomplete data regarding AMH. Meanwhile, an 
RCT by Leonard et al. [85] reported that AMH levels before chemo-
therapy were a predictor of posttreatment amenorrhea (p < 0.001). 
However, after adjustment for age, the effect of pretreatment AMH 
was no longer significant. 

Conclusion 

In the early days, the use of GnRHa for preserving fertility showed 
conflicting results. However, recent trials have reported that the use 
of GnRHa is helpful in preventing POI following chemotherapy, at 
least in breast cancer patients, owing to the overall increase in the 
number of patients enrolled in trials and the longer follow-up peri-
ods. In our opinion, all young women (even patients with high-risk 
leukemia) facing gonadotoxic chemotherapy should be counselled 
about and offered various options for fertility preservation, including 
both GnRHa and cryopreservation of embryos, oocytes, and ovarian 

tissue.  
However, it remains unclear to what extent GnRHa coadministra-

tion could provide benefits for achieving pregnancy after chemother-
apy. In general, attempting pregnancy after cancer treatment must 
be delayed until chemotherapy is out of the patient’s system and the 
patient is at a low risk of recurrence. Experts suggest that the timing 
of pregnancy should be individualized [88,124]. In patients with 
HR-positive breast cancer who wish to become pregnant, it may be 
more difficult to decide when to attempt pregnancy, because these 
patients are typically treated with tamoxifen for 5 to 10 years [88,124]. 
The POSITIVE study is currently underway to determine the safety of 
an interruption in endocrine therapy to allow childbearing, and the 
results of this ongoing research have attracted significant attention. 
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