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Abstract: African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral
disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans,
the ongoing ASFV epidemic could have severe economic consequences for global food security.
Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently,
there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat
ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking
and machine learning models to identify novel antiviral agents. We confirmed that compounds
with high affinity present in the region of interest belonged to subsets in the chemical space using
principal component analysis and k-means clustering in molecular docking studies of FDA-approved
drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it
was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the
present study suggest that molecular docking and machine learning models can play an important
role in identifying potential antiviral drugs against ASFVs.

Keywords: African swine fever virus; antiviral; molecular docking; machine learning

1. Introduction

African swine fever (ASFV) is an enveloped and double-stranded DNA virus be-
longing to the Asfarviridae family (genus Asfivirus), which contains a genome measuring
170–193 kbp, and replicates predominantly in the cytoplasm of macrophages [1]. The
virus has a complex structure and a genome that mainly replicates in the cytoplasm of
infected cells [2]. It has resulted in high mortality rates in pigs and is responsible for serious
economic and production losses worldwide [3,4]. Recently, ASFV outbreaks reported in
EU countries and Transcaucasia, especially in East Asian countries, have resulted in the
culling of over one million pigs [5–7]. Vaccines and antiviral drugs can stop the spread of
infection, but efforts to develop effective vaccines against ASFV have failed [8]. Therefore,
there is a need for novel effective drugs and vaccines against ASFV. Currently, no vaccine or
treatment is available against ASFV infection. Recent attempts to generate DNA vaccines,
vectored vaccines, or live attenuated vaccines by defined gene deletions have yielded
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encouraging data through in vitro assays [9–13]. However, there are still major challenges
with respect to the safety of live-attenuated ASFV vaccines, and their implementation is
highly limited. Several studies have attempted to identify multiple compounds that can
inhibit ASFV infections. Antiviral drugs with identified targets and known mechanisms
can be classified into five distinct categories as follows: nucleoside analogs, interferons,
plant-derived compounds, antibiotics, small interfering RNA, and CRISPR/Cas9 [14–23].
Other antiviral drugs such as apigenin, resveratrol, and oxyresveratrol show potent, dose-
dependent anti-ASFV activity in vitro, but they have unknown targets and mechanisms.
To date, there have been no effective drugs for clinical trials against ASFV, and there is an
urgent need to develop preventive and therapeutic reagents.

ASFV is primarily replicated in the cytoplasm of swine macrophages, which is a major
source of reactive oxygen species that cause constant damage to the ASFV genome [24–27].
To overcome potential DNA damage, such as apurinic/apyrimidinic (AP) sites and/or sin-
gle strand breaks, the virus has evolved its own DNA repair system, including AP endonu-
clease (AsfvAP), a repair DNA polymerase (AsfvPolX), and a DNA ligase (AsfvLIG) [28–30].
Unlike the homologous proteins, the fidelities of both AsfvPolX and AsfvLIG are very
low. Therefore, in addition to their critical role in genome stability maintenance, these
enzymes play an important role in the strategic mutagenesis and genotype formation of
ASFV [28,31–33]. Owing to their functional importance, ASFV repair enzymes have been
extensively studied [34,35].

In this study, we focused on an enzyme that helps synthesize DNA, the ASFV DNA
polymerase X or AsfvPolX, to identify novel targets for the prevention and treatment of
ASFV. AsfvPolX plays a role in the DNA repair process of the ASFV genome, and viral
replication is partially dependent on the function of AsfvPolX. In addition, AsfvPolX has
several unique structural features, including a 5′-phosphate (5′-P) binding pocket, a His115-
Arg127 platform, and hydrophobic residues Val120 and Leu123, which can all affect the
catalytic efficiency of AsfvPolX. It can be assumed that blocking the binding pocket with
therapeutics may inhibit AsfvPolX activity and thereby impair the DNA repair process of
the viral genome [36]. In the present study, we used the crystal structure of two different
types of AsfvPolX protein structures (AsfvPolX apo and AsfvPolX/DNA structures) to
identify potential antiviral drugs using a novel integrated strategy that combines molecular
docking and machine learning models [14,37]. Artificial intelligence and machine learning
have been successfully applied in bioinformatics [38–42]. To identify novel antiviral
inhibitors, we first conducted molecular docking studies of FDA-approved drugs based on
the structural information of the targets of ASFV and predicted ten top-ranked compounds
with high docking scores using principal component analysis (PCA) and k-means clustering.
Pentagastrin, which had the highest binding affinity in both the apo and DNA complex
structures of AsfvPolX, was chosen as an antiviral candidate drug. We also identified the
dose-dependent inhibitory effect of pentagastrin on AsfvPolX polymerase activity.

The use of this combination strategy can provide an alternative approach to identifying
potential antiviral drugs against ASFVs from molecules that have already been tested or
approved for other diseases. Furthermore, the region of interest that only appears in
groups with high binding affinity to ASFV targets identified based on eight molecular
descriptors used in this study can provide key information regarding the unique chemical
characteristics of antiviral drugs against ASFVs. These results demonstrate that active
compounds with regions of interest in the chemical space may be expected to provide
insights into potential ASFV inhibitors.

2. Results and Discussion
2.1. Identification of Ligandable Pockets

The putative binding sites of the AsfvPolX protein were identified using SiteMap,
with an applied force field of OPLS_2005 in the Schrödinger suite. SiteMap uses the
hydrophobicity and accessibility of a detected binding site to assess the likelihood of a
small-molecule inhibitor binding to it. We denoted the four top-ranking surface clefts
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identified by the SiteMap module on the structure of AsfvPolX protein in complex with
DNA (PDB ID: 5HRB) from site 1 to site 4 (Figure 1). Sites 1 and 3 were clearly distinct
from the DNA binding sites; however, sites 2 and 4 were very close in the 5′-P binding
pocket of AsfvPolX. We finally decided on sites 2 and 4 as the potential binding pockets of
AsfvPolX to find antiviral drugs through docking simulations.
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Figure 1. The four top-ranking surface pockets observed in the AsfvPolX protein identified by the
SiteMap module of Schrödinger. Colored spaces represent the SiteMap predictions for four top-
ranking surface clefts on the AsfvPolX protein (PDB ID: 5HRB, in grey surface representation): site 1:
orange, 2: pink, 3: yellow, 4: red. The red and pink spaces correspond to the DNA binding site. Grey
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2.2. Docking Simulation to DNA Binding Site

To discover new antiviral drugs capable of inhibiting the activity of AsfvPolX, we
first performed molecular docking using binding pockets identified through SiteMap.
The preparation of datasets for molecular docking was performed with two different
types of AsfvPolX protein structures (AsfvPolX apo and AsfvPolX/DNA structures), using
FDA-approved drugs from the DrugBank database. The reported eight AsfvPolX complex
structures demonstrated that AsfvPolX has one unique 5′-P binding pocket that can inhibit
the activity of AsfvPolX and disrupt the DNA repair process of the ASFV genome [36].
Previous binding site analysis studies using SiteMap also identified the 5′-phosphate (5′-
P) binding pocket of AsfvPolX as a potential binding pocket for antiviral inhibitors. To
determine which conformations of the apo and DNA complex structures are structurally
proximal conformations as template structures for virtual screening of antiviral compounds
with high binding affinity, we implemented a molecular docking program using both the
crystal structure of apo (PDB ID:1JAJ) and DNA complex structure (PDB ID:5HRB). We
obtained 1729 drugs from the DrugBank database. After performing molecular docking,
the 1JAJ and 5HRB datasets consisted of 1714 and 1712 compounds. Figure 2A,B show
the histogram and boxplot distribution of the docking scores for the two structures. The
distribution of docking score for the DNA complex structure was shifted to the left relative
to that of the apo structure (Figure 2A). In addition, the mean docking scores of compounds
in apo and DNA complex structures were −3.703 and −4.323, respectively, which implied
that compounds for DNA complex structure could be predicted to have higher binding
affinity than compounds for apo structure (Figure 2B). These results indicated that the
AsfvPolX-DNA complex structure is a suitable template for determining compounds with
high binding affinity and can also provide important guidance for the design and discovery
of potential antiviral inhibitors for AsfvPolX.
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Figure 2. The DrugBank datasets were docked against the apo and DNA complex structure of
AsfvPolX protein. The distributions of docking scores for each structure are shown as histogram
(A) and box and whisker plots, with outliers indicated by black dots (B).

2.3. Identification of New Chemical Space against AsfvPolX Inhibitor

To investigate the distinct features of molecules based on docking results for apo
and DNA complex structures, eight molecular descriptors of each molecule were calcu-
lated and applied to PCA (Figure 3). The 1JAJ and 5HRB datasets consisted of 1714 and
1712 compounds based on the docking score. We then constructed the 1JAJ and 5HRB
datasets which consisted of 675 and 1035 compounds, respectively, with binding free
energy ≤−4.0 kcal/mol based on docking score. These datasets were selected for further
PCA in this step. We also constructed a duplicated dataset consisting of 601 compounds
with binding free energy ≤−4.0 kcal/mol for both apo and DNA complex structures. In
PCA visualizations of all the three datasets with high binding affinity, we determined that
the datasets were generally well distributed throughout the chemical space, whereas the
three datasets with binding affinities ≥−4.0 kcal/mol were significantly concentrated in
the center (Figure 3). Of the three datasets, 5HRB and duplicated datasets generated a lot
of separately distributed points in the chemical space (Figure 3A). All the three datasets of
compounds with low binding affinity show that the most densely packed regions were in
the center (Figure 3B). PCA visualization of all three datasets containing compounds with
binding affinity ≤−4.0 kcal/mol or ≥−4.0 kcal/mol (represented by “Non-binding” in
Figure S2) shows that centralized distribution was clearly found in the non-binding dataset.
From these results, we determined the region of interest present in 5HRB and duplicated
the dataset with binding affinities ≤−4.0 kcal/mol as a new chemical space for finding a
potential inhibitor against ASFVs, which was then preferentially chosen to select the final
compound for experimental testing.
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2.4. Molecular Descriptor-Based Clustering

To investigate the region of interest in the chemical space, we used k-means clustering
for three datasets consisting of compounds with binding affinities ≤−4.0 kcal/mol based
on eight molecular descriptors (Figure 4A). We expected that the diverse regions of 5HRB
and duplicated dataset through PCA could provide several important chemical regions
for finding compounds with higher binding affinities in the DNA-binding sites of ASFVs.
For the datasets, we identified the optimal clustering consisting of groups of six clusters.
These results indicated that physicochemical descriptor-based clustering can accurately
provide a unique region for 5HRB and duplicated dataset containing compounds with
high affinity, demonstrating that compounds with the best docking score in both ASFV
protein structures are clustered together in the chemical space. For compounds in Clusters
1, 3, and 4, the mean docking scores were −5.27, −4.63, and −4.87, respectively (Figure 4B).
The mean docking scores of compounds in Clusters 2, 5, and 6 were −6.0, −5.26, and
−5.44, respectively, which implied that compounds of Cluster 2 could be predicted to have
higher binding affinity than other clusters. This showed chemical diversity and regions of
interest in chemical space. We showed that PCA-based clustering on the eight molecular
descriptors used in this study could discriminate compounds with high binding affinity
and provide valuable guidance on the design and discovery of potent antiviral drugs
available for the prevention or treatment of ASFV infections.
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2.5. Pentagastrin on AsfvPolX Polymerase Activity

Among the top-ranked ten ligands in Cluster 2, pentagastrin with the highest binding
affinity in both apo and complex structures was chosen as a promising drug candidate.
The list of the top-ranked ten ligands in Cluster 2 can be found in Table S1. To measure the
effect of pentagastrin on AsfvPolX activity, BL21 (DE3)-RIL cells carrying pET28-AsfvPolX
plasmid were cultured in the presence of isopropyl β-D-1-thiogalactopyranoside, and
then the AsfvPolX protein was purified using a Ni2+-nitrilotriacetic acid (Ni-NTA) column
(Figure 5A). AsfvPolX protein was further purified using a glycerol gradient (Figure 5B). We
first verified AsfvPolX polymerase activity. As shown in Figure 5C, AsfvPolX activity rapidly
increased after the incorporation of nucleotides up to 200 ng of enzyme, and the activity
gradually decreased thereafter. We then determined the effect of pentagastrin on AsfvPolX
polymerase activity. As shown in Figure 5D, AsfvPolX activity was significantly decreased
by pentagastrin in a dose-dependent manner. We showed that 100 µM of pentagastrin
inhibited AsfvPolX activity by 60% (Figure 5D), indicating that pentagastrin may be a
potent inhibitor of the ASFVs.
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(B) Twelve fractions collected from glycerol gradient sedimentation were analyzed in a 15% SDS-
PAGE and then the gel was stained with Coomassie Brilliant Blue R-250. Lo, Load. Molecular mass
markers are indicated in kDa. (C) Polymerase activity was determined by measuring nt incorpo-
ration using indicated amounts of purified AsfvPolX protein. (D) Pentagastrin was mixed with
100 ng of ASFV PolX for 10 min and polymerase activities were measured as described in Materials
and Methods.

2.6. Binding Interaction Patterns of Pentagastrin

The binding interactions between pentagastrin and AsfvPolX protein, identified using
Glide (Schrödinger, LLC, New York, NY, USA, 2020), showed that pentagastrin was fitted
into a groove at the same DNA binding pocket, and that it had a similar conformation
as that of 1nt-gap DNA1 (Figure 6A). In the docking model of pentagastrin, the phenyl
rings docked into a hydrophobic cavity formed by residues Val120, Leu123, and Ile124
of AsfvPolX protein. The hydroxyl group of pentagastrin formed hydrogen bonds with
Lys85 and Lys136 at the binding site (Figure 6B). The prediction of the binding poses of
the other nine candidate ligands through molecular docking simulations is represented
in Figure S3. Docking studies demonstrated that these residues contribute to the binding
interaction of pentagastrin with the AsfvPolX protein and could be important for the design
of new ligands.
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the essential amino acid residues at the DNA binding site are represented in circles.

3. Materials and Methods
3.1. Binding Site Analysis

The binding site was characterized using the SiteMap module of the Schrödinger
software package (Schrödinger, New York, NY, USA using the high-resolution crystal
structure, AsfvPolX, in complex with DNA (Protein Data Bank [PDB] ID, 5HRB) [43]. The
SiteMap module can be used to identify and clarify potential binding sites (site points) that
are most likely contribute to tight protein–ligand or protein–protein binding. The follow-
ing physicochemical properties of the sites were calculated using the SiteMap program:
size, volume, degree of enclosure/exposure, degree of contact, hydrophobic/hydrophilic
character, hydrophobic/hydrophilic balance, and hydrogen-bonding possibilities (accep-
tors/donors). The algorithm of SiteMap determines the likeliness of a site point whose
contribution depends on how close the site points are to the protein surface and how site
points are sheltered from the solvent. These site points, determined by SiteMap, can be
used to define the active site of a protein.

3.2. Docking Simulation

To examine the binding interactions of the AsfvPolX-ligand complexes, molecular
docking studies were performed using Glide software (Schrödinger, New York, NY, USA),
which uses an optimized potential for liquid simulations (OPLS)-2005 force field, and
refinement was carried out according to the recommendations of the Schrödinger Protein
Preparation Wizard. The ligand database consists of 2413 FDA-approved drugs obtained
from DrugBank. Prior to screening, the database was filtered to select compounds with
molecular weights >200 Da and 1729 compounds were obtained. LigPrep (Schrödinger,
New York, NY, USA) was used to generate three-dimensional ligand structures. The
active grid was generated using the Receptor grid application in the Glide module. On a
defined receptor grid, flexible docking was performed using the standard precision mode
of Glide [44,45]. The datasets of apo (PDB ID:1JAJ) and DNA complex structures (PDB
ID:5HRB) contained 1714 and 1712 compounds, respectively, based on the Glide score.

3.3. Dataset Preparation

The dataset was generated from the DrugBank database (https://go.drugbank.com
(DrugBank Release Version 5.1.4, 2 July 2019)), consisting of more than 11,000 drugs. Drugs
in this database are classified into different types as follows: trial stage drugs, approved
drugs, withdrawn drugs, and investigational drugs. In this study, we focused only on FDA-

https://go.drugbank.com
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approved drugs (around 2413 compounds) (DrugBank Release Version 5.1.4, 2 July 2019).
These compounds were downloaded in the form of a structure data file from the DrugBank
database. We removed compounds with a molecular weight less than approximately
200, and thus obtained a dataset comprising 1729 drugs. To perform molecular docking,
we used apo and DNA complex structures of the AsfvPolX target to obtain sets of apo
(PDB ID:1JAJ) and DNA complex structures (PDB ID:5HRB), which consisted of 1714 and
1712 compounds, respectively, based on the docking score. Finally, 1JAJ and 5HRB datasets
consisting of 675 and 1035 compounds with binding affinities ≤−4.0 kcal/mol based on
docking score were subjected to further PCA analysis.

3.4. Principal Component Analysis and Cluster Analysis

A molecular descriptor is a numerical description that represents the physical and
chemical information of a compound. The descriptor parameters for the datasets were
generated using the molecular descriptor calculator included in the QikProp module of
Schrödinger (Maestro, Schrödinger, LLC, New York, NY, USA, 2020). The calculated de-
scriptors included molecular weight, number of hydrogen bond acceptors, number of
hydrogen bond donors, ALogP, number of rotatable bonds, number of aromatic rings,
number of rings, and polar surface area. The frequency distribution of physicochemical
properties for the datasets is shown in Figure S1. To investigate and compare the distinct
features of molecules based on the docking results for apo and DNA complex structures,
the eight aforementioned molecular descriptors of each molecule were calculated. PCA
is a multivariate statistical method used for exploratory data analysis. It allows the rep-
resentation of the property space by projection into the principal component plane (PC1,
PC2), which is the mathematical equivalent of taking a picture from the most favorable
angle [46–48]. To extract the most important information from the dataset, PCA was em-
ployed to explore the chemical space of antiviral compounds as a function of the eight
molecular descriptors, using the FactoMineR package in R [49,50]. PCA clustering was
calculated for each dataset using the k-means clustering method within the Factoextra R
package. All histograms and scatter plots were generated using the R software.

3.5. Plasmid Construction

To confirm the in vitro antiviral activity for the candidate compounds identified in
this study, the full-length PolX gene (O174L) was manually synthesized (BIONICS) and
cloned into the BamHI and HindIII sites of the pET28 vector.

3.6. Purification of PolX Proteins

The pET28-PolX plasmid was transformed into Escherichia coli BL21 (DE3)-RIL, and
cells were grown at 37 ◦C until an A600 value of 0.5 was reached. Cells were then induced
with 1 mM isopropyl β-D-1-thiogalactopyranoside for 3 h and collected by centrifugation.
The cell pellet was resuspended in buffer T300 (50 mM Tris-HCl [pH 7.5], 300 mM NaCl,
0.1% Nonidet P-40, 10% glycerol, and 0.1 mM phenylmethylsulfonyl fluoride). The sub-
script number in T300 indicates the concentration of NaCl (mM). Cells were then lysed by
sonication, and the cell extract was centrifuged for 30 min at 13,000 rpm. The supernatant
was loaded onto a Ni-NTA column (Qiagen, Valencia, CA, USA) column and washed
successively with low concentrations of imidazole (20 mM and 60 mM) in T300 until no
protein was eluted, and the protein was eluted with 250 mM imidazole in the same buffer.
The peak protein fractions were pooled and diluted in 50 mM NaCl. The pooled protein
was then loaded onto a HiTrap SP HP column (GE Healthcare, Chicago, IL, USA) that
was eluted with a linear gradient (50–600 mM) of NaCl in buffer T. The eluted fractions
containing the highest concentration of protein were collected (eluting between 350 and
450 mM of NaCl), and an aliquot was subjected to glycerol gradient centrifugation (15–35%
glycerol) at 54,000 rpm for 26 h in a Beckman SW55Ti rotor. Gradient fractions containing
active PolX were stored at −70 ◦C until use.
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3.7. Measurement of Polymerase Activity

Polymerase activity of PolX was measured using the polymerase activity assay kit
(Enzynomics, Daejeon, Korea), according to the manufacturer’s instructions, with minor
modifications. Briefly, PolX protein was mixed with pentagastrin (Sigma-Aldrich, St Louis,
MO, USA) for 10 min at 4 ◦C and then further mixed with 2× reaction buffer and primed
substrate. For PolX induction, the mixture was incubated for 30 min at 37 ◦C. Following
inactivation of polymerase activity, the synthesized DNA was denatured at 95 ◦C for 20 min.
For annealing DNA, the temperature was decreased at 65 ◦C for 10 min, 45 ◦C for 5 min,
and 25 ◦C for 5 min. One hundred cycles of 5 s, with 0.5 ◦C temperature increments from
45 ◦C to 95 ◦C, were used for the melting curves to measure synthesized DNA contents
using a CFX Connect real-time system (Bio-Rad Laboratories). The 2× reaction mixture
was incubated with a standard substrate (S1, S2, S3) to create a standard curve.

4. Conclusions

In this study, we applied molecular docking and machine learning to build models
from publicly available screening data (DrugBank) to predict antiviral drugs that could
potentially inhibit ASFV. To determine which conformations of the apo and DNA complex
structures are structurally proximal conformations as template structures for virtual screen-
ing, we first conducted a docking simulation using both structures. To investigate and
compare molecules based on the docking scores for apo and DNA complex structures, eight
molecular descriptors of each molecule were calculated. From molecular descriptor-based
PCA, we determined that 5HRB and a duplicated dataset containing compounds with high
binding affinity were generally well distributed throughout the chemical space. Conversely,
the three datasets of compounds with low binding affinity were distributed concentrically
around the center of the chemical space. In this work, the k-means clustering method was
used to establish classification models for predicting whether compounds with high bind-
ing affinity are inhibitors of ASFVs. For the datasets, we identified the optimal clustering
consisting of six clusters. In particular, compounds in Cluster 2 were found to have a much
higher binding affinity on average compared to the other clusters. Therefore, we selected
the top-ranked (with the top score) pentagastrin on both apo and DNA complex structures
for further in vitro studies. Pentagastrin inhibited AsfvPolX activity by 60% at 100 µM
concentrations, indicating that the strategy used in this study can reduce the processing
time and cost required to identify potential antiviral drugs against ASFVs from molecules
already tested or approved for other diseases. These studies to identify drugs with antiviral
activity against ASFV have helped in determining active antiviral drugs available for the
treatment of ASFV infections. The present study, performed through molecular docking
and machine learning models, can play an important role in identifying potential antiviral
drugs against ASFVs.

Supplementary Materials: The following are available online, Figure S1: Chemical properties of the
compounds from the dataset are compared using histograms for eight molecular descriptors. The
dotted lines represent mean values and all histograms were generated with the R software. Figure S2:
The chemical space distributions based on the principal component analysis. Data points are color-
coded by each dataset. The loading plot vectors are represented by arrows for each physicochemical
property; Figure S3: The predicted binding pose of top-ranked nine ligands to AsfvPolX protein;
Table S1: The list of top-ranked ten ligands in Cluster 2.
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